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Introduction

• The performance of a classifier or a regression model critically depends on the choice

of appropriate basis functions

• The problem with generic basis functions such as polynomials or RBFs is, that the

number of basis functions required for a good approximation increases rapidly with

dimensions ( “curse of dimensionality”)

• It should be possible to “learn” the appropriate basis functions

• This is the basic idea behind Neural Networks

• Neural Networks use particular forms of basis functions: sigmoidal (neural) basis func-

tions (or similar ones)
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Neural Networks: Essential Advantages

• Neural Networks are universal approximators: any continuous function can be appro-

ximated arbitrarily well (with a sufficient number of neural basis functions)

• Naturally, they can solve the XOR problem and at the time (mid 1980’s) were consi-

dered the response to the criticism by Minsky and Papert with respect to the limited

power of the single Perceptron

• Important advantage of Neural Networks: a good function fit can often (for a large

class of important function classes) be achieved with a small number of neural basis

functions

• Neural Networks scale well with dimensions
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Flexible Models: Neural Networks

• As before, the output of a neural networks (respectively the activation function h(x),

in the case of a linear classifier) is the weighted sum of basis functions

ŷi = f(xi) =
H−1∑
h=0

whsig(x
T
i vh)

• Note, that in addition to the output weights w the neural network also has inner

weights vh
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Neural Basis Functions

• Special form of the basis functions

zi = sig(xTi vh) = sig

M−1∑
j=0

vh,jxi,j


using the logistic function

sig(arg) =
1

1+ exp(−arg)

• Adaption of the inner parameters vh,j of the basis functions!
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Hard and Soft (sigmoid) Transfer Functions

• First, the activation function of the neu-

rons in the hidden layer are calculated as

the weighted sum of the inputs xi as

h(xi) =
M−1∑
j=0

wjxi,j

(note: xi,0 = 1 is a constant input, so

that w0 corresponds to the bias)

• The sigmoid neuron has a soft (sigmoid)

transfer function

Perceptron : ŷi = sign(h(xi))

Sigmoidal neuron: ŷi = sig(h(xi))
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Transfer Function
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Characteristic Hyperplane

• Definition of the hyperplane

sig

M−1∑
j=0

vh,jxi,j

 = 0.5

which means that:

M−1∑
j=0

vh,jxi,j = 0

• “carpet over a step”
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Architecture of a Neural Network
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Variants

• For a neural network classifier (binary) apply the sigmoid transfer function to the

output neuron, and calculate

ŷi = sig(f(xi)) = sig(zTi w)

• For multi class tasks, one uses several output neurons. For example, to classify K

digits

ŷi,k = sig(fk(xi)) = sig(zTi wk) k = 1,2, . . . ,K

and one decides for class l, with l = argmaxk(ŷi,k)

• A Neural Network with at least one hidden layer is called a Multi Layer Perceptron

(MLP)
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Architecture of a Neural Network for Several Classes
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Learning with Several Outputs

• The goal again is the minimization of the squared error calculated over all training

patterns and all outputs

cost(w,v) =
N∑
i=1

K∑
k=1

(yi,k − sig(fk(xi,w,v)))
2

• The least squares solution for v cannot be calculated in closed-form

• Typically both w and v are trained via gradient descent

12



Adaption of the Output Weights

• The gradient of the cost function for an output weight for pattern i becomes

∂cost(xi,w,v)

∂wk,h
= −2δi,kzi,h

where

δi,k = sig′(zTi wk)(yi,k − sig(fk(xi,w,v)))

is the back propagated error signal (error back propagation).

• The pattern based gradient descent learning becomes (pattern: i, output: k, hidden:

h):

wk,h ← wk,h+ ηδi,kzi,h
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The Derivative of the Sigmoid Transfer Function with Respect
to the Argument

... can be written elegantly as

sig′(in) =
exp(−in)

(1 + exp(−in))2
= sig(in)(1− sig(in))
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Adaption of the Input Weights

• The gradient of an input weight with respect to the cost function for pattern i becomes

∂cost(xi,w,v)

∂vh,j
= −2δi,hxi,j

with the back propagated error

δi,h = sig′(xTi vh)
K∑
k=1

wk,hδi,k

• For the pattern based gradient descent, we get (pattern: i, hidden: h, input: j):

vh,j ← vh,j + ηδi,hxi,j
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Pattern-based Learning

• Iterate over all training patterns

• Let xi be the training data point

– Apply xi and calculate zi,yi (forward propagation)

– Via error backpropagation calculate the δi,h, δi,k

– Adapt

wk,h ← wk,h+ ηδi,kzi,h

vh,j ← vh,j + ηδi,hxi,j

• All operations are “local”: biological plausible
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Neural Networks and Overfitting

• In comparison to conventional statistical models, a Neural Network has a huge number

of free parameters, which might easily lead to over fitting

• The two most common ways to fight over fitting are regularization and stopped-

training

• Let’s first discuss regularization
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Neural Networks: Regularisation

• We introduce regularization terms and get

costpen(w,v) =
N∑
i=1

K∑
k=1

(yi,k−sig(fk(xi,w,v))
2+λ1

Mφ−1∑
h=0

w2
h+λ2

H−1∑
h=0

M∑
j=0

v2h,j

• The learning rules change to (with weight decay term)

wk,h ← wk,h+ η
(
δi,kzi,h − λ1wk,h

)
vh,j ← vh,j + η

(
δi,hxi,j − λ2vh,j

)
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Artificial Example

• Data for two classes (red/green circles) are generated

• Classes overlap

• The optimal separating boundary is shown dashed

• A neural network without regularization shows over fitting (continuous line)
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Same Example with Regularization

• With regularization (λ1 = λ2 = 0.2) the separating plane is closer to the true class

boundaries

• The training error is smaller with the unregularized network, the test error is smaller

with the regularized network
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Optimized Regularization Parameters

• The regularization parameter is varied between 0 and 0.15

• The vertical axis shows the test error for many independent experiments

• The best test error is achieved with regularization parameter 0.07

• The variation in the test error decreases with increasing regularization parameter
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Variations

• Use more than one hidden layer (see deep learning)

• Use tanh(arg) ∈ (−1,1) instead of sig(arg) ∈ (0,1)

• For the tanh(arg), use targets y ∈ {−1,1}, instead of y ∈ {0,1}

• Instead of the sum-squared-error cost function, use the cross-entropy cost function
(logistic cost function) (y ∈ {0,1})

cost(arg) = −y log arg − (1− y) log(1− arg)
with

∂cost(arg)

∂arg
=

N∑
i=1

(yi − sig(arg))

• Compare: for the squared error, we had

∂cost(arg)

∂arg
=

N∑
i=1

(yi − sig(arg))sig′(arg)
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Regularization with Stopped-Training

• In the next picture you can see typical behavior of training error and test error as a

function of training iterations

• As expected the training error steadily decreases with the training time

• As expected, the test error first decreases as well; maybe surprisingly there is a mini-

mum after which the test error increases

• Explanation: During training, the degrees of freedom in the neural network slowly

increase; with too many degrees of freedom, overfitting occurs

• It is possible to regularize a neural network by simply stopping the adaptation at the

right moment (regularization by stopped-Training)
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Optimizing the Learning Rate η

• Convergence can be influenced by the learning rate η

• Next figure: if the learning rate is too small, convergence can be vary slow, if too large

the iterations can oscillate and even diverge

• The learning rate can be adapted to the learning process (“Adaptive Learning Rate

Control”)
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Local Solutions
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Local Solutions
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SGD has Fewer Problems with Local Optima
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Dealing with Local Optima

• Restart: Simply repeat training with different initial values and take the best one

• Committee: Repeat training with different initial values and take all of them: for

regression, simply average the responses, for classification, take the majority vote
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Bagging

• Bagging: Bootstrap AGGregatING

• Committee as before, but each neural network is trained on a different bootstrap

sample of the training data

• Bootstrap sample: From N training data, randomly select N data points with repla-

cement. This means one generates a new training data set with again N data points

but where some data points of the original set occur more than once and some not at

all

• If you apply this committee idea to decision trees you get Random Forests (wins many

Kaggle competitions; now deep neural networks seem to work better)
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Conclusion

• Neural Networks are very powerful and show excellent performance

• Training can be complex and slow, but one might say with some justification, that a

neural network really learns something: the optimal representation of the data in the

hidden layer

• Predictions are fast!

• Neural Networks are universal approximators and have excellent approximation pro-

perties

• Disadvantage: training a neural network is something of an art; a number of hyper

parameters have to be tuned (number of hidden neurons, learning rate, regularization

parameters, ...)

• Not all problems can be formulated as a neural network learning problem (but surpri-

singly many real world problems)
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• Disadvantage: A trained neural network finds a local optimum. The solution is not

unique, e.g. depends on the initialization of the parameters. Solutions: multiple runs,

committee machines



Modelling of Time Series

• The next figure shows a tim series (DAX)

• Other interesting time-series: energy prize, energy consumption, gas consumption,

copper prize, ...
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Neural Networks for Time-Series Modelling

• Let xt, t = 1,2, . . . be the time-discrete time-series of interest (example: DAX)

• Let ut, t = 1,2, . . . denote a second time-series, that contains information on xt
(Example: Dow Jones)

• For simplicity, we assume that both xt and ut are scalar. The goal is the prediction

of the next value of the time-series

• We assume a model of the form

xt = f(xt−1, . . . , xt−Mx, ut−1, . . . , ut−Mu) + εt

with i.i.d. random numbers εt, t = 1,2, . . .. These model unknown disturbances.
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Neural Networks for Time-Series Modelling (cont’d)

• We approximate, using a neural network,

f(xt−1, . . . , xt−Mx, ut−1, . . . , ut−Mu)

≈ fNN(xt−1, . . . , xt−Mx, ut−1, . . . , ut−Mu)

and obtain the cost function

cost =
N∑
t=1

(xt − fNN(xt−1, . . . , xt−Mx, ut−1, . . . , ut−Mu))
2

• Te neuwrl network can be trained as before with simple back propagation

• This is a NARX model: Nonlinear Auto Regressive Model with external inputs. Ano-

ther name: TDNN (time-delay neural network)
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Recurrent Neural Network

• If xt cannot be measure directly (e.g., if there is noise on the measurements, see

Kalman filter), then simple backpropagation is not sufficient, and one needs recurrent

adaptation rules

• We assume a model of the form

xt = f(xt−1, . . . , xt−Mx, ut−1, . . . , ut−Mu) + εt

yt = xt+ δt

• Examples:

– Backpropagation through time (BPTT)

– Real-Time Recurrent Learning (RTRL)

– Dynamic Backpropagation
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APPENDIX: Approximation Accuracy of Neural Networks
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Complexity Measure

• How many hidden neurons are required for a certain approximation accuracy?

• Define the complexity measure Cf , defined as∫
<d
|w||f̃(w)| dw = Cf ,

where f̃(w) is the Fourier transform of f(x). Cf penalizes high frequency com-

ponents!

• The task is to approximate f(x) with a given Cf

• The input vector is x ∈ <M , the neural network has Mφ hidden units

• The approximation error AF is the mean squared distance between a target function

t(x) and f(x)

AF =

∫
Br

(t(x)− f(x))2µ(dx). (1)
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µ is an arbitrary probability distribution on the sphere Br = {x : |x| ≤ r} with

radius r > 0

• Barron showed that for each t(x), for which Cf is finite there is a neural network

with one hidden layer, such that AFNeur

AFNeur ≤
(2rCf)

2

Mφ
. (2)

• Thus for a good approximation, we might need many hidden units Mφ, but the bound

does NOT contain the number of inputs M !

• Note that for approximations with fixed basis functions, one obtains

AFfixed ∝=
1

Mφ

2
M

=

(
M
√
M2
φ

)−1
• For important function classes it could be shown that Cf only increases weakly (e.g.,

proportional) with M

• Quellen: Tresp, V. (1995). Die besonderen Eigenschaften Neuraler Netze bei der Ap-

proximation von Funktionen. Künstliche Intelligenz, Nr. 4.
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