
Kernels

Volker Tresp
Summer 2014

1



Smoothness Assumption

• So far we used prior knowledge to define the right basis functions: the assumption is

that f(x) can be approximated by a weighted sum of basis functions

• Alternatively, it might make sense to have a preference for smooth functions: functional

values close in input space should have similar functional values

• In the figure it might make sense that the functional values at xi and x are similar

(smoothness assumption)

• Thus, one might prefer the smooth (continuous) function in favor of the dashed

function

2





Introduction Kernels

• One can implement smoothness assumptions over kernel functions

• A kernel function k(xi,x) determines, how neighboring functional values are influ-

enced when f(xi) is given

• Example: Gaussian kernel

3





Kernels and Basis Functions

• It turns out that there is a close relationship between kernels and basis functions:

k(xi,x) =

Mφ∑
j=1

φj(xi)φj(x)

• Thus: given the basis functions, this equation gives you the corresponding kernel

• We have encountered the kernel already in the discussion on basis functions. Note

the kernel is a function that is represented with basis functions φj(x), that have the

weight φj(xi).

• For positive definite kernels, we can also go the other way: given the kernels I can give

you a corresponding set of basis functions (not unique)

4





Kernel Prediction

• Regression

ŷ(z) =
N∑
i=1

vik(z,xi)

• Classification

ŷ(z) = sign

 N∑
i=1

vik(z,xi)


• The solution contains as many kernels as there are data points N (independent on

the number of underlying basis functions M)

• Thus: I can work with a finite number of kernels, instead of an infinite number of basis

functions

5



One Kernel for Each Data Point

6



Different Forms of the Cost Function

• We start with the PLS cost function for models with basis functions

• Regularized cost function

costpen(w) =
N∑
i=1

(yi −
∑
j

wjφj(xi))2 + λ

M∑
i=0

w2
i

= (y −Φw)T (y −Φw) + λwTw

where Φ is the design matrix design with (Φ)i,j = φj(xi) .

7



Implicit Solution

• We calculate the first derivatives and set them to zero,

∂costpen(w)

∂w
= −2ΦT (y −Φw) + 2λw = 0

It follows that one can write,

wpen =
1

λ
ΦT (y −Φwpen)

8



Approach

• This is not an explicit solution (wpen appears on both sides of the equation). But we

know now, that we can write the solution as a linear combination of the input vectors

wpen = ΦTv =
N∑
i=1

vi~φ(xi)

• Note that we have a sum over N data points (and not M basis functions)

9



Kernel Model

• We immediately get,

f(x) =

Mφ∑
j=1

wj,penφj(xi) = ~φ(x)Twpen

= ~φ(x)TΦTv =
N∑
i=1

vik(x,xi)

with v = (v1, . . . , vN)T and

k(x,xi) = ~φ(x)T ~φ(xi) =

Mφ∑
k=1

φk(x)φk(xi)

10



A New Form of the Cost Function

• We can substitute the constraints, and obtain

costpen(v) = (y −ΦΦTv)T (y −ΦΦTv) + λvTΦΦTv

= (y −Kv)T (y −Kv) + λvTKv

where K is an N ×N matrix with elements

ki,j = ~φ(xi)
T ~φ(xj) =

Mφ∑
k=1

φk(xi)φk(xj)

• An important result: We can write the cost function, such that only inner

11



products of the basis functions appear (i.e., the kernels), but not the basis

functions themselves!



Kernel Parameters

• Now we can take the derivative of the cost function with respect to v (note, that

K = KT )

∂costpen(v)

∂v
= 2K(y −Kv) + 2λKv

such that

vpen = (K + λI)−1y

12



Kernel Prediction

• A prediction can be written as

f̂(z) = ~φ(z)Tw = ~φ(z)TΦTvpen =
N∑
i=1

vik(z,xi)

with

k(z,xi) = ~φ(z)T ~φ(xi)

• Another important result: we can write the solution such that only inner products are

used; the solution can be written as a weighted sum of N kernels.

13



One Kernel for Each data Point

14



With only One Training Data Point

• With only one training data point we get

f(z) = v1k(z,x1)

• As discussed previously:

15



Comments and Interpretation of a Kernel

• This is interesting, since there can be more basis functions than data points; in particu-

lar this result is valid, even if we work with an infinite number of basis functions!

• It is even possible to start with the kernels, without knowing exactly, what the under-

lying basis functions are

• Different interpretations of the kernel

– As inner product k(xi, z) = ~φT (x)~φ(z)

– As covariance: how strong is the correlation of the functional values at different

inputs k(xi, z) = cov(f(xi), f(z))

• When N >> M it is computationally more efficient to work with basis functions

(requiring M3 + M2N operations). When M >> N , the kernel version is more

efficient, requiring N3 +N2M operations. If the kernels are known a priori (i.e., if

they do not need to be calculates via inner product), the kernel solution requires N3

operations.

16



• Still, not all functions are valid kernel functions. We need the following theorem ...



Mercer’s Theorem

• (From Vapnik: The nature of statistical learning theory. Springer, 2000)

• Mercer’s Theorem: To guarantee, that the symmetric functions k(x, z) = k(z, x)

from L2 permits an expansion as

k(x, z) =
∞∑
h=1

λhφ
T
h (x)φh(z)

with positive coefficients λh > 0, it is necessary and sufficient, that∫ ∫
k(x, z)g(x)g(z)dxdz > 0

for all g 6= 0, for which ∫
g2(x)dx <∞

• The theorem says, that for so-called positive-definite kernels (“Mercer kernels”), a

decomposition in basis functions is possible!

17



• Each kernel-matrix K is then also positive (semi-) definite



Kernel Design

• Linear Kernel

k(xi,xj) = xTi xj

Basis functions, as well as kernel functions, are linear

• Polynomial kernel (1)

k(xi,xj) = (xTi xj)
d

The basis functions are all ordered polynomials of order d

• Polynomial kernel (2)

k(xi,xj) = (xTi xj +R)d

The corresponding basis functions are all polynomials of order d or smaller

• Gauß-kernels (RBF-kernels)

k(xi,xj) = exp

(
−

1

2s2
‖xi − xj‖2

)
18



These kernels correspond to infinitely many Gaussian basis functions

• Sigmoid (“neural network”) kernels

k(xi,xj) = sig
(
xTi xj

)



Appendix: Detour on Function
Spaces

19



Rewriting the Cost Function (see lecture on basis functions)

• The cost function

f(x) =
∑
i

wiφi(x)

can be thought of as an inner product between the function f(x′) =
∑
wiφi(x

′)
and the function k(x, x′) =

∑
φi(x)φi(x

′) in the space of the basis functions,

thus

f(x) = 〈f, kx〉φ

• k(x, x′) is our kernel and in this context is called is called a reproducing kernel.

• Also recall that wTw = 〈f, f〉Φ

• With all of this, we can write our cost function as

costpen(w) =
N∑
i=1

(
yi − 〈f, kxi〉Φ

)2
+ λ 〈f, f〉Φ

20



• Note that only for the minimizer we can write also

〈f, f〉Φ = vTKv



Representer Theorem

• Representer Theorem: Let Ω be a strictly monotonously increasing function and let

loss() be an arbitrary loss function, then the minimizer of the loss function

N∑
i=1

loss(yi, f(xi)) + Ω(‖f‖Φ)

can be represented as

f(x) =
N∑
i=1

vik(xi,x)

• ‖f‖Φ =
√
〈f, f〉Φ is a norm in a reproducing kernel Hilbert space (RKHS)

• So kernel solutions are possible for all cost functions we are considering!

21


