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e In instance based approaches the training data are available at the time of prediction

and the computational load is at the time of prediction

e Thus “training time” is close to zero but the computational load at prediction time
can be significant. This is the reason why instance-based approaches are sometimes

referred to as “lazy learning”

e To achieve fast prediction, it can be important to support instance-based approaches

using appropriate index structures



e Instance-based Approaches for Classification
e Instance-based Approaches for Regression

e Instance-based Approaches for Density Estimation (One-Class Classification)






e The variables (columns) can describe properties of objects, measurements, state va-

riables, time series measurements, ...

® [ he domain of a variable can be
— continuous, z; ; € R
— binary discrete, x; ; € {0, 1}, oder z; ; € {—1,1}

— discrete, z; ; € {1,2,...,C}



Let's assume C' classes, such that y; € {1,...,C'}

Now we assume that the input variables can only assume K states p1,...,px. Let
Ny 1 be the number of times that in the training data x; = pj, when, and output

variable was y; = [
Then when z = p;. we classify

t = arg mlax N

Recall that table representations are often used on discrete Bayes nets
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If we consider a training pattern with a very similar input then it makes sense that the

target also stays constant of also is very similar
On many ways this is the basic assumption in machine learning

But the central question: what does it mean to be similar? Are some inputs more
important then others? Are there preferred directions? A central problem in machine

learning is to find the application specific right similarity measure

Example: inputs are height, age, hair color. The output is weight. The weight will
have some correlation with height, a certain dependency on age but might be less
dependent on hair color. Similarity might change quickly with height but slower with

age and hair color

If the target is income, then the similarity might be most sensitive towards age!



e The ideas is to define an appropriate distance measure and assign the test pattern to
the closest trainings pattern

e Nearest-Neighbor Classification. Let

| = argmind(z,x;)
1

then
t =y

e k-Nearest-Neighbor Classification: let J be the set of indices indicating the k£ nearest
neighbors to z. Then,

n=> I(y;=1)
1eJ
Then one classifies z as

t =arg maxmn;
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e Euclidean distance

M
2
deuktid(Xi,2) = ||x; — z|| = \ > (@) — z))
=1

e Manhatten distance
M

dManhatten(Xz'aZ) — HXZ — ZHl — Z |wi,j — Zj)|
Jj=1
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e d(x,z) is a metric (or distance metric), if (non-negativity, or separation axiom)
d(x,z) >0
if (identity of indiscernibles, or coincidence axiom)
d(xz,z) =0 ifandonlyif ==z
if (symmetry)
d(xz,z) = d(z,x)
and if (subadditivity / triangle inequality)
d(z,z) < d(z,y) 4 d(y, 2)

e Conditions 1 and 2 together define a positive-definite function. The first condition is
implied by the others.

e The distance functions we are using are nor all proper metric; in particular the triangle
inequality might not be obeyed
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e For discrete variables one often uses the number of differences (simple matching co-

efficient):

M
1
dsimple(Xir 2) = i Z(l —I(z; j = z;))
j=1

This distance function can be used both for nominal discreet variables with not natural

order in its states (e.g., colors) and for ordinal discrete variables, where such an order

exists (e.g., school grades)

e For binary variables with z; € {0, 1}, and z; ; € {0, 1}, this is
1

2
dsimple(xia z) = M”Xz — z|
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In some applications one state dominates, typically the state O.

Case 1: if there are 1000 items. Customer 1 and Customer 2 each bought one item
but these two items are different. Then the Euclidian distance divided my M is v/2
(dsimple — 2/1000)

Case 2: If two customers bought 100 items each and 95 of those are identical, we get

an Euclidean distance of v/10 (dgjppe = 10/1000)

Thus, against intuition, the customers in Case 2 are mutually less similar than in
Case 1

A similar result we get for dg;ppie
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e |n cases, where state state zero dominates, one can use

M

Z(l —I(z; j = z;))

7=1

1
M — F

dsimpleOO (x;,2) =

where F' is the number of components for which both vectors have both zeros.

e In the example, we get for Case 1 dgpic00(Xi,2) = 2/(1000 —998) =1
and for Case 2, dg;pnp1e00(Xi;2) = 10/(1000 — 895) ~ 0.09
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e The cosine similarity is

T M
X Z j_].xzﬂzj

il @j L2230 22

and the cosine distance (not a proper distance metric as it does not have the triangle

cos(x;,z) =

inequality property)
dCOS(Xz'7Z> =1-— COS(XZ',Z) >0

e In our example, we get for Case 1 dcos = 1 and in Case 2 dcos = 1 —95/100 =
0.05.

e Note that if we normalize the length of the vectors to one in a preprocessing step then
the cosince similarity is identical to the inner product (linear kernel)

e \We have the property

dcos(CLXz', bZ) = dCQS(XZ’, Z)
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with a,b > 0O



e Pearson correlation can be used to evaluate the correlation between attributes (co-

lumns) or entities (rows). Here we ar interested in the latter

e The Pearson correlation is then identical to the cosine similarity, only that the mean

of each entity (row) is first subtracted.

o Let X; = x; — mean(X;), Z = z — mean(z), then

M ~ -~

\/ZJ 1x,3\/29 1JQ

pearson(x;,z) =

and as a distance function
dpearson(Xi, Z) — 1 — peaTSOn(Xi, Z) 2 O

We get for Case 1 dpearson = 1.01 and for case 2, dpearson = 0.056.
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e N = 100, M = 1000. Data are organized in 10 clusters. In the last cluster in
each data vector only one entry is equal to one
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Distance between Documents. Dark: small distance
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Vector Space Representation of a Document
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Depending on preprocessing x; ; can represent slightly different quantities
(A) z; ; € {0, 1} is euqual 1, if word j is present in document ¢, otherwise O
(B) z; ; € {0,1,2,...} is the count of word j in document ¢ (term frequency tf)

(C) (B) =; ; € M puts weights on tf. Most popular inverse document frequency:

N
idfj = log (—) = log N — log oy

n
J
N is the number of documents. n; is the number of documents in which word j

occurs at least once. Thus a word obtains more weight if it is rare! A word that occurs

in all documents gets a weight of zero.

Preprocessing steps: stemming (“fishing”, “fished”, and “fisher” are all reduced to the
root word, “fish"), elimination of stop words (“and”, “or"); cosine similarity is commonly

used
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Source #tramn | #test | #class | # words used

west-1 West Group 500 1500 10 977
west-2 West Group 300 900 10 1078
west-3 West Group 488 245 10 1035
west-4 West Group 559 280 10 887
west-5 West Group 621 311 10 1156
west-06 West Group 732 367 10 789
west-7 West Group 885 433 10 779

this TREC-5 2463 1232 17 2000

trec6 TREC-5 1173 587 14 2000
reuters | Reuters-21578 6552 2581 59 2000

Table 1: Summary of data sets used.
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tf was used

cosine as similarity measure

C4.5, Ripper: Decision trees. PEBLS, VSM, WAKNN: different k-nearest-neighbor

classifiers with word weights. Rainbow: naive-Bayes

Reuters: News pices. fbis: Foreign Broadcast Information Service. trec6L: LA-Times

news articles. west: law documents
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Table 1: Summary of data sets used.

4.5 RIPPER | PEBLS | VSM | Rambow | A-NN | WAKNN

west-1 85.50 84.47 78.50 85.20 54.40 76.73 89.60
west-2 71.30 68.33 67.80 77.44 72.11 68.33 80.44
west-3 79.60 75.92 72.70 8053 80.00 70.61 88.16
west-4 | 81.80 77.14 78.60 87.86 88.57 73.93 85.00
west-5 nd. 60 89.71 86,80 80.71 85.21 84.57 95.18
west-6 | 83.70 83.38 79.80 87.19 85.29 73.57 88.92
west-7 | 80,10 80.14 71.80 83.52 81.20 74.94 84.42

fbis 57.10 73.94 69.80 76.14 76.38 78.49 81.09
trec-6 67.50 80.58 84.30 87.56 92106 91.99 92.67
reuters 84.50 85.59 84.60 87.68 91.04 90.62 90.04
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Optimizing k£ in k-Nearest-Neighbor Classification



15-Nearest Neighbors
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1-Nearest Neighbor
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/-Nearest Neighbors
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Data: 4 spectral bands (infrared)

A pixel is classified as on out off 7 classes: cotton, red soil, grey soil, ...

Input: spectral bands of the pixel itself and of its 8 neighboring pixels Thus there are

4 x (84 1) = 36 inputs

5-nearest neighbor classifiers gave best results

29



Spectral Band 1 Spectral Band 2 Spectral Band 3

Land Usage Predicted Land Usage







STATLOG results

K-NN

DANN

| | _
GL0 0L0 GO0

10113 UCHEDISSE|OSI 158 |

00

14

12

10



e Hypothesis 1: the brain stores a 3-D model of an object. During recognition the brain
compares an image of an object to the 3-D model. This approach is efficient in terms

of storage but computationally involved during recognition

e Hypothesis 2: The brain stores several 2-D view of an object and compares an image
of an object to the different 2-D views. This approach might require more storage but
can be done in parallel at the time of recognition. For each view there is a specific

neuron: grandmother cell

e Bag-of-words model in computer vision: image features (maybe calculated at a set of
regions of interests) are treated as words, an image is represented as image feature
counts, and similarity is calculated based on a distance metrics. Popular features:

Scale-invariant feature transform (or SIFT) features, published by David Lowe in 1999
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Recall that the similarity function (often: sim(x,z) = 1 — dist(x,z)) should
reflect similarity in terms of the function to be approximates

If sim(x,z) is a positive definite function, we can think of it as a kernel function

k(x,z)
Since one interpretation of a kernel is

k(z,z) = cov(f(z), f(2))

a similarity function might have the same interpretation and a distance function should

imply a small distance for locations with correlated functional values

A kernel classifier can converge towards a nearest neighbor classifier for local kernels

if k(x;, acj) — O for training points x; and x;. Example: Gaussian kernel

If we start with a d(, z) a nearest-neighbor classifier implies a kernel that corresponds

to a high-dimensional feature space
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Consider that P(z|y;) = N'(z; u;, 02I) are Gaussians with diagonal covariance

The the maximum probably posterior class is
. 1 2
argmax | log P(i) — —llz — pill
i 20

Thus, if we assume that the class probabilities P(7) are equal, we decide for the class

with the smallest distance to the data point

Conversely, given a distance function we might imply a class-specific probability dis-

tribution

1 1
P(z|y;) = - &P —gd(% pi)"

would all lead to nearest neighbor rules where S > O, n > 1, and Z normalizes the
distribution
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We can also model

11 1 n
P(zly;) = N Z Z exp —gd(z,xk)
y(zk)=y;
by defining a probability distribution for each training data point, where INV; is the

number of training data points in class ¢

With S — O we get a nearest neighbor classifier
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Instance-based Approaches for
Regression
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Nearest-neighbour Approaches for Regression

e The solution is piecewise constant

35






® Regression: y € R

e The performance of a k-nearest-neighbor system is typically not very good
e Let J(z) be the indices of the k-nearest neighbors to z

e k— nearest-neighbor smoother:

o= 3 w

i€J(z)
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e Nadaraya-Watson smoother

~ 1
t =

N

e Example: Gaussian kernel with

Koy (2, ;) = exp (—

N
> Ka(z,x)y

1 2
ﬁﬁ — X )
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Kernel Smoother: lllustration
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e (1) Two data points (x1,y1), (X2,y2)

o (2) K)(z,x1), K)(z,%x2)

e (3)
K)\(Z,X]_) K)\(Z7X2)
K)\(Z7 Xl) + K)\(Za XQ)7 K)\(Za Xl) + K)\(Z7X2)
o (4)
t= . (K\(z,x1)y1 + Kx\(2,%2)y2)

Ky(z,x1) + K)\(z,x2)
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CF: Recommensation systems,
who can work without user or
item properties

x; j 1s the evaluation of user ¢
for item j-te; typically most ra-
tings are missing

The goal is to predict the eva-
luation of the active user for a
item the active user has not ra-
ted yet

In the example z is the evalua-

tion of the active user
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Dataset.
MSWEB | Neilsen | Eachmovie

Total users 3453 1463 4119
Total titles 294 203 1623
Mean votes

per user 3.95 9.55 46.4

Median votes
per user 3 8 26

Table 1: Number of users, titles, and votes for the datasets used in testing the algorithms. Only

users with 2 or more votes are considered.

o MS Web: Web-site visited or not visited

e TeleVision: Show watched or not

e EachMovie: movie evaluation: 1,...,5 Points
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e lLet a be the active user and let's assume that we want to calculate the prediction for

the active user for item q

1
< x) (s — mean,
S e 00k ) S w(xi, Xa) (@i g — mean;)

1.1 rated ¢

Ta,q = Mmeang +

mean,; is the mean evaluation of the user 2
meang is the mean evaluation of the active user ¢

e The weight w(x;, z) is the Pearson-Correlation calculated over movies that were both

rated by user ¢ and the active user
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e One recommends the K top-ranked items to the active user

e BN:Bayes net, CR+: our algorithm , VSIM: similar bit with cosine, BC: clustering,
POP: recommend the most popular item

e RD (required difference): minimum distance for a significant difference

e Given 5: the number of items that the active user has rated
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MS Web, Rank Scoring

Algorithm | Given2 | Givend | Givenl0O | AllButl
BN | 59.95 | 59.84 | 53.92 66.69
CR+ | 60.64 | 57.80 51.47 63.59
VSIM | 59.22 | 56.13 49.33 61.70
BC | 57.03 | 54.83 | 47.83 59.42
POP | 49.14 | 46.91 41.14 49,77
RD | 0.91 1.82 4.49 0.93

‘able 2: Ranked scoring results for the MS Web dataset,

Higher scores indicate better performance,
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Neilsen, Rank Scoring

Algorithm | Given2 | Givend | Givenl0 | AllButl
BN | 34.90 | 42,24 | 47.39 | 44.92

CR+ | 39.44 | 43.23 | 43.47 | 39.49
VSIM | 39.20 | 40.89 39.12 36.23

BC| 1955 | 1885 | 22.51 16.48

POP | 20.17 | 19.53 19.04 13.91

RD | 153 1.78 2.42 2.40

Table 3: Ranked scoring results for the Neilsen dataset., Higher scores indicate better performance.
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EachMovie, Rank Scoring
Algorithm | Given2 | Givend | GivenlO | AllButl
CR+ | 41.60 42.33 41.46 23.16
VSIM | 42.45 | 42.12 40.15 2207
BC | 38.06 | 36.68 | 34.98 | 21.38
BN | 28.64 | 30.50 33.16 23.49
POP | 30.80 | 2890 28.01 13.94
RD | 0.75 0.75 0.78 0.78

Table 4: Ranked scoring results for the EachMovie dataset. Higher scores indicate betier perfor-
mance,
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This is even more expensive to calculate at prediction time but sometimes yields very

good results
Also known as lowess or loess (locally weighted scatter plot smoothing)

Prediction is obtained via simple linear regression
y(2) =) wi(2)z
J

but the weights w(z) are dependent on the query

Let k(x;, z) be some similarity function and K (z) be a diagonal matrix with K (z);; =
k(x;, z), then

w(z) = (XTK(z)X 1 )J) T XTK (2)y
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e Consider that we model the joint input-output distribution as a sum of Gaussians
1
P(GT,0T) = £ 3 NG 0T G u)T, 02D
1

we get
Zi y; N (2; 5, 02])
> i N(z; xy, o2])

which is exactly the Nadaraya-Watson smoother smoother

E(t|z) =

47



e One can consider
N(z; z;,02I)
> 1 N(z; xk, o21)

to be kernels derived from data. These are in general non-Mercer kernels since the

ki(za .CUZ) —

resulting kernel matrix is not necessarily positive definite

e The weights could then be calculated, e.g., by regularized least squares and give

t(z) =) wviki(z, z;)

7
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Instance-based Approaches for
Density Estimation (One-Class

Classification)
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In some applications one can only obtain examples for one class label
Many normal user data but no fraud data
Data from normal plant operation, but no data from plan failure

Sometimes it makes sense to consider all data which are not in the training set as
negative examples; this makes sense if there are only a finite number of potential data.
Another option is to randomly sample data from some assumed distribution and treat

them as negative data

Another option is to model P(x|class = 1) and then to evaluate if the new observed

data seems to come from this distribution
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e Parzen estimator
P(z)

wobei ¢ = [ K (z, x;)dz.

1
c X N -

1

N
K)\(Za Xi)
=1
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Kernel Smoother: Anomaly Detection

Anomalie

."‘\__,/

;Xl
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e Instance-based approaches have their advantages when the input dimensions are not

too large but the functions/class boundaries are complex. Examples: spatio-temporal

data

e With large N one needs to build appropriate index structures (k-d trees) to quickly
find neighboring data points
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