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| am an Al optimist. We've got a lot of work in machine learning, which is sort of the polite

term for Al nowadays because it got so broad that it's not that well defined.
Bill Gates (Scientific American Interview, 2004)

“If you invent a breakthrough in artificial intelligence, so machines can learn,” Mr. Gates
responded, “that is worth 10 Microsofts.” (Quoted in NY Times, Monday March 3, 2004)



Amazon Europe Machine Learning Team Coming To Berlin!

Posted by Victoria Micholl on Fri, 18/01/2013 - 14:37

Amazon is building a European Machine Learning (ML) team in Berlinl Machine Learning Scientists at
Amazon are technical leaders who develop planet-scale platforms for machine learning on the cloud,
assist the benchmarking and future development of existing machine learning applications across
Amazon, and help develop novel and infinitely-scalable applications that optimize Amazon's systems
using cutting edge quantitative technigues. The ML team innovates algorithms that model patterns
within data to drive automated decisions at scale in all corners of the company, including our
eCommerce site and subsidiaries, Amazon Web Services, Seller & Buyer Services and Digital Media
including Kindle. Amazon was one of the first companies to build eCommerce customer
recommendations, fraud detection, and product search using machine learning innovations. Being part
of the Machine Learning team at Amazon is one of the most exciting machine learning job opportunities
in the world today. If you have deep technical knowhow in Machine Learning, know how to deliver, are
deeply technical, highly innovative and long for the opportunity to build solutions to challenging
problems that directly affect millions of people: there may be no better place than Amazon for vou to
impact the world!

If you are interested send your CV to strategic-recruiting@amazon.com.



® Regression:

— Linearity is often a good assumption when many inputs influence the output
— Some natural laws are (approximately) linear F' = ma

— But in general, it is rather unlikely that a true function is linear
e Classification:

— Similarly, it is often not reasonable to assume that the classification boundaries

are linear hyper planes



e We simply transform the input into a high-dimensional space where the regressi-

on/classification is again linear!
e Other view: let's define appropriate features

e Other view: let's define appropriate basis functions



XOR is not linearly separable




e Linear Model: input vector: 1,x1, x>
e let's consider x1x> in addition

e The interaction term x1x5 couples two inputs nonlinearly
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f(x) =1—-2x; — 2x0 + 4x120 = ¢1(x) — 2¢2(x) — 2¢3(x) + 4¢4(x)

with ¢1(x) = 1, 9p2(x) = x1, p3() = 22, Pa(x) = T122



f(x) =1—2x1 — 22> + 4x12>
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The simple idea: in addition to the original inputs, we add inputs that are calculated

as deterministic functions of the existing inputs and treat them as additional inputs

Example: Polynomial Basis Functions

2 2 2
{17 L1,L2,L3,L1xL2,L1L3,TLRxL3, 331, $27 CBS}

M
Basis functions {¢y,(x) }hil

In the example:
P1(x) =1 ¢a(x) =21 ¢P6(X) = z173

Independent of the choice of basis functions, the regression parameters are calculated

using the well-known equations for linear regression
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e Multidimensional Linear Model:
M-—1

2 : T
f(XZ',W) — wqQ —|— ’LUJZCZJ p— Xz' \%%
j=1

e Regularized cost function
N M-—1
costP™(w) = Y (yi — f(xi, W))ZH A D w?
=1 1=0

e Die PLS-Solution

1 10 --- T1,M-1
vAvpen:(XTX—I—AI) xTy with X =

TNO --- TN,M-1
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e Model with basis functions:

e Regularized cost function
N Mg
TRMW) = (g — Fxi w2+ A wy
1=1 1=1
e The PLS-solution

—1
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with

$1(x1) ... on,(x1)
o1(xn) - Par,(XN)



e Regression:
My

F) =) w;igi(x)

7=1

As discussed, the weights can be calculated via PLS

e (lassification:

My,
§ = sign(f(x)) =sign [ Y w;¢;(x)
=1
The Perceptron learning rules can be applied, if we replace 1,x;1,%;2,... with

¢1(x;), po(x;), ...
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e The challenge is to find problem specific basis functions which are able to effectively

model the true mapping
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e We already have learned about polynomial basis functions

e Another class are radial basis functions (RBF). Typical representatives are Gaussian

basis functions

1
¢;(x) = exp <_232. X — cj2>

J
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So far all seems to be too simple

Here is the catch: the number of “sensible” basis functions increases exponential with

the number of inputs

If | am willing to use K basis functions per dimension. then | need K™ RBFs in M

dimensions
We get a similar exponential increase for polynomial basis functions

The most important challenge: How can | get a small number of relevant basis func-

tions
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dimension

10 RBFs in one

100 RBFs in
two dim
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e First we only work with the original inputs and forma linear model
e Then we sequentially stepwise add basis functions that improve the model significantly

e Alternative: we start with many polynomial basis functions and remove the ones whose

removeal does not deteriorate performance significantly

e Polynomklassifikatoren: Siemens-Dematic OCR, J. Schiirmann):
— Pixel-based image features
— Dimensional reduction via PCA

— Additional basis functions (significant polynomials)

— Linear Classification
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e Sometimes it is sensible to first group (cluster) data in input space and to then use

the cluster centers as positions for the Gaussian basis functions

e The widths of the Gaussian basis functions might be derived from the variances of the

data in the cluster

e An alternative is to use one RBF per data point. The centers of the RBFs are simply
the data points themselves and the widths are determined via some heuristics (or via

cross validation, see later lecture)
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e Often the basis functions can be derived from sensible application features

— Given an image with 256 x 256 = 65536 pixels. The pixels form the input
vector for a linear classifier. This representation would not work well for face

recognition

— With fewer than 100 appropriate features one can achieve very good results (ex-

ample: PCA features, see later lecture)

e The definition of suitable features for documents, images, gene sequences, ... is a very

active research area

e If the feature extraction already delivers many features, it is likely that a linear model

will solve the problem and no additional basis functions need to be calculated

e This is quite remarkable: learning problems can become simpler in high-dimensions, in

apparent contradiction to the famous “curse of dimensionality” (Bellman)
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Appendix: Detour on Function
Spaces
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To describe a vector f we need basis vectors ¢; that define the orthogonal unit vectors

in a coordinate system and the coordinates of a vector w;, and f = ) . w;p;
Orthogonality of basis vectors: <q§i, gbj>¢ = 0;

The coordinates of a vector in a coordinate system are defined by the inner product

of the vector with the basis vectors w; = (¢;, f)
The inner product of two vectors is then (f, g)q, = > ; wr Wy ;

To move from one coordinate system to a reference coordinate system we need the

coordinates of the basis vectors in the reference coordinate system
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Functions are just like vectors in a vector space f = ) . w;®;

The reference system is defined by delta functions 6(x — x’). The coordinates are

simply the functional values: (32, f)5s = wx = f(x)

In this coordinate system, (f, g)s = | f(z)g(x)dzr = Zz’,j Wg Wy j <¢z’: ¢j>5

The representation of another basis vector ¢; in the reference coordinate system is

(02, Pi)5 = ¢i(x). Thus f(z) = ), wi¢;()
Similarly, we have w; = (¢, f)p, and (f,9)p = D _; Wy iwy;

Note, that in general: (f,g)s = (f, 9o
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e Also note that

fl2) =) wipi(x)

can be thought of as an inner product between the function f(z') = > w;¢;(z")
and the function k(x,z") = Y ¢;(x)¢;(z"), thus

flx) = (f k) o

o Here, k(x, ') is a kernel function and is called the reproducing kernel

e With all of this, we can write our cost function as
N

costPe" = Z (yi — (J; kxi>¢)2 + X {f, No

1=1
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e A common set of basis functions (in 1-D or 2-D) are Fourier basis functions Ge,w; =
cos(w;x), ¢ps.w, = Sin(w;z)

e They are orthogonal in the basis function space, but also in the reference space

<§bw¢7 ¢wj>¢ — <§bw¢> waj>5 — 57;,]'

e Thus we can write f(x) = > . w,; COS(w;x) + wg ; SiN(w;x) and the w, ; and
the wg ; form the spectrum
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The state is described by a (complex valued) wave function )

In the reference system, the basis function for location are §(x — ') and the weight

is called wy(x) = ¥ (x)

The basis function for momentum p is ¢p and its representation in location space is
(A = h/(2m) where h is the Planck constant, i = /—1)

1
V2mh

Given, 1), the probability that the particle is measured in location x is

wa|® = [(x)]?

wp(x) —

exp(ipz/h)

Given, 1), the probability that the particle is measured with momentum p is
2
|wp|
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What if | do another measurement, would | get the same probabilities? The answer is
no! After | do a measurement on the particle, 1) become identical to the basis function

associated with the measurement (collapse of the wave function)

Thus if | measure the particle at location x, the wave function changes to
P(x) = oz

Thus if | measure the particle with momentum p, the wave function changes to 1y
with
1

V2mh

This collapse of the wave function is still a big riddle and has let to different interpre-

Yp(x) = exp(ipx/h)

tations of the quantum theory (Copenhagen, Many-world, ...)
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Note that w; and wy are Fourier transforms of one another (The complex exponential

is a convenient way of writing cosine and sine)

This means that if | measure location, then momentum is flat (all p have same proba-

bility) and if | measure momentum, then location is flat (all x have same probability)

This is the uncertainty principal: | cannot measure location and momentum of a particle

at the same timel

If | make location  more blurred, | can get a more focussed p, but

h
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