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So far we used prior knowledge to define the right basis functions: the assumption is

that f(x) can be approximated by a weighted sum of basis functions

Alternatively, it might make sense to have a preference for smooth functions: functional

values close in input space should have similar functional values

In the figure it might make sense that the functional values at x; and x are similar

(smoothness assumption)

Thus, one might prefer the smooth (continuous) function in favor of the dashed

function






e One can implement smoothness assumptions over kernel functions

e A kernel function k(x;,x) determines, how neighboring functional values are influ-

enced when f(x;) is given

e Example: Gaussian kernel



k(x;, X)




It turns out that there is a close relationship between kernels and basis functions:

Mg
k(x;,x) = Z ¢;(x;);(x)
=1

Thus: given the basis functions, this equation gives you the corresponding kernel

We have encountered the kernel already in the discussion on basis functions. Note

the kernel is a function that is represented with basis functions ¢;(x), that have the
Weight gb] (Xz)

For positive definite kernels, we can also go the other way: given the kernels | can give

you a corresponding set of basis functions (not unique)



#(x,) =(0.25,1.00,0.25)"
#(x,) = (0.10,0.90,0.50)"
#(x,) = (0.02,0.60,0.90)
#(x,) = (0.00,0.01,0.30)"

k(x,x)=¢"(x)d(x,)=1.12
k(x;,x,)= ¢T(x1)¢(xz) =1.05
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k(xp,xy) = ¢T(x1)¢(x3) =0.83
k(x,x,)=¢" (x)¢(x,)=0.08



Regression

N
§(z) =) vik(z,x;)
=1
Classification
N
j(z) = sign [ ) v;k(z,x;)
=1

The solution contains as many kernels as there are data points N (independent on

the number of underlying basis functions M)

Thus: | can work with a finite number of kernels, instead of an infinite number of basis

functions






e We start with the PLS cost function for models with basis functions
e Regularized cost function

N M
costP™(w) = Y (yi— > widj(x))° +AD wi
— j 1=0

1 =1

=(y—dw)l(y — dw) + \wlw

where @ is the design matrix design with (®); ; = ¢;(x;) .



e We calculate the first derivatives and set them to zero,

tpen
8COS@ (w) = 28! (y — ®dw) 4+ 2 w =0
\ 4

It follows that one can write,

1
Wpen = X(I)T(y — (I)Wpen)



e This is not an explicit solution (Wpen appears on both sides of the equation). But we

know now, that we can write the solution as a linear combination of the input vectors

e Note that we have a sum over N data points (and not M basis functions)



e \We immediately get,

M
F) = wjpendi(xi) = $(x) Wpen

j=1

N

= ¢(x) ®lv = Z vik(X, X;)
i=1
L T
with v.= (v1,...,vn)" and
Mg

k(x,%) = 6(x) p(x) = D dp()bp(xy)

k=1
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e \We can substitute the constraints, and obtain

costP(v) = (y — ®® v (y — ®d'v) + 2wl ddly

=(y— Kv)I(y = Kv) + 2WlKv
where K is an N X N matrix with elements

My

ki = o(x)! d(x;) = Z b1 (%) P (X)

k=1

e An important result: We can write the cost function, such that only inner
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products of the basis functions appear (i.e., the kernels), but not the basis
functions themselves!



e Now we can take the derivative of the cost function with respect to v (note, that
K = KT
dcostPe (v)
ov

=2K(y — Kv) 4+ 2XKv

such that
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e A prediction can be written as

N

f(z) — g(Z)TW — g(Z)T¢TVpen — Z v;k(z,%;)
1=1
with

k(z,%;) = ¢(2)" (x;)

e Another important result: we can write the solution such that only inner products are
used; the solution can be written as a weighted sum of N kernels.

13



14



e With only one training data point we get

f(z) = v1k(z,x1)
e As discussed previously:

k(x,,z)
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This is interesting, since there can be more basis functions than data points; in particu-
lar this result is valid, even if we work with an infinite number of basis functions!

It is even possible to start with the kernels, without knowing exactly, what the under-

lying basis functions are

Different interpretations of the kernel

— As inner product k(x;,z) = oL (x)p(z)

— As covariance: how strong is the correlation of the functional values at different

inputs k(x;,2z) = cov(f(%;), f(z))

When N >> M it is computationally more efficient to work with basis functions
(requiring M3 4+ M?2N operations). When M >> N, the kernel version is more
efficient, requiring N3 4 N2M operations. If the kernels are known a priori (i.e., if
they do not need to be calculates via inner product), the kernel solution requires N3
operations.
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e Still, not all functions are valid kernel functions. We need the following theorem ...



e (From Vapnik: The nature of statistical learning theory. Springer, 2000)

e Mercer's Theorem: To guarantee, that the symmetric functions k(x,z) = k(z, x)

from Lo permits an expansion as

k(x,2) = ) Apop (X)ép(2)

h=1

with positive coefficients A;, > O, it is necessary and sufficient, that

//k(x,z)g(x)g(z)dxdz >0
for all g = O, for which

/92(x)dx < 00

e The theorem says, that for so-called positive-definite kernels (“Mercer kernels”), a
decomposition in basis functions is possible!
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e Each kernel-matrix K is then also positive (semi-) definite



Linear Kernel

T

k(x;,X;) = X; X,

Basis functions, as well as kernel functions, are linear

Polynomial kernel (1)
k(x;,x;) = (x7 %)%
The basis functions are all ordered polynomials of order d

Polynomial kernel (2)
T d
k(x;,x;) = (x5 x; + R)
The corresponding basis functions are all polynomials of order d or smaller

GauB-kernels (RBF-kernels)

1 2
ki) = o0~ - 12
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These kernels correspond to infinitely many Gaussian basis functions

e Sigmoid (“neural network”) kernels

k(x;,x;) = sig (X;-FX]‘)



Appendix: Detour on Function
Spaces
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The cost function

flx) =) wipi(x)

can be thought of as an inner product between the function f(z') = > w;¢;(z")
and the function k(x,z’) = > ¢;(x)¢p;(x’) in the space of the basis functions,
thus

k(x,x") is our kernel and in this context is called is called a reproducing kernel.
Also recall that wl'w = (f, f) g

With all of this, we can write our cost function as

N

costP(w) = Y (yi — (. ku)e)* + A F o
1=1
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e Note that only for the minimizer we can write also

(s [ = v Kv



e Representer Theorem: Let €2 be a strictly monotonously increasing function and let

loss() be an arbitrary loss function, then the minimizer of the loss function

N
Z loss(y;, f(x;)) + Q| flla)

1=1
can be represented as
N
F) = vik(xi, x)
1=1
o ||fllo = /(f,f)ep isanorm in a reproducing kernel Hilbert space (RKHS)

e So kernel solutions are possible for all cost functions we are considering!
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