Linear Regression

Volker Tresp
2014



e As with the Perceptron we start with

an activation functions that is a linearly

@ weighted sum of the inputs
I_/ M—1
7 _
hi= ) wiji;
h j=0

(Note: ¢; o = 1 is a constant input, so
that wq is the bias)

e The activation is the the output (no
thresholding)

yi = f(x;) = hy
e Regression: when the target function can

take on real values



e Squared-loss cost function:

N
cost(w) = Z(yz' — f(xi,w))?
i=1

e The parameters that minimize the cost function are called least squares (LS) estimators

W), = arg muin cost(w)

e For visualization, on chooses M

high-dimensional inputs)

2 (although linear regression is often applied to



One-dimensional regression:
f(a:,w) — WQ + wilx

T
w = (wp, w1)

Squared error:

N
cost(w) = Z(yz' — f(%W))Q
i=1

Goal:

W, = arg muin cost(w)
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LINEARE REGRESSION: Daten und wahre Funktion

0 0.5 1 15 2 25 3 35

wog = 1,w1 = 2,var(e) =1



General Model:

M-1
fGi,w) =wo+ Y wjz
=1

W = (’UJO,’UJ]_, . 'wM—l)T

Xi = (1733i,17 R 7332',M—1)T
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Contribution to the Cost Function of one Data Point

cost,




Initialize parameters (typically using small random numbers)
Adapt the parameters in the direction of the negative gradient
With
N M-—1
cost(w) = Z Y; — Z W;T; j
i=1 =0

The parameter gradient is (Example: w;)

ocost

N
= -2 (yi — f(x))zi
i=1

A sensible learning rule is

N
w;i — wj + 7 Z(yq; — f(x))z;

=1

2



e ADALINE: ADAptive LINear Element

e The ADALINE uses stochastic gradient descent (SGE)

e lLet x; and y+ be the training pattern in iteration t. The we adapt, t = 1,2, ...

w]<—w]+7’](yt—:’g\t>$t,] j=1312,....M

e 17 > O is the learning rate, typically O < n << 0.1
e Compare: the Perceptron learning rule (only applied to misclassified patterns)

wi — w; +nyexe,; J=1,..., M



e The least-squares solution can be calculated in one step
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N
cost(w) = Z(yz' — f(Xq;»W))Q
i—1
= (y - Xw)! (y — Xw)
y=(y1, -, yn)’

331,0 e xl,M—l

mN)O ZCN,M—I
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Matrix calculus:

dy
M 0x
Ax Al
x! A A
x!x 2X
T T
X AXx Ax + A’ x

Thus
ocost(w)  O(y — Xw)

x 2(y — Xw) = —2X1 (y — Xw)
ow ow




Calculating the LS-solution:

8COSt(W) — —QXT(y _ XW) =0
Ow

Wi, = (XTX) X1y
Complexity (linear in N!):

O(M3 4+ NM?)

LINEAR REGRESSION: LS-Loesung (rot)
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Wo = 0.75,%1 = 2.13
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When N >> M, the LS solution is stable (small changes in the data lead to small
changes in the paramater estimates)

When N < M then there are many solutions which all produce the zero training

error
Of all these solutions, one selects the one that minimizes sz\io w,? (regularised

solution)

Even with N > M it is advantageous to regularize the solution, in particular with

noise on the target
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e Regularised cost function (Penalized Least Squares (PLS), Ridge Regression, Weight

Decay): the influence of a single data point should be small

N M—-1
costP(w) = > (yi — f(x;, W))Z + A D w?

—1

Derivation:

pen
ajf\évfw) = 2XT(y — Xw) + 22w = 2[-XTy + (XTX 4+ AI)w]
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Three data points are generated as (true model)

Yyi =05+ w1 + ¢

Here, €; is independent noise

(correct) model 1

f(x;) = wo + wiz; 1

Training data for model 1:

L1 Y

-0.2 0.49
0.2 0.64
1 1.39

The LS solution gives w;, = (0.58,0.77)

In comparison,the true parameters are: w = (0.50, 1.00)
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e Here we generate a second correlated input

T2 = T;1 + 0;
Again, 0, is uncorrelated noise

e Modell 2

f(x;) = wo + wiz; 1 + woz; o

L1 L2 Yy

-0.2 -0.1996 0.49

0.2 0.1993 0.64
1 1.0017 1.39

Daten, die Modell 2 sieht:

e Die least squares solution gives w;, = (0.67,—136,137) !
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e All as before, only that large weights are penalized
e Die penalized least squares solution gives Wpen, = (0.58,0.38,0.39) !
e Compare: the LS-solution for model-2 gave w;, = (0.58,0.77)

e The collinearity (strong correlation of the inputs) hurts the LS-solution but does not
hurt the penalized LS solution. We even obtain a higher robustness with respect to

errors in the inputs, since weights are smaller!
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e Training:

Y Ml:@ML M2:§ML M2:§pen

0.50 0.43 0.50 0.43
0.65 0.74 0.65 0.74
1.39 1.36 1.39 1.36

e For Model 1 and Model 2 with regularization we have nonzero error on the training
data

e For Model 2 without regularization, the training error is zero

e If we only consider the training error, we would prefer Model 2
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e Test Data:

Y Ml:gML MQZ@ML MQZ’IJpen

0.20 0.36 0.69 0.36
0.80 0.82 0.51 0.82
1.10 1.05 1.30 1.05

e On test data model 1 and model 2 with regularization give better results

e Even more dramatic: extrapolation
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8 Inputs, 97 data points; y: Prostate-specific antigen

LS 0.586
10-times cross validation Best Subset (3) 0.574
Ridge (Weight Decay) | 0.540
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Correlation with disease (systemic sclerosis) versus location of SNPs on the gene. The
regression weight of a single SNP as an input is calculated with other inputs representing

general personal traits (male/femal, Caucasian, Asian, PCA features, ...). Repeated for all

SNPs (maybe 1 Mio).
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