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e Classification is the central task of pattern recognition

e Sensors supply information about an object: to which class belongs the object (dog,
cat, ...)



Linear classifiers separate classes by a linear hyperplane
In high dimensions a linear classifier often can separate the classes
Linear classifiers cannot solve the exclusive-or problem

In combination with basis functions, kernels or a neural network, linear classifiers can

form nonlinear class boundaries



e We will focus first on binary classification where the task is to assign binary class labels

y;=landy; =0 (ory; =1land y; = —1)
e We already know the Perceptron. Now we learn about additional approaches
— |. Generative models for classification

— Il. Logistic regression

— 1lI. Classification via regression
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Two Classes that Cannot be Separated Linearly




The Classical Example not two Classes that cannot be
Separated Linearly: XOR

XZ"
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Separability is not a Goal in Itself: Overlapping Classes




e On assumes a data generating process
e In particular, we assume that the observed classes y; are generated with probability
Plyy=1)=kr1 P(y;=0)=ro=1-kK1
with O < k1 < 1. In a next step, a data point X; has been generated from P(x;|y;)

o (Note, that x; = (z; 1, ... ,CEijM)T, which means that x; does not contain the

bias x; )



e To classify a data point x;, i.e. to determine the y;, we apply Bayes theorem and get

P(x;|y;) P(y:)
P(x;)

P(y;|x;) =

P(x;) = P(x;ly; = 1)P(y; = 1) + P(x4ly; = 0)P(y; = 0)

e Maximum-likelihood estimator for the prior class probabilities are

P(y;=1) =k1 = N1/N
and

P(y;=0) =Ko = No/N=1-F;

where N1 and N is the number of training data points for class 1, respectively class

0
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e To model P(x;|y;) one can chose an application specific distribution

e A popular choice is a Gaussian distribution

P(xilys = 1) = N (x4 D, 5)

R L (xi—u®) = (xi- u(l))>

N( pr, )=(2W)M}2mexp( 5

e Note, that both Gaussian distributions have different modes (centers) but the same

covariance matrices. This has been shown to often work well.
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e One obtains a maximum likelihood estimators for the modes

e One obtains as unbiased estimators for the covariance matrix

1
- _ 1 (1 (DT
S=— > D G- A - )

1=0 i1y, =l
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e [t follows that

P(xily; = 1)P(y; = 1)
P(x;ly; = 1)P(y; = 1) + P(x;]y; = 0) P(y; = 0)

1

P(y; = 1]x;) =

1+ 20exp ((u(o) — uO)TE—1x; 4+ 10T 5 -1,,00) - %u(l)TZ_lu(l))

M
= Sig (wo + X;-TW) = sig (wo T Z xi,jwj)
J

w=x"1 (u(l) _ u“’))

wg = l0g K1 /Ko — M =100 4 SH =1,
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This specific generative model leads to linear class boundaries

The solution is analogue to Fisher's linear discriminant analysis, where one projects
the data into a space in which data from the same class have small variance and where

the distance between class modes are maximized

In other words, one gets the same results from an optimization criterion without

assuming Gaussian distributions

Although we have used Bayes formula, the analysis was frequentist. A Bayesian analysis

with a prior distribution on the parameters is also possble
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e If one assumes that the covariance matrices are diagonal, one obtains a Naive-Bayes

classifier

M
P(xilyi =1) = [ NG, 02)
j=1

e The naive Bayes classifier has considerable fewer parameters but completely ignores

class-specific corelations between features; this is sometimes considered to be naive

e Naive Bayes classifiers are popular in text analysis with often more than 10000 features
(key words). For example, the classes might be SPAM and no-SPAM and the features
a keywords in the texts. Instead of a Gaussian distribution, a Bernoulli distribution is

employed, with P(wordﬂSPAM) = 7,5 and P(wordﬂno—SPAM) = Yjn
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e The generative model motivates

P(y; = 1]x;) = sig (x] )

(now we include the bias X? = (z;0 = 4,1,2;1,... ,azi,M_l)T). sig() as

defined before (logistic funktion).

e One now optimizes the likelihood of the conditional model

W=N ig (x!w v —sig (x!'w T
1 = [0 (<7w)" (13 (<I))
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e Log-likelihood function

N

1= yilog (sig (x;fw)) + (1 — ;) log (1 _ sig (xiTw))

1=1

N
1 1
: i:1yz 9 (1 + exp(—x,?w)) +( yi) 109 (1 -+ exp(x?w))

N
= — > y;log(1 + exp(—x; w)) + (1 — y;) log(1 + exp(x] w))
1=1
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e The derivatives of the log-likelihood with respect to the parameters

X; exp(x?w)

ol o~ xjexp(—xTw)
(‘)—:Zyil T _(1_%)1 T
w14 exp(—x;w) + exp(x]w)
N
=" yixi(1 - sig(xFw)) — (1 — y)x;sig(x! w)
1=1

N
= (yi —sig(x{ w))x;
i=1

e A gradient-based optimization of the parameters to maximize the log-likelihood

W — W + 1—
oW

e Typically one uses a Newton-Raphson optimization procedure
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Klasse 0 Klasse 1
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e The likelihood cost function is also called cross entropy cost function and is written
for y; € {0,1}

N
cost = ) y;log(1 4+ exp(—x; w)) + (1 — ;) log(1 + exp(x w))
1=1

N

= Z log (1 + exp ((1 — 2yi)x?w))

1=1

e ..andfory; € {—1,1}

N
cost = Z log (1 + exp (—yix;‘;rw))
1=1
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Logistic regression has become one of the the most important tools in medicine to

analyse the outcome of treatments

y; = 1 means that the patient has the disease. x1 = 1 might represent the fact that
the patient received the treatment (medication) and £1 = O might mean that the

patient did not receive the treatment. The other inputs are often typical confounders

(age, sex, ...)
Logistic regression then permits the prediction of the outcome for any patient

Of course, of great interest is if w1y is significantly negative (i.e., the treatment is

effective)
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The logarithm of the Odds is defined as

Plu: = 1|x;
109(0dds(x,)) = log Wi = i)
P(y; = 0x;)
For logistic regression,
Py, = 1|x; 1 1+ exp(—xiw
10g(0dds(x;)) = log DW= 1) _ T + e T )
P(y; = 0[x;) 1+ exp(—x; w) exp(—x; w)
1 T
= |0 = X' W
. exp(—X;.rW) ’
One is often only interested in the effect of the treatment
OddS(Xl — 1)
= l0g(0Odds(x1 = 1)) — l0g(Odds(x1 = 0)) = lo
w1 9(Odds(x1 = 1)) — log(Odds(x1 = 0)) 9 dds(x; = 0)

This is the logarithm of the so called odds ratio (OR). If w1 & O, then the treatment

is ineffective: the odds ratio is commonly used in case-control studies!
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Many common distributions (Bernoulli, Gauss, Binomial, multinomial, Poisson, ...)
belong to the exponential family of distribution and can be written as

1
Z(n)

P(ylm) = ——exp (1" F(y)) =

1 M
exp niti(y)
Z(n) ]Z:O 7

F(y) = (to(y), t1(y), t2(¥), )"
where t1(y), t>(y), ... is a sufficient statistics of the respective distribution

Thus
log P(yln) = —log Z(n) + ¥ njti(y)
J

Idea: model log P(y|n) as a weighted sum of basis functions ¢;(y). Z(y) is needed
for proper normalization, Z(y) = [ exp Z] 0 Mit; (y)dy normalizes the distri-
bution. Special parameter: ng = 1
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Consider a Bernoulli distribution with P(y|6) = 6Y(1 — 6)1=Y. Then:
log P(y|0) = ylog 0+(1—y)log(1—-0) = log(1—0)+y(logd—log(1-0)) =

0
log(1 —6) + ylog 5= log(1 —0) + yn

1

TFexp = and can

Where n1 = log % . We then also obtain the inverse 0 =
write

log(1 —6) +yn1 = —log(1l + expn1) + yn1

We can identify: t1(y) = vy, Z(n) = 1 + expn, to(y) = O and

1

P(yln) = ] _|_expnexp yn

Note that the use of the sigmoid function is motivated from the definition of the
natural parameter
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e Express the natural parameter as a linear function of the inputs to get the generalized
linear model (GLM). For Bernoulli we get,

—

X

P(yilxia ’LU) —

and in particular

1
1+ expxlw

P(y; = 1lx;,w) = exp XZTW = sig(XiTw)

e Thus logistic regression is the GLM for the Bernoulli likelihood model
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e Linear Regression:
M—-1
fxiw) =wo+ Y wjm;
=1

e We define as target y; = 1 if the pattern x; belongs to class 1 and y; = O if pattern
X; belongs to class O

e We calculate weights wy ¢ = (X1 X)™1XTy as LS solution, exactly as in linear
regression

e For a new pattern z we calculate f(z) = ZTWLS and assign the pattern to class 1
if f(z) > 1/2; otherwise we assign the pattern to class 0
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e Asymptotically, a LS-solution converges to the posterior class probabilities, althogh a

linear functions is typically not able to represent P(¢c = 1|x). The resulting class
boundary can still be sensible

e One can expect good class boundaries in high dimensions and/or in combination with
basis functions, kernels and neural networks; in high dimensions sometimes consistency
can be achieved
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Klasse 0

Klasse 1
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e Although the approach might seem simplistic, the performance can be excellent (in
particular in high dimensions and/or in combination with basis functions, kernels and

neural networks). The calculation of the optimal parameters can be very fast!
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e So far we focussed on accuracy: we maximized the number of correctly classified

patterns

e Accuracy is not always a good measure: Let's assume that | want to generate a

classifier that predicts if web pages are relevant for my query.

e If the classifier always predicts O (uninteresting), then the classifier has an accuracy

very close to 100%
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Definitions
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m m mlfp tp fp tp Ip
0 1 0 0 1 0 1 1
0 0 0 1 1 1 1
pred=0 pred=1

*TP (True Positive) = #tp (here: 3)

*FP (False Positive) = #fp (here: 2)

*TN (True Negative) = #tn (here: 2)

*FN (True Negative) = #fn (here: 1)

rue.y

pred



o with N =TP+ FP+ TN -+ FN test patterns,

N TP
P d = ]_, = 1) = —
(pred=1,y=1) =
. FP
P d: 1, :O = —
(pred =1,y =0) =
. T'N
P(p?“edzo,yZO)ZT

_ FN
P(pred =0,y = 1) :T
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e Accuracy :
TP+ TN
N

Accuracy —

e If we assign the label correct to the events (pred = 1,y = 1) and (pred =
0,y = 0), then

Accuracy = P(correct)

e The error rate is (1-Accuracy).

e Accuracy is not a useful measure for highly imbalanced classes (see search engine

example)
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e Precision (Relevance, positive predicted value)

TP
TP+ FP

Precision =

e This approximates

P(y = 1|pred = 1)

e If a search engine classifies a web page to be relevant, it should be relevant!
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e Negative Predictive Value (NPR)

TN
TN+ FN

NPR =

e This approximates

P(y = O|pred = 0)

e If a search engine classifies a web page to be irrelevant, it should be irrelevant!
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Recall ( sensitivity, true positive rate):

TP
TP+ FN

Recall =

This approximates

P(pred =1ly = 1)

A measure for classifier performance, independent of class-mix

A search engine that classifies all pages as being interesting has a Recall = 1. A

fire detector should not miss any fires and should have a Recall close to 1.
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Specificity (Specifity, true negative rate, 1 - false-positive-rate)

TN
TN + FP

Speci fity =
This approximates

P(pred = Oly = 0)

A measure for classifier performance, independent of class-mix

Specificity should be high for a fire detector: if there is no fire, it should not alarm
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e F-measure

[ 2Precisi0n X Recall

Precision + Recall
The F-measure combines precision and recall. Trivial search engines, that either predict

all pages to be relevant or irrelevant, would have an F-measure of O.

38



e \We can interpret the treatment as pred and outcome as y

e [hen
Precision TP

(Oddsl|treatment = 1) = =
1 — Precision FP

1-NPR FN

(Oddsl|treatment = 0) = =
NPR TN

OR Precision X NPR . TP x TN

(1 — Precision) x (11— NPR) FP x FN
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Consider the classifier sign( f(x) — «) for —0o < a < oo.

With a — oo, TP, FP — 0O, Recall — 0O, Specificty — 1, and Precision
should be >> 0.

With o — —oo, TN, FN — 0, Recall — 1, Specificty — O, and Precision
becomes the the percentage of class one.

— ROC (Receiver operating characteristic). For the ROC-curve one varies o and
plots Recall (y-axis) against (1-Specific = FPR) (x-achis)

— PR (Precision-Recall). Same, but we plot Precision as a function of Recall

The AUC-ROC is the integral under the ROC curve. A random classifier has an AUC-
ROC of 0.5, a perfect classifier of 1

The AUC-PR is the integral under the PR curve. A random classifier has an AUC-ROC
of around 0. The AUC-PR can be more relevant in highly unbalanced classes (search
engines
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Die Receiver Operating Characteristic (ROC) — Kurve

*Gibt mein Klassifikator eine Klassenwahrscheinlichkeit aus, dann entscheide ich mich fir Klasse 0,
wenn dieser Wert unter einem Schwellwert S ist und ansonsten entscheide ich mich fur Klasse 1
*(0,0): S=1 (a=-<=) (1,1): S=ist O (a=o2) (0.3, 0.85): S=0.5 (Beispiel)

Fehlerfreier Klassifikator

1.0 S steigtan
e *Ich sage nur Klasse 1 voraus

0.8 *Mein Klassifikator sagt, dass jede Webseite ein
= Treffer ist
5 0.6 *Alle Patienten sind krank (Klasse 1)
5 «Spezifitat: P(pred =0 | y=0) =0 Sensitivitat:
ﬁ 0.4 AUC=0.836 Plpred=1|y=1)=1

0.2=

0'0_/.-1 | | | I 1

_.0 0 0.2 0.4 0.5 0.8 1.0
/ 1-SPEZIFITAT

*|ch sage nur Klasse 0 voraus

*Mein Klassifikator sagt, dass keine Webseite ein Treffer ist

+Alle Patienten sind gesund (Klasse 0)

*Spezifitat: Pljpred =0 | y=0)=1 Sensitivitat: Plpred=1|y=1)=0

*Das Integral unter der Kurve (area under curve, AUC-ROC) ist bei perfekter Klassifikation
gleich 1 und bei Zufallsklassifikation gleich 0.5



e It is possible to derive algorithms which directly optimize certain measures, e.g., F-

Measure, AUC
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