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Learning Machine: The Linear Model / ADALINE

• As with the Perceptron we start with

an activation functions that is a linearly

weighted sum of the inputs

hi =
M−1∑
j=0

wi,jxi,j

(Note: xi,0 = 1 is a constant input, so

that w0 is the bias)

• The activation is the the output (no

thresholding)

ŷi = f(xi) = hi

• Regression: when the target function can

take on real values
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Method of Least Squares

• Squared-loss cost function:

cost(w) =
N∑
i=1

(yi − f(xi,w))2

• The parameters that minimize the cost function are called least squares (LS) estimators

wls = argmin
w

cost(w)

• For visualization, on chooses M = 2 (although linear regression is often applied to

high-dimensional inputs)
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Least-squares Estimator for Regression

One-dimensional regression:

f(x,w) = w0 + w1x

w = (w0, w1)
T

Squared error:

cost(w) =
N∑
i=1

(yi − f(xi,w))2

Goal:

wls = argmin
w

cost(w) w0 = 1, w1 = 2, var(ε) = 1

4



Least-squares Estimator in General

General Model:

f(xi,w) = w0 +
M−1∑
j=1

wjxi,j

= xTi w

w = (w0, w1, . . . wM−1)
T

xi = (1, xi,1, . . . , xi,M−1)
T
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Linear Regression with Several Inputs
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Contribution to the Cost Function of one Data Point
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Gradient Descent Learning

• Initialize parameters (typically using small random numbers)

• Adapt the parameters in the direction of the negative gradient

• With

cost(w) =
N∑
i=1

yi −M−1∑
j=0

wjxi,j
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• The parameter gradient is (Example: wj)

∂cost

∂wj
= −2

N∑
i=1

(yi − f(xi))xi,j

• A sensible learning rule is

wj ←− wj + η

N∑
i=1

(yi − f(xi))xi,j
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ADALINE-Learning Rule

• ADALINE: ADAptive LINear Element

• The ADALINE uses stochastic gradient descent (SGE)

• Let xt and yt be the training pattern in iteration t. The we adapt, t = 1,2, . . .

wj ←− wj + η(yt − ŷt)xt,j j = 1,2, . . . ,M

• η > 0 is the learning rate, typically 0 < η << 0.1

• Compare: the Perceptron learning rule (only applied to misclassified patterns)

wj ←− wj + ηytxt,j j = 1, . . . ,M
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Analytic Solution

• The least-squares solution can be calculated in one step
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Cost Function in Matrix Form

cost(w) =
N∑
i=1

(yi − f(xi,w))2

= (y −Xw)T (y −Xw)

y = (y1, . . . , yN)T

X =

 x1,0 . . . x1,M−1
. . . . . . . . .
xN,0 . . . xN,M−1
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Calculating the First Derivative

Matrix calculus:

Thus

∂cost(w)

∂w
=
∂(y −Xw)

∂w
× 2(y −Xw) = −2XT (y −Xw)
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Setting First Derivative to Zero

Calculating the LS-solution:

∂cost(w)

∂w
= −2XT (y −Xw) = 0

ŵls = (XTX)−1XTy

Complexity (linear in N !):

O(M3 +NM2)

ŵ0 = 0.75, ŵ1 = 2.13
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Stability of the Solution

• When N >> M , the LS solution is stable (small changes in the data lead to small

changes in the paramater estimates)

• When N < M then there are many solutions which all produce the zero training

error

• Of all these solutions, one selects the one that minimizes
∑M
i=0w

2
i (regularised

solution)

• Even with N > M it is advantageous to regularize the solution, in particular with

noise on the target
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Linear Regression and Regularisation

• Regularised cost function (Penalized Least Squares (PLS), Ridge Regression, Weight

Decay): the influence of a single data point should be small

costpen(w) =
N∑
i=1

(yi − f(xi,w))2 + λ

M−1∑
i=0

w2
i

ŵpen =
(
XTX+ λI

)−1
XTy

Derivation:

∂J
pen
N (w)

∂w
= −2XT (y −Xw) + 2λw = 2[−XTy+ (XTX+ λI)w]
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Example

• Three data points are generated as (true model)

yi = 0.5+ xi,1 + εi

Here, εi is independent noise

• (correct) model 1

f(xi) = w0 + w1xi,1

• Training data for model 1:

x1 y

-0.2 0.49
0.2 0.64
1 1.39

• The LS solution gives wls = (0.58,0.77)

• In comparison,the true parameters are: w = (0.50,1.00)
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Model 2

• Here we generate a second correlated input

xi,2 = xi,1 + δi

Again, δi is uncorrelated noise

• Modell 2

f(xi) = w0 + w1xi,1 + w2xi,2

Daten, die Modell 2 sieht:

x1 x2 y

-0.2 -0.1996 0.49
0.2 0.1993 0.64
1 1.0017 1.39

• Die least squares solution gives wls = (0.67,−136,137) !!!
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Model 2 with Regularisation

• All as before, only that large weights are penalized

• Die penalized least squares solution gives wpen = (0.58,0.38,0.39) !!!

• Compare: the LS-solution for model-2 gave wls = (0.58,0.77)

• The collinearity (strong correlation of the inputs) hurts the LS-solution but does not

hurt the penalized LS solution. We even obtain a higher robustness with respect to

errors in the inputs, since weights are smaller!
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Training Data

• Training:

y M1 : ŷML M2 : ŷML M2 : ŷpen
0.50 0.43 0.50 0.43
0.65 0.74 0.65 0.74
1.39 1.36 1.39 1.36

• For Model 1 and Model 2 with regularization we have nonzero error on the training

data

• For Model 2 without regularization, the training error is zero

• If we only consider the training error, we would prefer Model 2
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Test Data

• Test Data:

y M1 : ŷML M2 : ŷML M2 : ŷpen
0.20 0.36 0.69 0.36
0.80 0.82 0.51 0.82
1.10 1.05 1.30 1.05

• On test data model 1 and model 2 with regularization give better results

• Even more dramatic: extrapolation

20



Experiments with real world data: data from Prostate Cancer

8 Inputs, 97 data points; y: Prostate-specific antigen

10-times cross validation
LS 0.586

Best Subset (3) 0.574
Ridge (Weight Decay) 0.540
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GWAS Study

Correlation with disease (systemic sclerosis) versus location of SNPs on the gene. The

regression weight of a single SNP as an input is calculated with other inputs representing

general personal traits (male/femal, Caucasian, Asian, PCA features, ...). Repeated for all

SNPs (maybe 1 Mio).
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