
Deep Learning

Volker Tresp
Summer 2014

1













Neural Network Winter and Revival

• While Machine Learning was flourishing, there was a Neural Network winter (late

1990’s until late 2000’s)

• Around 2010 there was a revival which made neural networks again extremely popular

• They achieved best results on many tasks/datasets

• What are the reasons?

2



Deep Learning Recipe (Hinton 2013)

• Take a large data set

• Take a Neuronal Network with many (e.g., 7) large (z.B. 1000 nodes/layer) layers

• Optional: Initialize weights with unsupervised learning

• Optional: Use GPUs

• Train with Stochastic Gradient Decent (SGD)

• Except for the output layer use rectified linear units: max(0, h)

• Regularize with drop-out

• If the input is spatial (e.g., a picture), use convolutional networks (weight sharing)

with Max-Pooling

3



Large Networks

• It has been possible to train small to medium size problems since the early 1990s.

• In deep learning people work with really large Neural Networks. Example: 10 layers,

1000 neurons/layer

4



Large Data Sets

• Only now data sets of appropriate size become available

• When decision boundaries are complex, a large data set describes the details

• Details can be captured with a complex (multi-layer) neural networks

5



Graphical Processing Units (GPUs)

• GPUs are highly suited for the kind of number crunching, matrix/vector math involved

in deep Neural Networks. GPUs have been shown to speed up training algorithms by

orders of magnitude

• Their highly parallel structure makes them more effective than general-purpose CPUs

for algorithms where processing of large blocks of data is done in parallel

• General-Purpose Computing on Graphics Processing Units (GPGPU) is the utilization

of a graphics processing unit (GPU), which typically handles computation only for

computer graphics, to perform computation in applications traditionally handled by

the central processing unit (CPU)

6



Drop-Out Regularization

• For each training instance: first remove 50% of all hidden units, randomly chosen.

Only calculate error and do adaptation on the remaining network

• For testing (prediction): use all hidden units but multiply all outgoing weights by 1/2

(gives you same expectation but no variance)

• This is like a committee machine, where each architecture is a committee member, but

committee member share weights. It supposedly works like calculating the geometric

mean: average the log of the predictions (and then take the exponential over the

average)

• Works better than stopped learning! No stopping rule required!

• Can even do drop-out in the input layer, thus different committee members see diffe-

rent inputs!

• Hinton: use a large enough neural network so that it overfits on your data and then

regularize using drop out

7



Weight Regularization

• Weight decay works

• But even better: for each neuron: normalize incoming weight vector to have the same

maximum length. Thus if ‖w‖ > α

w → α
1

‖w‖
w

8



Rectified Linear Function

• Rectified Linear Function (ReL) is max(0, h)

• Can be motivated in the following way: summing up the response of identical neurons

(same input and output weights) where only the threshold/bias is varying. This become

similar to a rectified linear neuron

• Reduces the effects of the vanishing gradient problem with sigmoid neurons! They

learn much faster!

• Seems odd since some neurons become insensitive to the error, but a sufficient number

stays active

• Leads to a sparse solution

9





Initialize Weights with Unsupervised Learning

• Auto-Encoder

• Restricted Boltzmann Machine (RBM)

10



Auto-Encoder for Denoising

• As the term auto encoder indicates, the goal is to learn the identity yi = xi (M -

dimensional vectors)

NN(x)→ x

• The constraint is that the number of hidden units is smaller than M , thus a perfect

reconstruction becomes impossible

• The output of an auto-encoder layer is the hidden representation z (see figure)

• The linear equivalent would be a Principal Component Analysis (PCA), although the

auto encoder does not require orthonormality and finds a representation in between a

component analysis and a cluster analysis

11



Auto-Encoder (Bottleneck Neural Network)

12



Restricted Boltzmann Machine

• A restricted Boltzmann machine (RBM) is a generative stochastic neural network that

can learn a probability distribution over its set of inputs, similar to an auto encoder

• As their name implies, RBMs are a variant of Boltzmann machines, with the restriction

that their neurons must form a bipartite graph: The inputs are connected only to the

hidden units, and the hidden units are only connected to the input units (weights are

symmetrical: wi,j = wj,i)

• Thus, as the auto encoder, the RBM learns a latent representation of the input vectors.

But the number of latent components can be larger than the number of inputs, so the

latent representation found is a combination of a component analysis and a cluster

analysis. Training is performed with the contrastive divergence (CD) algorithm.

• Can even learn several layers by treating the previous hidden layer as data layer: thus

a deep neural network can be initialized (after initialization, backprop is applied)

• But: if enough labelled training data is available, RBMs are not necessary, if weights

are initialized in the right way

13



RBM

14



Multiplicative Couplings for Joining Information Sources

• Given two latent vector representations g and h. Let u be the next higher hidden layer

• The coupling is assumed multiplicative

• ui =
∑
j

∑
kwi,j,k gjhk

• The weights can be presented as a three-way tensor (note, that the weight has three

indices) and the operations then be written as a product of a tensor with the two

vectors

15





Android Server Architecture for Speech Recognition (2013)

• Part of speech recognition with Hidden Markov Models (HMMs): predict a state in

the HMM (State) using a frequency representation of the acoustic signal in a time

window (Frame)

• The Neural Network is trained to learn P (State|Frame)

• 4-10 layers, 1000-3000 nodes / layer, no pre-training

• Rectified linear activations: y=max(0,x)

• Full connectivity between layers,

• Softmax output (cross-entropy cost function) (see lecture on linear classifiers)

• Features:

– 25ms window of audio, extracted every 10ms.

– log-energy of 40 Mel-scale filterbanks, stacked for 10-30 frames.

16



• Training time: 2-3 weeks using GPUs!

• Online: Android uses the server solution. Offline: Small Neural Network on the Smart

Phone

• Advantage: Speaker independent! Now used by Google, Microsoft, IBM, replacing

Gaussian mixture models (30% reduction in error)

• Even more improvement on the task of object recognition in images (from 26% error

to 16% error)) using 1.2 million training images. With convolutional neural networks.



Convolutional Neural Networks
(CNNs)

18



Recognition of Handwritten Digits



Recognition of Handwritten Digits using Neuronal Networks

• Example: 16× 16 grey-valued pictures; 320 training images, 160 test images

• Net-1: No hidden layer: corresponds to 10 Perceptrons, one for each digit

• Net-2: One hidden layer with 12 nodes; fully connected (“normal MLP”)

19





Neuronal Network with local connectivity: Net-3

• IN the following variants, the complexity was reduced

• Net-3: Two hidden layers with local connectivity: motivated by the local receptive

fields in the brain

– Each of the 8 × 8 neurons in the first hiden layer is only connected to 3 × 3

input neurons from a receptive field

– In the second hidden layer, each of the 4 × 4 neurons is connected to 5 × 5

neurons in the first hidden layer

– Net-3 has less than 50% of the weights of Net-2, but more neurons

20





Neuronal Networks with Weight-Sharing (Net-4)

• Net-4: Two hidden layers with local connectivity and weight-sharing

• All receptive fields in the left 8 × 8 block have the same weights; the same is true

for all neurons in the right 8× 8 block

• The 4× 4 block in the second hidden layer, as before

21





Neural Networks with Weight Sharing (Net-5)

• Net-5: Two hidden layers with local connectivity and two layers of weight-sharing

22





Learning Curves

• One training epoch is one pass through all data

• The following figure shoes the performance on the test set

• Net-1: One sees overfitting with increasing epochs

• Net-5: Shows best results without overfitting

23





Statistics

• Net-5 has best performance. The number of free parameters (1060) is much smaller

than the total number of parameters (5194)

24



Pooling

• For example, one could compute the mean (or max) value of a particular feature

over a region of the image. These summary statistics are much lower in dimension

(compared to using all of the extracted features) and can also improve results (less

over-fitting). We aggregation operation is called this operation pooling, or sometimes

mean pooling or max pooling (depending on the pooling operation applied).

• Max-pooling is useful in vision for two reasons: (1) it reduces the computational

complexity for upper layers and (2) it provides a form of translation invariance

• Since it provides additional robustness to position, max-pooling is thus a“smart”way

of reducing the dimensionality of intermediate representations.

25



Where from here?

• There will never be enough labelled data to learn it all

• The Google cat recognizer sees more cat images as any child and is not as good

• If one assumes that can features are not encoded genetically, then unsupervised lear-

ning. i.e., understanding the world’s statistics might do the job! First attempts: RBM,

all sorts of Clustering, auto encoders, ...

26


