
Instance-based Learning

Volker Tresp

1

The Data Matrix for Supervised Learning

Xj j-th input variable (columns)

X = (X1, . . . , XM)T

vector of input variables
M number of of input variables
N number of of training data points
Y output variable

xi = (xi,1, . . . , xi,M)T

i-th input pattern
xi,j j-th component of xi
yi target to xi
ŷi prediction to xi
di = (xi,1, . . . , xi,M , yi)

T

i-th trainings pattern
D = {d1, . . . ,dN}

(training-) data set
z test input
t (unknown) target to z

2

Definition

• In instance based approaches the training data are available at the time of prediction

and the computational load is at the time of prediction

• Thus “training time” is close to zero but the computational load at prediction time

can be significant. This is the reason why instance-based approaches are sometimes

referred to as “lazy learning”

• To achieve fast prediction, it can be important to support instance-based approaches

using appropriate index structures

3

Overview

• Instance-based Approaches for Classification

• Instance-based Approaches for Regression

• Instance-based Approaches for Density Estimation (One-Class Classification)

4

Data Points in Input Space

5

Variables

• The variables (columns) can describe properties of objects, measurements, state va-

riables, time series measurements, ...

• The domain of a variable can be

– continuous, xi,j ∈ <

– binary discrete, xi,j ∈ {0,1}, oder xi,j ∈ {−1,1}

– discrete, xi,j ∈ {1,2, . . . , C}

6

Table Representation

• Let’s assume C classes, such that yi ∈ {1, . . . , C}

• Now we assume that the input variables can only assume K states p1, . . . , pK . Let

Nk,l be the number of times that in the training data xi = pk when, and output

variable was yi = l

• Then when z = pk we classify

t̂ = argmax
l
Nk,l

• Recall that table representations are often used on discrete Bayes nets

7

Table Representation (con’d)

• When K >> N this approach is not

applicable. For example with M binary

inputs we get K = 2M

• Similarly, when the inputs are continuous

this approach cannot be applied in gene-

ral

8

Similarity and Distance

• If we consider a training pattern with a very similar input then it makes sense that the

target also stays constant of also is very similar

• On many ways this is the basic assumption in machine learning

• But the central question: what does it mean to be similar? Are some inputs more

important then others? Are there preferred directions? A central problem in machine

learning is to find the application specific right similarity measure

• Example: inputs are height, age, hair color. The output is weight. The weight will

have some correlation with height, a certain dependency on age but might be less

dependent on hair color. Similarity might change quickly with height but slower with

age and hair color

• If the target is income, then the similarity might be most sensitive towards age!

9

Nearest Neighbor Classification

• The ideas is to define an appropriate distance measure and assign the test pattern to

the closest trainings pattern

• Nearest-Neighbor Classification. Let

l = argmin
i
d(z,xi)

then

t̂ = yl

• k-Nearest-Neighbor Classification: let J be the set of indices indicating the k nearest

neighbors to z. Then,

nl =
∑
i∈J

I(yi = l)

Then one classifies z as

t̂ = argmax
l
nl

10

Nearest Neighbor Classification

11

k=5-Nearest Neighbor Classification

12

Distance Function for Continuous Variables

• Euclidean distance

deuklid(xi, z) = ‖xi − z‖ =

√√√√ M∑
j=1

(xi,j − zj)2

• Manhatten distance

dManhatten(xi, z) = ‖xi − z‖1 =
M∑
j=1

|xi,j − zj)|

13

Distance Metrics

• d(x, z) is a metric (or distance metric), if (non-negativity, or separation axiom)

d(x, z) ≥ 0

if (identity of indiscernibles, or coincidence axiom)

d(x, z) = 0 if and only if x = z

if (symmetry)

d(x, z) = d(z, x)

and if (subadditivity / triangle inequality)

d(x, z) ≤ d(x, y) + d(y, z)

• Conditions 1 and 2 together define a positive-definite function. The first condition is

implied by the others.

• The distance functions we are using are nor all proper metric; in particular the triangle

inequality might not be obeyed

14

Distance Function for Discrete Variables

• For discrete variables one often uses the number of differences (simple matching co-

efficient):

dsimple(xi, z) =
1

M

M∑
j=1

(1− I(xi,j = zj))

This distance function can be used both for nominal discreet variables with not natural

order in its states (e.g., colors) and for ordinal discrete variables, where such an order

exists (e.g., school grades)

• For binary variables with zj ∈ {0,1}, and xi,j ∈ {0,1}, this is

dsimple(xi, z) =
1

M
‖xi − z‖2

15

Distance Functions for Sparse Data

• In some applications one state dominates, typically the state 0.

• Case 1: if there are 1000 items. Customer 1 and Customer 2 each bought one item

but these two items are different. Then the Euclidian distance divided my M is
√
2

(dsimple = 2/1000)

• Case 2: If two customers bought 100 items each and 95 of those are identical, we get

an Euclidean distance of
√
10 (dsimple = 10/1000)

• Thus, against intuition, the customers in Case 2 are mutually less similar than in

Case 1

• A similar result we get for dsimple

16

Correction for the Simple Matching Coefficient

• In cases, where state state zero dominates, one can use

dsimple00(xi, z) =
1

M − F

M∑
j=1

(1− I(xi,j = zj))

where F is the number of components for which both vectors have both zeros.

• In the example, we get for Case 1 dsimple00(xi, z) = 2/(1000 − 998) = 1

and for Case 2, dsimple00(xi, z) = 10/(1000− 895) ≈ 0.09

17

Cosine Distance Function

• The cosine similarity is

cos(xi, z) =
xTi z

‖xi‖‖z‖
=

∑M
j=1 xi,jzj√∑M

j=1 x
2
i,j

√∑M
j=1 z

2
j

and the cosine distance (not a proper distance metric as it does not have the triangle

inequality property)

dcos(xi, z) = 1− cos(xi, z) ≥ 0

• In our example, we get for Case 1 dcos = 1 and in Case 2 dcos = 1−95/100 =
0.05.

• Note that if we normalize the length of the vectors to one in a preprocessing step then

the cosince similarity is identical to the inner product (linear kernel)

• We have the property

dcos(axi, bz) = dcos(xi, z)

18

with a, b > 0

Pearson Correlation

• Pearson correlation can be used to evaluate the correlation between attributes (co-

lumns) or entities (rows). Here we ar interested in the latter

• The Pearson correlation is then identical to the cosine similarity, only that the mean

of each entity (row) is first subtracted.

• Let x̃i = xi −mean(xi), z̃ = z−mean(z), then

pearson(xi, z) =

∑M
j=1 x̃i,jz̃j√∑M

j=1 x̃
2
i,j

√∑M
j=1 z̃

2
j

and as a distance function

dpearson(xi, z) = 1− pearson(xi, z) ≥ 0

We get for Case 1 dpearson = 1.01 and for case 2, dpearson = 0.056.

19

Sparse and Clustered Data

• N = 100, M = 1000. Data are organized in 10 clusters. In the last cluster in

each data vector only one entry is equal to one

20

Distance between Documents. Dark: small distance

21

Example: Classification of Documents

22

Vector Space Representation of a Document

23

Vector Space Representation of a Document

• Depending on preprocessing xi,j can represent slightly different quantities

• (A) xi,j ∈ {0,1} is euqual 1, if word j is present in document i, otherwise 0

• (B) xi,j ∈ {0,1,2, . . .} is the count of word j in document i (term frequency tf)

• (C) (B) xi,j ∈ < puts weights on tf. Most popular inverse document frequency :

idfj = log

(
N

nj

)
= logN − lognj

N is the number of documents. nj is the number of documents in which word j

occurs at least once. Thus a word obtains more weight if it is rare! A word that occurs

in all documents gets a weight of zero.

• Preprocessing steps: stemming (“fishing”, “fished”, and “fisher” are all reduced to the

root word,“fish”), elimination of stop words (“and”,“or”); cosine similarity is commonly

used

24

Text categorization using weight-adjusted nearest neighbor
classification: Han, Karyois, Kumar

25

Text categorization (cont’d)

• tf was used

• cosine as similarity measure

• C4.5, Ripper: Decision trees. PEBLS, VSM, WAKNN: different k-nearest-neighbor

classifiers with word weights. Rainbow: naive-Bayes

• Reuters: News pices. fbis: Foreign Broadcast Information Service. trec6L: LA-Times

news articles. west: law documents

26

Text categorization (cont’d)

27

Optimizing k in k-Nearest-Neighbor Classification

28

K-Nearest Neighbor Classification for LANDSAT Images

• Data: 4 spectral bands (infrared)

• A pixel is classified as on out off 7 classes: cotton, red soil, grey soil, ...

• Input: spectral bands of the pixel itself and of its 8 neighboring pixels Thus there are

4× (8 + 1) = 36 inputs

• 5-nearest neighbor classifiers gave best results

29

Grandmother Cells

• Hypothesis 1: the brain stores a 3-D model of an object. During recognition the brain

compares an image of an object to the 3-D model. This approach is efficient in terms

of storage but computationally involved during recognition

• Hypothesis 2: The brain stores several 2-D view of an object and compares an image

of an object to the different 2-D views. This approach might require more storage but

can be done in parallel at the time of recognition. For each view there is a specific

neuron: grandmother cell

• Bag-of-words model in computer vision: image features (maybe calculated at a set of

regions of interests) are treated as words, an image is represented as image feature

counts, and similarity is calculated based on a distance metrics. Popular features:

Scale-invariant feature transform (or SIFT) features, published by David Lowe in 1999

30

Kernels and Similarity Functions

• Recall that the similarity function (often: sim(x, z) = 1 − dist(x, z)) should

reflect similarity in terms of the function to be approximates

• If sim(x, z) is a positive definite function, we can think of it as a kernel function

k(x, z)

• Since one interpretation of a kernel is

k(x, z) = cov(f(x), f(z))

a similarity function might have the same interpretation and a distance function should

imply a small distance for locations with correlated functional values

• A kernel classifier can converge towards a nearest neighbor classifier for local kernels

if k(xi, xj)→ 0 for training points xi and xj. Example: Gaussian kernel

• If we start with a d(x, z) a nearest-neighbor classifier implies a kernel that corresponds

to a high-dimensional feature space

31

Class-specific Distributions and Distance Functions

• Consider that P (z|yi) = N (z;µi, σ
2I) are Gaussians with diagonal covariance

• The the maximum probably posterior class is

argmax
i

(
logP (i)−

1

2σ2
‖z − µi‖2

)
• Thus, if we assume that the class probabilities P (i) are equal, we decide for the class

with the smallest distance to the data point

• Conversely, given a distance function we might imply a class-specific probability dis-

tribution

P (z|yi) =
1

Z
exp−

1

S
d(z, µi)

n

would all lead to nearest neighbor rules where S > 0, n ≥ 1, and Z normalizes the

distribution

32

Parzen Windows as Density Estimators

• We can also model

P (z|yi) =
1

Ni

1

Z

∑
y(xk)=yi

exp−
1

S
d(z, xk)

n

by defining a probability distribution for each training data point, where Ni is the

number of training data points in class i

• With S → 0 we get a nearest neighbor classifier

33

Instance-based Approaches for
Regression

34

Nearest-neighbour Approaches for Regression

• The solution is piecewise constant

35

Comments

• Regression: y ∈ <

• The performance of a k-nearest-neighbor system is typically not very good

• Let J(z) be the indices of the k-nearest neighbors to z

• k− nearest-neighbor smoother:

t̂(z) =
1

k

∑
i∈J(z)

yi

36

Kernel Smoother:

• Nadaraya-Watson smoother

t̂ =
1∑N

i=1Kλ(z,xi)

N∑
i=1

Kλ(z,xi)yi

• Example: Gaussian kernel with

Kλ(z,xi) = exp

(
−

1

2λ2
|z− xi|2

)

37

Kernel Smoother: Illustration

38

• (1) Two data points (x1, y1), (x2, y2)

• (2) Kλ(z,x1), Kλ(z,x2)

• (3)

Kλ(z,x1)

Kλ(z,x1) +Kλ(z,x2)
,

Kλ(z,x2)

Kλ(z,x1) +Kλ(z,x2)

• (4)

t̂ =
1

Kλ(z,x1) +Kλ(z,x2)
(Kλ(z,x1)y1 +Kλ(z,x2)y2)

Example: Collaborative Filtering

• CF: Recommensation systems,

who can work without user or

item properties

• xi,j is the evaluation of user i

for item j-te; typically most ra-

tings are missing

• The goal is to predict the eva-

luation of the active user for a

item the active user has not ra-

ted yet

• In the example z is the evalua-

tion of the active user

39

Empirical Analysis of Predictive Algorithms for Collaborative
Filtering, Heckerman et al.

• MS Web: Web-site visited or not visited

• TeleVision: Show watched or not

• EachMovie: movie evaluation: 1, . . . ,5 Points

40

CF+: Instance-based System for CF

• Let a be the active user and let’s assume that we want to calculate the prediction for

the active user for item q

x̂a,q = meana+
1∑

i:i rated q w(xi,xa)

∑
i:i rated q

w(xi,xa)(xi,q −meani)

meani is the mean evaluation of the user i

meana is the mean evaluation of the active user i

• The weight w(xi, z) is the Pearson-Correlation calculated over movies that were both

rated by user i and the active user

41

Recommender System

• One recommends the K top-ranked items to the active user

• BN:Bayes net, CR+: our algorithm , VSIM: similar bit with cosine, BC: clustering,

POP: recommend the most popular item

• RD (required difference): minimum distance for a significant difference

• Given 5: the number of items that the active user has rated

42

43

Results: Nielsen

44

Results: EachMovie

45

Locally Weighted Regression

• This is even more expensive to calculate at prediction time but sometimes yields very

good results

• Also known as lowess or loess (locally weighted scatter plot smoothing)

• Prediction is obtained via simple linear regression

y(z) =
∑
j

wj(z)zi

but the weights w(z) are dependent on the query

• Let k(xi, z) be some similarity function andK(z) be a diagonal matrix withK(z)ii =

k(xi, z), then

w(z) =
(
XTK(z)X + λI

)−1
XTK(z)y

46

Kernel Smoothers from Joint Density Models

• Consider that we model the joint input-output distribution as a sum of Gaussians

P ((zT , t)T) =
1

N

∑
i

N((zT , t)T ; (xTi , yi)
T , σ2I)

we get

E(t|z) =

∑
i yiN(z;xi, σ

2I)∑
iN(z;xi, σ2I)

which is exactly the Nadaraya-Watson smoother smoother

47

Kernel Smoothers and Kernel Systems

• One can consider

ki(z, xi) =
N(z;xi, σ

2I)∑
kN(z;xk, σ2I)

to be kernels derived from data. These are in general non-Mercer kernels since the

resulting kernel matrix is not necessarily positive definite

• The weights could then be calculated, e.g., by regularized least squares and give

t(z) =
∑
i

viki(z, xi)

48

Instance-based Approaches for
Density Estimation (One-Class

Classification)

50

One-Sided Data

• In some applications one can only obtain examples for one class label

• Many normal user data but no fraud data

• Data from normal plant operation, but no data from plan failure

• Sometimes it makes sense to consider all data which are not in the training set as

negative examples; this makes sense if there are only a finite number of potential data.

Another option is to randomly sample data from some assumed distribution and treat

them as negative data

• Another option is to model P (x|class = 1) and then to evaluate if the new observed

data seems to come from this distribution

51

Data Matrix for Unsupervised Learning

Xj j-te Variable

X = (X1, . . . , XM)T

Vector of variables
M number of Variables
N number of data points

xi = (xi,1, . . . , xi,M)T

i-th data point
xi,j j-th component of xi
D = {x1, . . . ,xN}

(trainings-) data set
z test vector

Kernel Density Estimation (cont’d)

• Parzen estimator

P̂ (z) =
1

c×N

N∑
i=1

Kλ(z,xi)

wobei c =
∫
Kλ(z,xi)dz.

52

Kernel Smoother: Anomaly Detection

53

Concluding Remarks

• Instance-based approaches have their advantages when the input dimensions are not

too large but the functions/class boundaries are complex. Examples: spatio-temporal

data

• With large N one needs to build appropriate index structures (k-d trees) to quickly

find neighboring data points

54

