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e LeCun’'s comment on deep learning:

http:/ /fastml.com /yann-lecuns-answers-from-the-reddit-ama/

e Refers to Numenta, founded on March 24, 2005, by Palm founder Jeff Hawkins. Grok
(Numenta company), Vicarious (company out off Numenta), NuPic (open source),
Hierarchical temporal memory (HTM), Cortical Learning Algorithm, or CLA)



Empirical Model Comparison



Let's consider the prediction of a model M for input x and with parameters w

f(x,w, M)

Example: M can be a neural network with a specific architecture. Another example:

M is a linear regression model
We define a cost function (loss function)

costx,y [W, M]

Example (quadratic loss):

costggy[w, M] = (y — f(x,w, M))?

We will use the terms cost, loss and error exchangeably



Misclassification cost (y € {—1, 1}):

1 .
cost;rfy[w, M] = §|y — sign(f(x, w, M))]

Logistic regression (y € {—1,1}):
N
costx y[wW, M] = Z log (1 4 exp [—y; f(x,w, M)])
1=1
Perceptron (y € {—1,1}):

costx,y[wW, M] = | —yf(x,w, M)|4+

Vapnik's optimal hyperplanes (y € {—1,1}):

COStX,y[W7 M] — |1 o yf(X7 W, M)|—|—



e Negative Log-likelihood loss

cost;,y[w,./\/l] = —log P(y|X7W7M)



e In statistics one is often interest in the estimation of the value and the uncertainty of

particular parameters. Example: is w1 significantly less than zero?

e In machine learning one is often interested in the generalization cost which is the

mean expected loss over all possible seen and unseen data, for any w

cost p(x ) [W, M] = /costxjy[w,./\/l]P(X, y) dxdy

e A typical assumption is that P(x,y) = P(x)P(y|x) is fixed but unknown. It
could be the probability of selecting a person out of a population and this person has

properties X, V.



e An estimator of the generalization cost is the mean test set cost
1 T
cost px ) [W; M] & costrest[W, M] = i Z costx, y. [W, M]
1=1
which is the mean cost on the T test data points with (x;, y; € test)

e This is an unbiased estimator, for any w



e An estimator of the generalization cost is also the mean training set cost
1 N

cost px ) [W; M] & costypain [w, M] = ~ Z costx, y. [W, M]
1=1

which is the mean cost on the IV training data points with (x;, y; € train)

e This is also an unbiased estimator, for any w



e Now comes the difference: if, for each training set, | look at the parameters that
minimize the training error, then, on average, the training set error is smaller than the

generalization error for these parameters!

e Let W|train be the estimator (the minimizer of the training cost) on a training set

D = train. In other words W |train minimizes the cost on the training data set.

e We define the mean training set cost of this best parameter vector, evaluated on
the training data as
1 N
COStypain [W(train, M] = ~ Z costx; 4, [W|train, M]
1=1
Here, (x;, ;) € train



e One quantity we are interested in is the generalization cost of a particular model M

with particular best-fit parameters w|train.

cost p(x ) [W|train, M]

e Another quantity of interest is the generalization cost averaged over all training sets
of size N (where the training data are generated from P(x,v)),

Eitraincost p(x 4 [W|train, M]

Note that here we analyse the performance of a particular model M!
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e It turns out that the if we calculate the expected mean over all training sets of the

same size, then

Erain {costtrain[\Tv|train,./\/l] — costp(x ) [W|train,./\/l]} <0

e Thus in expectation, the training cost underestimates the generalization cost for the
estimated w. Thus the performance of a trained model should not be evaluated on the
training set but on the test set, which is an unbiased estimator of the generalization

cost, also for W train.
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Input data is generated from a Gaussian with zero mean and unit variance. y is
generated with y = wx 4+ € where in the true model w¢re = 1 and € is Gaussian

noise with 2 = 0.25. We consider the quadratic loss function.

The blue line shows the generalization cost as a function of w, i.e., costj,lj(X ) [w, M]

The red line shows costfgrain[w, M] based on 5 specific training data points.

We see that the location of the minimum W train is not identical to W¢pqe. Since
the estimator is unbiased, Ey 4in(W]train) = Wipye. We will see later that oy =
0.5/4/5 = 0.22. This is the focus in statistics: how well can | estimate parameters?
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Now we look at the costs

For the model with the best possible generalization cost: cost?D(X ) [Wirye, M] =

o2, of course

We will see later that, for linear models, that, on average, the training error at w
is smaller than the generalization error of the best possible model (with fiyqe(X))
and the generalization error at w is larger than the generalization error of the best

possible model. The difference in both cases is (M /N)o2, where M is the number
of parameters (in the example, M = 1)

This is the focus in machine learning: for which model can we expect to obtain the

best generalization performance?
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1.4

Squared error cost function




We consider the misclasssification error cost function cost;rfy [w, M] .

The data is generated with y = sign(w-+x -+ ¢€) where in the true model wWy;e = O

and € is Gaussian noise.

The next figure shows the situation with 02 = 0O, which means the classes are

separable

The following figure shows the situation with 062 = 1.0, which means the classes are

overlapping
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This procedure can be applied with huge amounts of available data, N >> M
Divide the data set randomly into a training data set and a test data set

Train all models only on the training data: find the best parameters for each model

under consideration

Evaluate the generalization performance based on the test set performance and get
costtest [W|train, M| for the different models, as an estimate of the generalization
costs cost p(y ) [W|train, M] for a particular model M with a particular parameter

vector W|train
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e Cross Validation uses all data in turn for testing
e Consider K- fold cross validation; typical: K = 5 oder K = 10
e The data is partitioned into K sets of approximately the same size

e Fork=1,..., K: The k—th fold is used for testing and the remaining data is used
for training (finding the best parameters)
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e For each model one gets K test costs

COStteStk [VAv|traink, ./\/l], k=1,..., K

e Now we now consider the generalization costs averaged over the parameter estimates

obtained from different training data sets of size NV

Etraincost p(x 4 [W|train, M]

e We can estimate this average as

Etrain©ost p(x ) [Wltrain, M] & mean(costtest, [W|traing, M])

K
1 L
:E E COSttestk[W|tralnk,M]
k=1
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e If we simplify notation and set m = mean(costtest, [W|traing, M]) then we can

estimate the variance of m as

1
K(K —1)

K
Z (costiest [W]traing, M] — m))?
k=1

This can be used to decide if two models significantly differ in generalization perfor-

Var =

Mance

e Note, that we evaluate a model M and not some specific parameter vector



S5-tumes cross
validation:

Blue: Trainings Data
Red: TestData




e With few data one can use a paired test

e Basic idea: let's assume that K = 10; if M, in all test sets is better than ./\/lj,
then this is s strong indication that M, performs better, even if the variation in test

set performance masks this behavior (error bars of the estimate are too large)

e (alculate the mean difference between both models

K
: 1 . S
MeanDiff; ; = % Z costtest, [W|traing, M;] — costtest, [W]traing, M]
k=1
and analyse if this difference is significantly different from zero; this can be shown by

employing the test statistics for the paired t-test.

e Alternative: Wilcoxon signed-rank test
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Empirical Tuning of
Hyperparameters
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e In addition to the normal parameters, often one or several hyperparameters need to

be tuned as well. Example: regularization weight A\

e The tuning should be done on the training fold. Part of the training fold becomes

another fold on which the hyperparameters are tuned
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Let’s call the folds parameter training fold, hyperparameter fold, and test fold

In the outer loop we generate training data and test data (as part of K-fold cross

validation)

In the inner loop we divide the training data into parameter training fold and hyperpa-
rameter fold. We train the parameters using the parameter training fold with different
values of the hyperparameters. We then select the hyperparameter values which give

best performance on the hyper-parameter fold

We use these hyperparameter values to optimize the model on all training data, and

evaluate this model on the test set
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Learning Theories
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Overview: Statistical Theories and Learning Theories
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e A: Classical Frequentist Approaches

— C) Statistics

— Akaikes Information Criterion (AIC)
e B: Bayesian approaches

— Strict Bayes: model averaging instead of model selection

— Bayesian model selection and Bayesian Information Criterion (BIC)
e C: Modern Frequentist Approaches

— Minimum Description Length (MDL) Principle (Appendix)
— Statistical Learning Theory (Vapnik-Chervonenkis (VC) Theory)
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A:Classical Frequentist Approaches
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e \We are again interested in the generalization cost averaged over the parameter esti-

mates from different training data sets of size NV

Etraincost p(x.y) [W|train, M|

e Thus we evaluate the quality of a particular model M
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e We assume that the (fixed) true function can be realized by a function out off the
function class and we assume a quadratic cost function. Then one can decompose for

the squared loss

EtrainCOStil]?)(X’y) [W|train, M] = Bias? + Var + Residual
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e The residual cost is simply the cost of the true model

Residual = /(ftrue(x) — y)QP(Xa y)dwdy — COSth:)(X ) [ftrue]

2

® |n regression simply the noise variance o
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e The bias is the mean square of the difference between the true model and the average
prediction of all models trained with different training sets of size V. A regularized
model with A > O would typically be biased. A linear model is biased if the true
dependency is quadratic is biased. With m(x) = Eji,4in (f (X, W/train))

Bias? = / (@) — frue(@)]? P(z)da

— q
o COSty:ftrue(x)aP(x) [m(aj)]
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e The variance is the mean square of the difference between trained models and the

average prediction of all models trained with different training sets of size NV

Var = /Etrain[f(x,vAvhrain) — m(z)]?P(z)dx

= EtrainCOStf{]y:m(:p),P(m)} [(f(xa W\train))]
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e Let y be a random vector with covariance Cov(y) and let A be a fixed matrix
If z = Ay, then: Cov(z) = ACov(y)AL
e The trace is the sum over the diagonal elements of a matrix. One can show that
trace[® (P! d) "t = M

where M is the number of columns of the matrix ®. Special case: when ® has an
inverse, then ®(DPL D) "1dL = T and the trace of I is obviously M
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We assume that the dats has been generated with

yi = (X)W + ¢

where: ¢; is independent noise with variance o2

We take the ML estimator which is known to be unbiased and is
w=(olo) loly
Thus we now know that Bias = O.
With the rule we just learned we can calculate the parameter covariance
Cov(w) = (L)t Cov(y)p (@l )1
= 2(dlp) tolp (o)™ =2 (vl p)~?
Great, now we know how certain the parameters are. We can now evaluate VVar by

taking a large sample of P(x). Unfortunately such a large sample is not available and
we simply approximate it with the training data inputs.
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e The mean predictions of our model at the training data inputs is then f = dw

e Applying the covariance formula again as before, we get

Cov(f) = ®Cov(w)d!

e For the variance we really only need the mean over the diagonal terms

1
Var(f) = Ntrace(CDCOV(W) o1
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e Substituting, we get

— 1 2
Var = Ntrace(CDCOV(W)CDT) = %trace(dD(CDTCD)_ldDT)

e Now we apply our trace-rule and get
Var = —o
N
e The solution is surprisingly simple, but makes sense: The predictive variance increases
with more noise on the data and with more free parameters and decreases with more

datal
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e Thus the generalization error for the parameters that minimize the training set costs

Is on average

SM+ N
RN TN

s M
EtrainCOSt(IJD(X’y) [W|train, M] ~ o? + NUQ = ~

e Thus on average the generalization error for the parameters optimized on the training
set is larger by %02, if compared to the generalization error of the best possible

model.
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o \We estimate o2 as

We get
q N-M o o> M,

Etraincosttrain[ﬁfhrain] = ——0“=0°"——0

e Thus the training error is on average smaller than the generalization of the best possible

model and the difference is again %02

36



e By substitution we now get

M+ N
T cost! . [W/train]

EtramCOSt )[W\traln M] = >~ 77 ©Sttrain

N

e This is called Mallot's C'p-statistics

® Thus in model selection on would chose the model where Mallot's C'p is smallest
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Discussion: if two models are unbiased, the estimate of the noise level should be more
or less the same and the C'p-statistics will chose the smaller one. If the model becomes
too simple, the noise variance will also start to contain the bias term which will increase
the C p-statistics

Following this result, the smallest unbiased model is optimal. Thus do not add unne-

cessary parameters.

But how do | know that | have the smallest unbiased model? | only have data and

basis functions

To make the analysis more interesting we now include biased models (models that are
too small) and treat the bias as additional variance. Thus when we estimate the noise

from data, this estimate will include the bias as well
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e One might estimate

—_—

N2 — 22 =2
Biasc =0 — o4,

whereas 5?,0 is the estimate for a sufficiently large unbiased model



® [he estimates are

Residual = 2,
Bias = 5° — 850
Var = —o

NOO
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e The next figures show the behavior of bias, variance and residual and mean training

and mean test costs

e The complexity is controlled by the number of parameters M, or the number of epochs

(stopped training), of the inverse of the regularization parameter

e Note that the best models have a Bias > O
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e The analysis so far was only valid for models that minimized the squared error. Consider

approaches where the log-likelihood is minimized

N

l =log L = log P(ylxi, Wasr)
1=1

e In other words

costic,y[w, M] = —log P(y|x,w, M)
e Here, one can apply Akaike's Information Criterion (AlIC) (as defined in Wikipedia)
1 M M
AIC/N =2 <_N log L + W) =2 (costirain[\thrain,M] + W)

e A model with a smaller AIC is preferred
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e AIC is equivalent to Cy for Gaussian noise with known noise variance:

AIC/N = 2——Z<yz FOiw))? +25 = —Cp

o

e The expression

AIC
2N

estimates the log-likelihood cost on new data

= (costtram[w|tra|n M] + )
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Log-likelihood
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e One can reduce the problem to estimating the decomposition for one parameter. p is
the parameter and x are the data. We add and subtract Ey .:,(2t)) and we add and
subtract w (true parameter). Then,

EtrainEx(ﬁ_x)Q — EtrainEiE |:(l,’z — Etrain(la)) + (Etrain(:a) — :U') + (:u — x)}Q

e One gets

EypainEs(fi — )% = Bias? + Var + Rest

Rest = Fu(z — u)?

Bias = Eipyin () —

— ~ ~\12
Var = Etrain[:u o Etrain('u)]
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EtrainE:C(/j_aj)Q — EtrainEx [(/j — Etrain(ﬁ)) + (Etrain(:a) — :u) + (,U, — x)}z

e We get 6 terms. Three are: BiaSQ, Var, Rest. We need to show that the three

cross terms become zero.

EipainEael(A—Eipain (1)) (Btpain () — )] = Eipain [(B—Eiyain (2)) (Eypain (2) — )]
= (Eyrain (1) — 1) Eypajn [ — Eyrajn ()] = Bias x 0 =0

Etrain Bz [(A—Eypain (1)) (p—2)] = Eipain[A—Eirain ()] Ez[p—z] = 0x0 =0

EtrainEiU[(Etrain(ﬁ)_,u)(:u_m)] — Etrain[Etrain(:a)_:u]EéU[,UJ_x] = Biasx0 =0
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e When we generalize to several variables (or even functions) it might seem odd that
we can simply add the variances. But note the difference

e For the the variance of the sum we have

Var(x +vy) = Var(z) + Var(y) — 2Cov(z,y)

e For the sum of the variances we have (using E(a + b) = E(a) + E(b))
E((z — BE(2))* + (y — EW)?) = E(z — E(y)? + E(y — E(y))?

= Var(z) + Var(y)
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Bayesian Approaches
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e The Bayesian approach does not require model selection!

e One formulates all plausible models under consideration and specifies a prior probability

for those models

P(M;)
e The posterior prediction becomes

P(ux) = 3° PCMIID) [ PGyl w, M) P(w[D, My)dw
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e The principled Bayesian approach is sometimes impractical and a model selection is
performed

e A posteriori model probability

P(M|D) « P(M)P(D|M)

e If one assumes that all models have the same prior probability, and the important term

is the so-called marginal likelihood, or model evidence

P(DIM) = /P(D|W,M)P(W|M)dw
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e Fortunately we can sometimes calculate the evidence without solving complex inte-
grals. From Bayes formula we get

P(D|w, M)P(w|M)
P(w|D, M)

P(DIM) =

e This equation must be true for any w. Let's substitute wp; 4 p and take the log

e Recall from a previous lecture that P(w|D, M) is a Gaussian with mean Wy 4 p
and

2 —1
cov(w|D, M) = o2 (XTX + 0—21>
87

Thus at w4 p we are left with
1

\/(27r)M det cov(w|D, M)

log P(Wysap|D, M) = log

M 1
=7 log(27) — 5 log det cov(w|D, M)
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e Thus,

log P(D|M) = log P(D|wprap, M) + log P(Warap, M)
M 1
+§ log(27) + 5 log det cov(w|D, M)

e For large N, one can approximate

log det cov(w|D) ~ —M log N

e If we consider models with different number of parameters M, then log P(D|wpsap)+
log P(wps 4p) might produce a larger value (better fit) for the model with the lar-
ger M. But for the larger model, we subtract a larger M log N, so we obtain a

compromise between both terms at the optimum



e By simplifying the previous equation and using the ML (Maximum Likelihood) estimate

instead of the MAP estimate one obtains

M
log P(D|M) =~ log P(D|w 7, M) — 0 log N

e The Bayesian information criterion (BIC) is -2 times this expression (definition in
Wikipedia)
BIC = —2log P(D|Wpsr,, M) + Mlog N

e This approximation is generally applicable (not just for regression)
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o We get

BIC 1M
N — costtram[w|tra|n M] + SN log N
Compare
AIC
N T costtram[w|tra|n M] -|‘ -~
1M

e 537109 N is an estimate of the difference between the mean test likelihood and the

mean training log-likelihood

e BIC corection is by a factor %Iog N larger than the AIC correction and decreases

more slowly (Iog V) /N with the number of training examples
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Comparison: AIC and BIC
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C: Modern Frequentist Approaches
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e Based on the concept of algorithmic complexity (Kolmogorov, Solomonoff, Chaitin)

e Based on these ideas: Rissanen (and Wallace, Boulton) introduced the principal of the

minimum description length (MDL)

e Under simplifying assumptions the MDL criterion becomes the BIC criterion

55



e The Statistical Learning Theory (SLT) is in the tradition of the Russian mathematicians
Andrey Kolmogorov and Valery lvanovich Glivenko and the ltalian mathematician
Francesco Paolo Cantelli

e SLT was founded by Vladimir Vapnik and Alexey Chervonenkis (VC-Theory)

e Part of Computational Learning Theory (COLT); similar to PAC (Probably approxi-
mately correct learning) Learning (Leslie Valiant)
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e Data is generated according to some distribution P(x,y). This distribution is fixed

but otherwise arbitrary.

e In SLT theory one considers functions f(x) out of a class of measurable functions
M. Example: M is the class of all linear classifiers with M parameters and f(x) is
one of those. We will write again f(x,w, M)

e SLT does not assume that the best possible function ft;e() is contained in M
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Let's assume a random sample of P(X,vy), i.e. train

SLT considers the difference between cost?g’(x)y) [w, M] and costi . [w, M], for

any w

We now consider binary classification without noise (i.e., classes are in principal sepa-
rable)

Consider the function, for which this difference is maximum for a given train and then

average over all train of size N

58



e SLT shows that

train

P rain (Sup costg(x,y) [w, M] — cost;”! [W,./\/l]| > e) < bound

JeMm

e Model selection is performed on cost%’r”ain(f(@hrain)) + bound

e Different bounds have been proven and they depend on the so-called VC-dimension of
the model class. The VC-dimension can be infinite. For linear classifiers dimy o =
M, which means that the VC-dimension is simply the number of parameters. For
systems with a finite VC dimension, the bound decreases with N when N > dimy, .
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e The only assumption is that P(x,vy) is fixed, but it can be arbitrarily complex. In

particular, the optimal function does not need to be in the class M of functions under

consideration

e The bounds are often very conservative and the observed generalization costs are often
much smaller than the obserbed ones
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Machine learning focusses on generalization costs and traditionally not as much on
parameter estimation (exceptions: Bioinformatics, Biomedicine)

Empirical model selection is most often used. In each publication, test set performance
needs to be reported

Frequentist approaches typically estimate Ey ;,cost’) [W|train, M]. We have
_ P(x,y)
studied C'p and the AIC

Bayesian approaches do model averaging instead of model selection. The BIC criterion
is useful, if model selection needs to be performed

An advantage of the SLT is that the optimal function does not need to be included
in the class of observed functions

The derived bounds are typically often rather conservative

SLT has been developed in the Machine Learning community, whereas frequentist and
Bayesian approaches originated in Statistics
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