
Linear Regression

Volker Tresp
2014

1

Learning Machine: The Linear Model / ADALINE

• As with the Perceptron we start with

an activation functions that is a linearly

weighted sum of the inputs

hi =
M−1∑
j=0

wi,jxi,j

(Note: xi,0 = 1 is a constant input, so

that w0 is the bias)

• The activation is the the output (no

thresholding)

ŷi = f(xi) = hi

• Regression: when the target function can

take on real values

2

Method of Least Squares

• Squared-loss cost function:

cost(w) =
N∑
i=1

(yi − f(xi,w))2

• The parameters that minimize the cost function are called least squares (LS) estimators

wls = argmin
w

cost(w)

• For visualization, on chooses M = 2 (although linear regression is often applied to

high-dimensional inputs)

3

Least-squares Estimator for Regression

One-dimensional regression:

f(x,w) = w0 + w1x

w = (w0, w1)
T

Squared error:

cost(w) =
N∑
i=1

(yi − f(xi,w))2

Goal:

wls = argmin
w

cost(w) w0 = 1, w1 = 2, var(ε) = 1

4

Least-squares Estimator in General

General Model:

f(xi,w) = w0 +
M−1∑
j=1

wjxi,j

= xTi w

w = (w0, w1, . . . wM−1)
T

xi = (1, xi,1, . . . , xi,M−1)
T

5

Linear Regression with Several Inputs

6

Contribution to the Cost Function of one Data Point

7

Gradient Descent Learning

• Initialize parameters (typically using small random numbers)

• Adapt the parameters in the direction of the negative gradient

• With

cost(w) =
N∑
i=1

yi −M−1∑
j=0

wjxi,j

2

• The parameter gradient is (Example: wj)

∂cost

∂wj
= −2

N∑
i=1

(yi − f(xi))xi,j

• A sensible learning rule is

wj ←− wj + η

N∑
i=1

(yi − f(xi))xi,j

8

ADALINE-Learning Rule

• ADALINE: ADAptive LINear Element

• The ADALINE uses stochastic gradient descent (SGE)

• Let xt and yt be the training pattern in iteration t. The we adapt, t = 1,2, . . .

wj ←− wj + η(yt − ŷt)xt,j j = 1,2, . . . ,M

• η > 0 is the learning rate, typically 0 < η << 0.1

• Compare: the Perceptron learning rule (only applied to misclassified patterns)

wj ←− wj + ηytxt,j j = 1, . . . ,M

9

Analytic Solution

• The least-squares solution can be calculated in one step

10

Cost Function in Matrix Form

cost(w) =
N∑
i=1

(yi − f(xi,w))2

= (y −Xw)T (y −Xw)

y = (y1, . . . , yN)T

X =

 x1,0 . . . x1,M−1
.
xN,0 . . . xN,M−1

11

Calculating the First Derivative

Matrix calculus:

Thus

∂cost(w)

∂w
=
∂(y −Xw)

∂w
× 2(y −Xw) = −2XT (y −Xw)

12

Setting First Derivative to Zero

Calculating the LS-solution:

∂cost(w)

∂w
= −2XT (y −Xw) = 0

ŵls = (XTX)−1XTy

Complexity (linear in N !):

O(M3 +NM2)

ŵ0 = 0.75, ŵ1 = 2.13

13

Stability of the Solution

• When N >> M , the LS solution is stable (small changes in the data lead to small

changes in the paramater estimates)

• When N < M then there are many solutions which all produce the zero training

error

• Of all these solutions, one selects the one that minimizes
∑M
i=0w

2
i (regularised

solution)

• Even with N > M it is advantageous to regularize the solution, in particular with

noise on the target

14

Linear Regression and Regularisation

• Regularised cost function (Penalized Least Squares (PLS), Ridge Regression, Weight

Decay): the influence of a single data point should be small

costpen(w) =
N∑
i=1

(yi − f(xi,w))2 + λ

M−1∑
i=0

w2
i

ŵpen =
(
XTX+ λI

)−1
XTy

Derivation:

∂J
pen
N (w)

∂w
= −2XT (y −Xw) + 2λw = 2[−XTy+ (XTX+ λI)w]

15

Example

• Three data points are generated as (true model)

yi = 0.5+ xi,1 + εi

Here, εi is independent noise

• (correct) model 1

f(xi) = w0 + w1xi,1

• Training data for model 1:

x1 y

-0.2 0.49
0.2 0.64
1 1.39

• The LS solution gives wls = (0.58,0.77)

• In comparison,the true parameters are: w = (0.50,1.00)

16

Model 2

• Here we generate a second correlated input

xi,2 = xi,1 + δi

Again, δi is uncorrelated noise

• Modell 2

f(xi) = w0 + w1xi,1 + w2xi,2

Daten, die Modell 2 sieht:

x1 x2 y

-0.2 -0.1996 0.49
0.2 0.1993 0.64
1 1.0017 1.39

• Die least squares solution gives wls = (0.67,−136,137) !!!

17

Model 2 with Regularisation

• All as before, only that large weights are penalized

• Die penalized least squares solution gives wpen = (0.58,0.38,0.39) !!!

• Compare: the LS-solution for model-2 gave wls = (0.58,0.77)

• The collinearity (strong correlation of the inputs) hurts the LS-solution but does not

hurt the penalized LS solution. We even obtain a higher robustness with respect to

errors in the inputs, since weights are smaller!

18

Training Data

• Training:

y M1 : ŷML M2 : ŷML M2 : ŷpen
0.50 0.43 0.50 0.43
0.65 0.74 0.65 0.74
1.39 1.36 1.39 1.36

• For Model 1 and Model 2 with regularization we have nonzero error on the training

data

• For Model 2 without regularization, the training error is zero

• If we only consider the training error, we would prefer Model 2

19

Test Data

• Test Data:

y M1 : ŷML M2 : ŷML M2 : ŷpen
0.20 0.36 0.69 0.36
0.80 0.82 0.51 0.82
1.10 1.05 1.30 1.05

• On test data model 1 and model 2 with regularization give better results

• Even more dramatic: extrapolation

20

Experiments with real world data: data from Prostate Cancer

8 Inputs, 97 data points; y: Prostate-specific antigen

10-times cross validation
LS 0.586

Best Subset (3) 0.574
Ridge (Weight Decay) 0.540

21

GWAS Study

Correlation with disease (systemic sclerosis) versus location of SNPs on the gene. The

regression weight of a single SNP as an input is calculated with other inputs representing

general personal traits (male/femal, Caucasian, Asian, PCA features, ...). Repeated for all

SNPs (maybe 1 Mio).

22

