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Introduction

• One of the first serious learning machines

• Most important elements in learning tasks

– Collection and preprocessing of training data

– Definition of a class of learning models. Often defined by the free parameters in a

learning model with a fixed structure (e.g., a Perceptron)

– Selection of a cost function

– Learning rule to find the best model in the class of learning models. Often this

means the learning of the optimal parameters
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Prototypical Learning Task

• Classification of printed or handwritten digits

• Application: automatic reading of Zip codes

• More general: OCR (optical character recognition)
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Transformation of the Raw Data (2-D) into Pattern Vectors
(1-D) as part of a Learning Matrix
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Binary Classification
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Data Matrix for Supervised Learning

M number of inputs
N number of training patterns

xi = (xi,0, . . . , xi,M−1)
T

i-th input
xi,j j-th component of xi
X = (x1, . . . , xN)T

design matrix
yi i-th target for xi
y = (y1, . . . , yN)T

Vector of targets
ŷi prediction for xi
di = (xi,0, . . . , xi,M−1, yi)

T

i-th pattern
D = {d1, . . . ,dN}

training data
z test input
t unknown target for z
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Model
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A Biologically Motivated Model
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Input-Output Models

• A biological system needs to make a decision, based on available senor information

• An OCR system classifies a hand written digit

• A prognostic system predicts tomorrow’s energy consumption
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Supervised Learning

• In supervised learning one assumes that in training both inputs and outputs are availa-

ble

• For example, an input pattern might reflect the attributes of an object and the target

is the class membership of this object

• The goal is the correct classification for new patterns

• Linear classifier: one of the simplest but surprisingly powerful classifiers

• A linear classifier is particularly suitable, when the number of inputs M is large; if

this is not the case, one can transform the input data into a high-dimensional space,

where a linear classifier might be able to solve the problem; this idea is central to a

large portion of the lecture (basis functions, neural networks, kernel models)

• A linear classifier can be realized through a Perceptron, a single formalized neuron!
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Supervised Learning and Learning of Decisions

• One might argue that learning is only of interest if it changes (future) behavior; at

least for a biological system

• Many decisions can be reduced to a supervised learning problem: if I can read a Zip

code correctly, I know where the letter should be sent

• Decision tasks can often be reduced to an intermediate supervised learning problem

• But who produces the targets for the intermediate task? For biological systems a

hotly debated issue: is supervised learning biologically relevant? Is only reinforcement

learning, based on rewards and punishment, biologically plausible?
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The Perceptron: A Learning Machine

• The activation function of the Percep-

tron is weighted sum of inputs

hi =
M−1∑
j=0

wjxi,j

(Note: xi,0 = 1 is a constant input,

such that w0 can be though of as a bias

• The binary classification yi ∈ {1,−1}
is calculated as

ŷi = sign(hi)

• The linear classification boundary (sepa-

rating hyperplane) is defined as

hi = 0
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Perceptron as a Weighted Voting machine

• The Perceptron is often displayed as a

graphical model with one input node for

each input variable and with one output

node for the target

• The bias w0 determines the class when

all inputs are zero

• When xi,j = 1 the j-th input votes

with weight |wj| for class sign(wj)

• Thus, the response of the Perceptron can

be thought of as a weighted voting for a

class.
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2-D Representation of the Decision Boundary

• The class boundaries are often displayed graphically with M = 3 (next slide)

• This provides some intuition

• But note, that this 2-D picture can be misleading, since the Perceptron is typically

employed in high-dimensional problems (M >> 1)
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Two classes that are Linearly Separable
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Perceptron Learning Rule

• We now need a learning rule to find optimal parameters w0, . . . , wM−1

• We define a cost function that is dependent on the training data and the parameters

• In the learning process (training), one attempts to find parameters that minimize the

cost function
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The Perceptron Cost Function

• Goal: correct classification of the N training samples {y1, . . . , yN}

• The Perceptron cost function is

cost = −
∑
i∈M

yihi =
N∑
i=1

|−yihi|+

whereM⊆ {1, . . . , N} is the index set of the currently misclassified patterns and

xi,j is the value of the j-th input in the i-th pattern. |arg|+ = max(arg,0).

• Obviously, we get cost = 0 only, when all patterns are correctly classified (then

M⊆ ∅ ); otherwise cost > 0, since yi and hi have different signs for misclassified

patterns
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Contribution to the Cost Function of one Data Point
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Gradient Descent

• Initialize parameters (typically small random values)

• In each learning step, change the parameters such that the cost function decreases

• Gradient decent: adapt the parameters in the direction of the negative gradient

• The partial derivative of the weights with respect to the parameters is (Example: wj)

∂cost

∂wj
= −

∑
i∈M

yixi,j

• Thus, a sensible adaptation rule is

wj ←− wj + η
∑
i∈M

yixi,j
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Gradient Descent with One Parameter (Conceptual)
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Gradient Descent with Two Parameters (Conceptual)
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The Perceptron-Learning Rule

• In the actual Perceptron learning rule, one presents randomly selected currently misclas-

sified patterns and adapts with only that pattern. This is biologically more plausible

and also leads to faster convergence. Let xt and yt be the training pattern in the t-th

step. One adapts t = 1,2, . . .

wj ←− wj + ηytxt,j j = 1, . . . ,M

• A weight increases, when (postsynaptic) y(t) and (presynaptic) xj(t) have the same

sign; different signs lead to a weight decrease (compare: Hebb Learning)

• η > 0 is the learning rate, typically 0 < η << 1

• Pattern-based learning is also called stochastic gradient descent (SGD)
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Stochastic Gradient Descent (Conceptual)
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Comments

• Convergence proof: with sufficiently small learning rate η and when the problem is

linearly separable, the algorithm converges and terminates after a finite number of

steps

• If classes are not linearly separable and with finite η there is no convergence
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Example: Perceptron Learning Rule, η = 0.1
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Linearly Separable Classes
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Convergence and Degenerativity
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Classes that Cannot be Separated with a Linear Classifier
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The classical Example for Linearly Non-Separable Classes: XOR
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Classes are Separable (Convergence)
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Classes are not Separable (no Convergence)
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Comments on the Perceptron

• Convergence can be very fast

• A linear classifiers is a very important basic building block: with M → ∞ most

problems become linearly separable!

• In some case, the data are already high-dimensional with M > 10000 (e.g., number

of possible key words in a text)

• In other cases, one first transforms the input data into a high-dimensional (sometimes

even infinite) space and applies the linear classifier in that space: kernel trick, Neural

Networks

• Considering the power of a single formalized neuron: how much computational power

might 100 billion neurons posses?

• Are there grandmother cells in the brain? Or grandmother areas?
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Comments on the Perceptron (cont’d)

• The Perceptron learning rule is not used much any more

– No convergence, when classes are not separable

– Classification boundary is not unique

• Alterbatvie learning rules:

– Linear Support Vector Machine

– Fisher Linear Discriminant

– Logistic Regression
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Application for a Linear Classifier; Analysis of fMRI Brain Scans
(Tom Mitchel et al., CMU)

• Goal: based on the image slices determine if someone thinks of tools, buildings, food,

or a large set of other semantic concepts

• The trained linear classifier is 90% correct and can. e.g., predict if someone reads

about tools or buildings

• The figure shows the voxels, which are most important for the classification task. All

three test persons display similar regions
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Pattern Recognition Paradigm

• von Neumann: ... the brain uses a peculiar statistical language unlike that employed

in the operation of man-made computers...

• A classification decision is done in done by considering the complete input pattern, and

neither as a logical decision based on a small number of attributes nor as a complex

logical programm

• The linearly weighted sum corresponds more to a voting: each input has either a

positive or a negative influence on the classification decision

• Robustness: in high dimensions a single, possible incorrect, input has little influence

35



Afterword
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Why Pattern Recognition?

• Alternative approach to pattern recognition: learning of simple close-to deterministic

rules (naive expectation)

• One of the big mysteries in machine learning is why rule learning is not very successful

• Problems: the learned rules are either trivial, known, or extremely complex and very

difficult to interpret

• This is in contrast to the general impression that the world is governed by simple rules

• Also: computer programs, machines ... follow simple deterministic if-then-rules?
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Example: Birds Fly

• Define flying: using its own force, at leat 20m, at leat 1m high, at least one every day

in its adult life, ...

• A bird can fly if,

– it is not a penguin, or ....

– it is not seriously injured or dead

– it is not too old

– the wings have not been clipped

– it does not have a number of diseases

– it only lives in a stable

– it carries heavy weights

– ...
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Pattern Recognition

• 90% of all birds fly

• Of all birds which do not belong to a flightless class 94% fly

• ... and which are not domesticated 96% ...

• Basic problem:

– Complexity of the underlying (deterministic) system

– Incomplete information

• Thus: success of statistical machine learning!
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Example: Predicting Buying Pattern
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Where Rule-Learning Works

• Technical human generated worlds (“Engine A always goes with transmission B”).

41


