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Classification

• Classification is the central task of pattern recognition

• Sensors supply information about an object: to which class belongs the object (dog,

cat, ...)
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Linear Classifiers

• Linear classifiers separate classes by a linear hyperplane

• In high dimensions a linear classifier often can separate the classes

• Linear classifiers cannot solve the exclusive-or problem

• In combination with basis functions, kernels or a neural network, linear classifiers can

form nonlinear class boundaries
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Binary Classification Problems

• We will focus first on binary classification where the task is to assign binary class labels

yi = 1 and yi = 0 (or yi = 1 and yi = −1 )

• We already know the Perceptron. Now we learn about additional approaches

– I. Generative models for classification

– II. Logistic regression

– III. Classification via regression

4



Two Linearly Separable Classes
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Two Classes that Cannot be Separated Linearly
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The Classical Example not two Classes that cannot be
Separated Linearly: XOR

7



Separability is not a Goal in Itself: Overlapping Classes
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I. Generative Model for Classification

• On assumes a data generating process

• In particular, we assume that the observed classes yi are generated with probability

P (yi = 1) = κ1 P (yi = 0) = κ0 = 1− κ1

with 0 ≤ κ1 ≤ 1. In a next step, a data point xi has been generated from P (xi|yi)

• (Note, that xi = (xi,1, . . . , xi,M)T , which means that xi does not contain the

bias xi,0)
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Bayes’ Theorem

• To classify a data point xi, i.e. to determine the yi, we apply Bayes theorem and get

P (yi|xi) =
P (xi|yi)P (yi)

P (xi)

P (xi) = P (xi|yi = 1)P (yi = 1) + P (xi|yi = 0)P (yi = 0)

• Maximum-likelihood estimator for the prior class probabilities are

P̂ (yi = 1) = κ̂1 = N1/N

and

P̂ (yi = 0) = κ̂0 = N0/N = 1− κ̂1

where N1 and N0 is the number of training data points for class 1, respectively class

0
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Class-specific Distributions

• To model P (xi|yi) one can chose an application specific distribution

• A popular choice is a Gaussian distribution

P (xi|yi = l) = N (xi;µ
(l),Σ)

with

N
(
xi;µ

(l),Σ
)

=
1

(2π)M/2
√
|Σ|

exp

(
−

1

2

(
xi − µ(l)

)T
Σ−1

(
xi − µ(l)

))
• Note, that both Gaussian distributions have different modes (centers) but the same

covariance matrices. This has been shown to often work well.
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Maximum-likelihood Estimators for Modes and Covariances

• One obtains a maximum likelihood estimators for the modes

µ̂(l) =
1

Nl

∑
i:yi=l

xi

• One obtains as unbiased estimators for the covariance matrix

Σ̂ =
1

N −M

1∑
l=0

∑
i:yi=l

(xi − µ̂(l))(xi − µ̂(l))T
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A Posteriori Distribution

• It follows that

P (yi = 1|xi) =
P (xi|yi = 1)P (yi = 1)

P (xi|yi = 1)P (yi = 1) + P (xi|yi = 0)P (yi = 0)

=
1

1 + κ0
κ1

exp
(

(µ(0) − µ(1))TΣ−1xi + 1
2µ

(0)TΣ−1µ(0) − 1
2µ

(1)TΣ−1µ(1)
)

= sig
(
w0 + xTi w

)
= sig

w0 +
M∑
j

xi,jwj



w = Σ−1
(
µ(1) − µ(0)

)
w0 = logκ1/κ0 −

1

2
µ(0)TΣ−1µ(0) +

1

2
µ(1)TΣ−1µ(1)
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Comments

• This specific generative model leads to linear class boundaries

• The solution is analogue to Fisher’s linear discriminant analysis, where one projects

the data into a space in which data from the same class have small variance and where

the distance between class modes are maximized

• In other words, one gets the same results from an optimization criterion without

assuming Gaussian distributions

• Although we have used Bayes formula, the analysis was frequentist. A Bayesian analysis

with a prior distribution on the parameters is also possble
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Special Case: Naive Bayes

• If one assumes that the covariance matrices are diagonal, one obtains a Naive-Bayes

classifier

P (xi|yi = l) =
M∏
j=1

N (xi,j;µ
(l)
j , σ2

j )

• The naive Bayes classifier has considerable fewer parameters but completely ignores

class-specific corelations between features; this is sometimes considered to be naive

• Naive Bayes classifiers are popular in text analysis with often more than 10000 features

(key words). For example, the classes might be SPAM and no-SPAM and the features

a keywords in the texts. Instead of a Gaussian distribution, a Bernoulli distribution is

employed, with P (wordj|SPAM) = γj,s and P (wordj|no-SPAM) = γj,n
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II. Logistic Regression

• The generative model motivates

P (yi = 1|xi) = sig
(
xTi w

)
(now we include the bias xTi = (xi,0 = i,1, xi,1, . . . , xi,M−1)T ). sig() as

defined before (logistic funktion).

• One now optimizes the likelihood of the conditional model

L(w) =
N∏
i=1

sig
(
xTi w

)yi (
1− sig

(
xTi w

))1−yi
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Log-Likelihood

• Log-likelihood function

l =
N∑
i=1

yi log
(

sig
(
xTi w

))
+ (1− yi) log

(
1− sig

(
xTi w

))

l =
N∑
i=1

yi log

(
1

1 + exp(−xTi w)

)
+ (1− yi) log

(
1

1 + exp(xTi w)

)

= −
N∑
i=1

yi log(1 + exp(−xTi w)) + (1− yi) log(1 + exp(xTi w))
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Adaption

• The derivatives of the log-likelihood with respect to the parameters

∂l

∂w
=

N∑
i=1

yi
xi exp(−xTi w)

1 + exp(−xTi w)
− (1− yi)

xi exp(xTi w)

1 + exp(xTi w)

=
N∑
i=1

yixi(1− sig(xTi w))− (1− yi)xisig(xTi w)

=
N∑
i=1

(yi − sig(xTi w))xi

• A gradient-based optimization of the parameters to maximize the log-likelihood

w←− w + η
∂l

∂w

• Typically one uses a Newton-Raphson optimization procedure
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Cross-entropy Cost Function

• The likelihood cost function is also called cross entropy cost function and is written

for yi ∈ {0,1}

cost =
N∑
i=1

yi log(1 + exp(−xTi w)) + (1− yi) log(1 + exp(xTi w))

=
N∑
i=1

log
(

1 + exp
(

(1− 2yi)x
T
i w
))

• ... and for yi ∈ {−1,1}

cost =
N∑
i=1

log
(

1 + exp
(
−yixTi w

))
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Logistic Regression in Medical Statistics

• Logistic regression has become one of the the most important tools in medicine to

analyse the outcome of treatments

• yi = 1 means that the patient has the disease. x1 = 1 might represent the fact that

the patient received the treatment (medication) and x1 = 0 might mean that the

patient did not receive the treatment. The other inputs are often typical confounders

(age, sex, ...)

• Logistic regression then permits the prediction of the outcome for any patient

• Of course, of great interest is if w1 is significantly negative (i.e., the treatment is

effective)
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Log-Odds and Log-Odds-Ratio

• The logarithm of the Odds is defined as

log(Odds(xi)) = log
P (yi = 1|xi)
P (yi = 0|xi)

• For logistic regression,

log(Odds(xi)) = log
P (yi = 1|xi)
P (yi = 0|xi)

= log
1

1 + exp(−xTi w)

1 + exp(−xTi w)

exp(−xTi w)

= log
1

exp(−xTi w)
= xTi w

• One is often only interested in the effect of the treatment

w1 = log(Odds(x1 = 1))− log(Odds(x1 = 0)) = log
Odds(x1 = 1)

Odds(x1 = 0)

• This is the logarithm of the so called odds ratio (OR). If w1 ≈ 0, then the treatment
is ineffective: the odds ratio is commonly used in case-control studies!
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Exponential Family

• Many common distributions (Bernoulli, Gauss, Binomial, multinomial, Poisson, ...)

belong to the exponential family of distribution and can be written as

P (y|η) =
1

Z(η)
exp

(
ηTF (y)

)
=

1

Z(η)
exp

 M∑
j=0

ηjtj(y)


F (y) = (t0(y), t1(y), t2(y), ...)T

where t1(y), t2(y), ... is a sufficient statistics of the respective distribution

• Thus

logP (y|η) = − logZ(η) +
∑
j

ηjtj(y)

• Idea: model logP (y|η) as a weighted sum of basis functions tj(y). Z(y) is needed

for proper normalization, Z(y) =
∫

exp
∑M
j=0 ηjtj(y)dy normalizes the distri-

bution. Special parameter: η0 = 1

22



Exponential Family: Bernoulli Distribution

• Consider a Bernoulli distribution with P (y|θ) = θy(1− θ)1−y. Then:

logP (y|θ) = y log θ+(1−y) log(1−θ) = log(1−θ)+y(log θ−log(1−θ)) =

log(1− θ) + y log
θ

1− θ
= log(1− θ) + yη

• Where η1 = log θ
1−θ . We then also obtain the inverse θ = 1

1+exp−η1
and can

write

log(1− θ) + yη1 = − log(1 + exp η1) + yη1

• We can identify: t1(y) = y, Z(η) = 1 + exp η, t0(y) = 0 and

P (y|η) =
1

1 + exp η
exp yη

• Note that the use of the sigmoid function is motivated from the definition of the

natural parameter
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Generalized Linear Models (GLMs)

• Express the natural parameter as a linear function of the inputs to get the generalized

linear model (GLM). For Bernoulli we get,

ηi = xTi w

P (yi|xi, w) =
1

1 + expxTi w
exp yix

T
i w

and in particular

P (yi = 1|xi,w) =
1

1 + expxTi w
expxTi w = sig(xTi w)

• Thus logistic regression is the GLM for the Bernoulli likelihood model
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III. Classification via Regression

• Linear Regression:

f(xi,w) = w0 +
M−1∑
j=1

wjxi,j

= xTi w

• We define as target yi = 1 if the pattern xi belongs to class 1 and yi = 0 if pattern

xi belongs to class 0

• We calculate weights wLS = (XTX)−1XTy as LS solution, exactly as in linear

regression

• For a new pattern z we calculate f(z) = zTwLS and assign the pattern to class 1

if f(z) > 1/2; otherwise we assign the pattern to class 0
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Bias

• Asymptotically, a LS-solution converges to the posterior class probabilities, althogh a

linear functions is typically not able to represent P (c = 1|x). The resulting class

boundary can still be sensible

• One can expect good class boundaries in high dimensions and/or in combination with

basis functions, kernels and neural networks; in high dimensions sometimes consistency

can be achieved
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Classification via Regression with Linear Functions
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Classification via Regression with Radial Basis Functions
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Performance

• Although the approach might seem simplistic, the performance can be excellent (in

particular in high dimensions and/or in combination with basis functions, kernels and

neural networks). The calculation of the optimal parameters can be very fast!
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Evaluating Classifiers

• So far we focussed on accuracy: we maximized the number of correctly classified

patterns

• Accuracy is not always a good measure: Let’s assume that I want to generate a

classifier that predicts if web pages are relevant for my query.

• If the classifier always predicts 0 (uninteresting), then the classifier has an accuracy

very close to 100%
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Definitions
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Probabilistic Interpretation

• with N = TP + FP + TN + FN test patterns,

P̂ (pred = 1, y = 1) =
TP

N

P̂ (pred = 1, y = 0) =
FP

N

P̂ (pred = 0, y = 0) =
TN

N

P̂ (pred = 0, y = 1) =
FN

N
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Accuracy

• Accuracy :

Accuracy →
TP + TN

N

• If we assign the label correct to the events (pred = 1, y = 1) and (pred =

0, y = 0), then

Accuracy = P (correct)

• The error rate is (1-Accuracy).

• Accuracy is not a useful measure for highly imbalanced classes (see search engine

example)
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Precision

• Precision (Relevance, positive predicted value)

Precision =
TP

TP + FP

• This approximates

P (y = 1|pred = 1)

• If a search engine classifies a web page to be relevant, it should be relevant!
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Negative Predictive Value

• Negative Predictive Value (NPR)

NPR =
TN

TN + FN

• This approximates

P (y = 0|pred = 0)

• If a search engine classifies a web page to be irrelevant, it should be irrelevant!
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Recall

• Recall ( sensitivity, true positive rate):

Recall =
TP

TP + FN

• This approximates

P (pred = 1|y = 1)

• A measure for classifier performance, independent of class-mix

• A search engine that classifies all pages as being interesting has a Recall = 1. A

fire detector should not miss any fires and should have a Recall close to 1.
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Specifity

• Specificity (Specifity, true negative rate, 1 - false-positive-rate)

Specifity =
TN

TN + FP

• This approximates

P (pred = 0|y = 0)

• A measure for classifier performance, independent of class-mix

• Specificity should be high for a fire detector: if there is no fire, it should not alarm
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F-Measure

• F-measure

F = 2
Precision×Recall
Precision+Recall

The F-measure combines precision and recall. Trivial search engines, that either predict

all pages to be relevant or irrelevant, would have an F-measure of 0.
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Connection to Odds and Odds Ratio

• We can interpret the treatment as pred and outcome as y

• Then

(Odds|treatment = 1) =
Precision

1− Precision
=
TP

FP

(Odds|treatment = 0) =
1−NPR
NPR

=
FN

TN

OR =
Precision×NPR

(1− Precision)× (1−NPR)
=
TP × TN
FP × FN
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ROC, AUC-ROC, AUC-PR

• Consider the classifier sign(f(x)− α) for −∞ < α <∞.

• With α → ∞, TP, FP → 0, Recall → 0, Specificty → 1, and Precision

should be >> 0.

• With α → −∞, TN,FN → 0, Recall → 1, Specificty → 0, and Precision

becomes the the percentage of class one.

– ROC (Receiver operating characteristic). For the ROC-curve one varies α and

plots Recall (y-axis) against (1-Specific = FPR) (x-achis)

– PR (Precision-Recall). Same, but we plot Precision as a function of Recall

• The AUC-ROC is the integral under the ROC curve. A random classifier has an AUC-

ROC of 0.5, a perfect classifier of 1

• The AUC-PR is the integral under the PR curve. A random classifier has an AUC-ROC

of around 0. The AUC-PR can be more relevant in highly unbalanced classes (search

engines
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Optimizing Specific Measures

• It is possible to derive algorithms which directly optimize certain measures, e.g., F-

Measure, AUC
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