
Principal Component Analysis and
Singular Value Decomposition

Volker Tresp, Clemens Otte
Summer 2014

1

Motivation

• So far we always argued for a high-dimensional feature space

• Still, in some cases it makes sense to first reduce the dimensionality before applying a

learning algorithm

• Example: The data are pixels in an image

2

Dimensionality Reduction

• We want to compress the M -dimensional x to an r−dimensional z using a linear

transformation

• We want x to be reconstructed from z as well as possible in the mean squared error

sense for all data points xi∑
i

(xi − V zi)
T (xi − V zi)

where V is an M × r matrix.

3

zl = v1,lx1 + v2,lx2 + . . .+ vM,lxM

First Component

• Let’s first look at r = 1 and we want to find the vector v

• Without loss of generality, we assume that ‖v‖ = 1

• The reconstruction error for a particular xi is given by

(xi − x̂i)
T (xi − x̂i) = (xi − vzi)

T (xi − vzi).

The optimal zi is then (see figure)

zi = vTxi (note: zi is scalar)

Thus we get

x̂i = vvTxi

4

Example: 50 data points in 2d

−10 −8 −6 −4 −2 0 2 4 6 8 10

−6

−4

−2

0

2

4

6

x
1

x 2

Second principal
component

First principal
component

• First principal vector is the direction that maximizes the variance of the projected data

• It is also the direction that minimizes the reconstruction error

• Here we centered the data (i.e. subtracted the sample mean) before applying PCA.

More on that later
5

Computing the First Principal Vector

• So what is v? We are looking for a v that minimizes the reconstruction error over all

data points. We use the Lagrange parameter λ to guarantee length 1

L =
N∑
i=1

(vvTxi − xi)
T (vvTxi − xi) + λ(vTv − 1)

=
N∑
i=1

xTi vv
TvvTxi + xTi xi − xTi vv

Txi − xTi vv
Txi + λ(vTv − 1)

=
N∑
i=1

xTi xi − xTi vv
Txi + λ(vTv − 1)

6

Computing the First Principal Vector (cont’d)

• We take the derivative with respect to v and obtain

∂

∂v
xTi vv

Txi

=
∂

∂v
(vTxi)

T (vTxi) = 2

(
∂

∂v
vTxi

)
(vTxi)

= 2xi(v
Txi) = 2xi(x

T
i v) = 2(xix

T
i)v

and
∂

∂v
λvTv = 2λv

• We set the derivative to zero and get

N∑
i=1

xix
T
i v = λv

7

or in matrix form

Σv = λv

where Σ = XTX

• Recall that the Lagrangian is maximized with respect to λ

• Thus the first principal vector v is the first eigenvector of Σ (with the largest

eigenvalue)

• zi = vTxi is called the first principal component of xi

Computing all Principal Vectors / Rank-r approx.

• The second principal vector is given by the second eigenvector of Σ and so on

• Note: the principal vectors are mutually orthogonal

• For a rank-r approximation we get

zi = V Tr xi

and the optimal reconstruction is

x̂i = Vrzi

8

PCA Applications

9

Classification and Regression

• First perform a PCA of X and then use as input to the model zi instead of xi, where

zi = V Tr xi

• Example: Linear regression on zi is called PCR (Principal Component Regression)

10

Similarity and Novelty

• A distance measure (Euclidian distance) based on the principal components is often

more meaningful than a distance measure calculated in the original space

• Novelty detection / outlier detection: We calculate the reconstruction of a new vector

x and calculate

‖x− VrV Tr x‖ = ‖V T−rx‖

If this distance is large, then the new input is unusual, i.e. might be an outlier

• Here V−r contains the M − r eigenvectors vr+1, ...,vM of Σ.

11

Practical Hint 1

• Scaling of inputs affects the resulting principal components

• If the given scaling is arbitrary (e.g. different physical units: mbar, PSI, K), consider

standardizing data before performing PCA (e.g. x = x/std(x))

• Example shows first principal vector. Right side: x2 scaled by factor 3

−10 −8 −6 −4 −2 0 2 4 6 8 10

−15

−10

−5

0

5

10

15

x
1

x 2

−10 −8 −6 −4 −2 0 2 4 6 8 10

−15

−10

−5

0

5

10

15

x
1

x 2

x
2
 scaled by factor 3

12

Practical Hint 2

• PCA does not consider class information (i.e. it is an unsupervised method)

• Example: Projecting the shown data onto the first principal vector removes the class
separability completely!

• There are methods that include class information, e.g. Partial Least Squares, or com-
binations of PCA with supervised methods, e.g. “Supervised Principal Components”
[Hastie et al., ESLII, p.674]

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1

x 2

Class A

First principal vector

Class B

13

PCA Example: Handwritten Digits

14

Data Set

• 130 handwritten digits “ 3 ” (in total: 658): significant difference in style

• The images have 16×16 grey valued pixels. Each input vector x consists of the 256

grey values of the pixels. Applying a linear classifier to the original pixels gives bad

results

15

Visualisation

• We see the first two principal vectors v1, v2

• v1 prolongs the lower portion of the “3”

• v2 modulates thickness

16

Visualisation: Reconstruction

• For different values of the principal components z1 and z2 the reconstructed image

is shown

x̂ = m + z1v1 + z2v2

• m is a mean vector that was subtracted before the PCA was performed and is now

added again. m represents 256 mean pixel values averaged over all samples

17

Eigenfaces

18

Data Set

• PCA for face recognition

• http://vismod.media.mit.edu/vismod/demos/facerec/basic.html

• 7562 images from 3000 persons

• xi contains the pixel values of the i-th image. Obviously it does not make sense to

build a classifier directly on the 256× 256 = 65536 pixel values

• Eigenfaces were calculated based on 128 images (eigenfaces might sound cooler than

principal vectors!) (training set)

• For recognition on test images, the first r = 20 principal components are used

• Almost each person had at least 2 images; many persons had images with varying

facial expression, different hair style, different beards, ...

19

Similarity Search based on Principal Components

• The upper left image is the test image. Based on the Euclidian distance in PCA-space

the other 15 images were classified as nearest neighbors. All 15 images came from the

correct person, although the data base contained more than 7562 images!

• Thus, distance is evaluated following

‖z− zi‖

20

Recognition Rate

• 200 pictures were selected randomly from the test set. In 96% of all cases the nearest

neighbor was the correct person

21

Modular Eigenspaces

• The method can also be applied to facial features as eigeneyes, eigennoses, eigen-

mouths.

• Analysis of human eye movements also showed that humans concentrate on these

local features as well

22

Automatically Finding the Facial Features

• The modular methods require an automatic way of finding the facial features (eyes,

nose, mouth)

• One defines rectangular windows that are indexed by the central pixel in the window

• One computes the anomaly of the image window for all locations, where the detector

was trained on a feature class (e.g., left eye) by using a rank 10 PCA. When the

anomaly is minimum the feature (eye) is detected.

ANleft eye(xposk) = ‖xposk − VrV
T
r xposk‖

2

• In the following images, brightness is anomaly

23

Input Image

24

Distances

25

Detection

26

Training Templates

27

Typical Detections

28

Detection Rate

• The next plot shows the performance of the left-eye-detector based on

ANleft eye(zposk) (labeled as DFFS) with rank one and with rank 10. Also shown

are the results for simple template matching (distance to the mean left eye image

(SSD)).

• Definition of Detection: The global optimum is below a threshold value α and is

within 5 pixels of the correct location

• Definition of False Alarm: The global optimum is below a threshold value α and

is outside of 5 pixels of the correct location

• In the curves, α is varied. DFFS(10) reaches a correct detection of 94% at a false

alarm rate of 6%. this means that in 94% of all cases, where a left eye has been

detected in the image, it was detected at the right location and in 6% of all cases,

where a left eye has been detected in the image, it was detected at the wrong location

29

Robustness

• A potential advantage of the eigenfeature layer is the ability to overcome the short-

comings of the standard eigenface method. A pure eigenface recognition system can

be fooled by gross variations in the input image (hats, beards, etc.).

• The first row of the figure above shows additional testing views of 3 individuals in the

above dataset of 45. These test images are indicative of the type of variations which

can lead to false matches: a hand near the face, a painted face, and a beard.

• The second row in the figure above shows the nearest matches found based on a

standard eigenface classification. Neither of the 3 matches correspond to the correct

individual.

• On the other hand, the third row shows the nearest matches based on the eyes and

nose features, and results in correct identification in each case. This simple example

illustrates the advantage of a modular representation in disambiguating false eigenface

matches.

30

PCA with Centered Data

• Often the mean is subtracted first

x̃i,j = xi,j −mj

where

mj =
1

N

N∑
i=1

xi,j

• X̃ now contains the centered data as (N,M) matrix

• Note: X̃T X̃/N is the empirical covariance matrix

• Centering is particularly recommended when data are approximately Gaussian distri-

buted

31

PCA with Centered Data (cont’d)

• Let ṽl, l = 1, . . . , r, be the first r principal vectors.

Then

x̂i = m +
r∑

l=1

ṽlz̃i,l

with m = (m1, . . . ,mM)T

z̃i,l = ṽTl x̃i

32

(d̃l/
√
N is the standard deviation of the projected samples along the l-th principal direction. More on

that later)

PCA and Singular Value
Decomposition

33

Singular Value Decomposition (SVD)

• Any N ×M matrix X can be factored as

X = UDV T

where U and V are both orthogonal matrices (i.e. their rows and columns are

pairwise orthonormal). U is an N ×N matrix and V is an M ×M matrix.

• D is an N × M diagonal matrix with diagonal entries (singular values) di ≥
0, i = 1, . . . , r̃, with r̃ = min(M,N)

• The uj (columns of U) are the left singular vectors

• The vj (columns of V) are the right singular vectors

• The dj are the singular values

34

Interpretation of SVD

X = UDV T

Linear mapping Xa for all vectors a ∈ RM can be decomposed

• rotate (by V T)

• scale axes by di (di = 0 for i > r̃)

• rotate (by U)

35

Covariance Matrix and Kernel Matrix

• With centered X we get for the (M ×M) empirical covariance matrix

Σ =
1

N
XTX =

1

N
VDTUTUDV T =

1

N
VDTDV T =

1

N
VDV V

T

• And for the (N ×N) empirical kernel matrix

K =
1

M
XXT =

1

M
UDV TV DTUT =

1

M
UDDTUT =

1

M
UDUU

T

• With

ΣV =
1

N
VDV KU =

1

M
UDU

one sees that the columns of V are the eigenvectors of Σ and the columns of

U are the eigenvectors of K. The eigenvalues are the diagonal entries of DV (same

as in DU).

36

• Apparent by now: The columns of V are the principal vectors!

• Thus, the j-th principal component is given by zj = Xvj where vj denotes the

j-th column of V . Its variance is

Var(zj) = Var(Xvj) = d2
j /N

• We have seen that PCA can be performed by SVD on the centered X. As there are

good, numerically stable algorithms for calculating SVD, many implementations of

PCA (e.g. pca() in Matlab) internally use SVD.

More Expressions (used on next slide)

• The SVD is

X = UDV T

from which we get

X = UUTX

X = XV V T

37

Reduced Rank

• In the SVD, the di are ordered: d1 ≥ d2 ≥ d3... ≥ dr̃. In many cases one can

neglect di, i > r and one obtains a rank-r approximation. Let Dr be a diagonal

matrix with the corresponding entries. Then we get the approximation

X̂ = UrDrV
T
r

X̂ = UrU
T
r X

X̂ = XVrV
T
r

where Ur contains the first r columns of U . Correspondingly, Vr.

38

Best Approximation

• The approximation above is the best rank-r approximation with respect to the squared

error (Frobenius Norm). The approximation error is

N∑
i=1

M∑
j=1

(xi,j − x̂i,j)2 =
r̃∑

j=r+1

d2
j

39

LSA: Similarities Between
Documents

40

Feature Vectors for Documents

• Given a collection of N documents and M keywords

• X is the term-frequency (tf) matrix; xi,j indicates how often word j occurred in

document i.

• Some classifiers use this representation as inputs

• On the other hand, two documents might discuss similar topics (are “semantically

similar”) without using the same key words

• By doing a PCA we can find document representations zi = V TxTi,∗ that provide us

with a good similarity measure between documents

• New: We can also find an improved representation of words via tj = UTx∗,j!

• This is known as Latent Semantic Analysis (LSA)

41

Simple Example

• In total 9 sentences (documents):

– 5 documents on human-computer interaction (c1 - c5)

– 4 documents on mathematical graph theory (m1 - m4)

• The 12 key words are in italic letters

From: Landauer, T. K., Foltz, P. W., Laham, D. (1998). Introduction to Latent Semantic Analysis. Discourse Processes, 25,

259-284.

42

tf-Matrix and Word Correlations

• The tf-Matrix X

• Based on the original data, the Pearson correlation between human and user is nega-

tive, although one would assume a large semantic correlation

43

Site note: Pearson Correlation

• Measures linear correlation (dependence) between two random variables X,Y ∈ R

rXY =
cov(X,Y)

std(X)std(Y)
∈ [−1,1]

44

Singular Value Decomposition

• Decomposition X = UDV T

45

Approximation with r = 2 and Word Correlations

• Reconstruction X̂ with r = 2

• Shown is X̂T

• Based on X̂ the correlation between human and user is almost one! The similarity

between human and minors is strongly negative (as it should be)

• In document m4: Graph minors: a survey the word survey which is in the original

document gets a smaller value than the term trees, which was not in the document

originally

46

Document Correlations in the Original and the Reconstructed
Data

• Top: document correlation in the original data X: The average correlation between

documents in the c-class is almost zero

• Bottom: in X̂ there is a strong correlation between documents in the same class and

strong negative correlation across document classes

47

Applications of LSA

• LSA-similarity often corresponds to the human perception of document or word simi-

larity

• There are commercial applications in the evaluation of term papers

• There are indications that search engine providers like Google and Yahoo, use LSA for

the ranking of pages and to filter out spam (spam is unusual, novel)

48

Recommendation Engines

• The requirement that the approximation is optimal for any r lead to the PCA/SVD

as unique solution

• If we only require a decomposition of the form X = ABT where A and B have

r columns, then the solution is not unique and the columns of A and B are not

necessarily orthonormal

• Such a decomposition is the basis for recommender systems where matrix entries

correspond to rating of a user (row) for a movie (column)

• The components of A and B are regularized and the Frobenius norm is only calculated

with respect to known ratings (which means that missing ratings are ignored in the

optimization)

49

Further Example: PCA on Turbine Data

• 9000 data points, each with 279 inputs (sensor measurements), 1 output (emission)

• Visualizing first 3 principal components gives a good impression of the data distribution

(here: trajectories in state space). The first 3 PCs explain nearly 90 percent of the

variance of the data

• However, the principal components are not easy to interpret (linear combination of

the original inputs)

• As Matlab code:

[coef,scores,variances] = pca(X);
percent_explained = 100*variances/sum(variances);
figure; pareto(percent_explained)
xlabel(’Principal Component’)
ylabel(’Variance Explained (%)’)

figure; scatter3(scores(:,1),scores(:,2),scores(:,3),10,Y);
xlabel(’1.PC’); ylabel(’2.PC’); zlabel(’3.PC’);
set(get(colorbar,’ylabel’),’String’, ’Emission’);

50

 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Principal Component

V
ar

ia
nc

e
E

xp
la

in
ed

 (
%

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

−20
−15

−10
−5

0
5

10
15

−15

−10

−5

0

5

10
−10

−5

0

5

10

15

1.PC2.PC

3.
P

C

E
m

is
si

on

−4

−3

−2

−1

0

1

2

3

