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I am an AI optimist. We’ve got a lot of work in machine learning, which is sort of the polite

term for AI nowadays because it got so broad that it’s not that well defined.

Bill Gates (Scientific American Interview, 2004)

“If you invent a breakthrough in artificial intelligence, so machines can learn,” Mr. Gates

responded, “that is worth 10 Microsofts.” (Quoted in NY Times, Monday March 3, 2004)
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Nonlinear Mappings and Nonlinear Classifiers

• Regression:

– Linearity is often a good assumption when many inputs influence the output

– Some natural laws are (approximately) linear F = ma

– But in general, it is rather unlikely that a true function is linear

• Classification:

– Similarly, it is often not reasonable to assume that the classification boundaries

are linear hyper planes
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Trick

• We simply transform the input into a high-dimensional space where the regressi-

on/classification is again linear!

• Other view: let’s define appropriate features

• Other view: let’s define appropriate basis functions
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XOR is not linearly separable
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Trick: Let’s add Basis Functions

• Linear Model: input vector: 1, x1, x2

• Let’s consider x1x2 in addition

• The interaction term x1x2 couples two inputs nonlinearly
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With a Third Input z3 = x1x2 the XOR Becomes Linearly
Separable

f(x) = 1− 2x1 − 2x2 + 4x1x2 = φ1(x)− 2φ2(x)− 2φ3(x) + 4φ4(x)

with φ1(x) = 1, φ2(x) = x1, φ3(x) = x2, φ4(x) = x1x2
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f(x) = 1− 2x1 − 2x2 + 4x1x2
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Separating Planes
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A Nonlinear Function
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f(x) = x− 0.3x3

Basis functions φ1(x) = 1, φ2(x) = x, φ3(x) = x2, φ4(x) = x3 und w =

(0,1,0,−0.3)
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Basic Idea

• The simple idea: in addition to the original inputs, we add inputs that are calculated

as deterministic functions of the existing inputs and treat them as additional inputs

• Example: Polynomial Basis Functions

{1, x1, x2, x3, x1x2, x1x3, x2x3, x
2
1, x

2
2, x

2
3}

• Basis functions {φh(x)}Mφ

h=1

• In the example:

φ1(x) = 1 φ2(x) = x1 φ6(x) = x1x3 ...

• Independent of the choice of basis functions, the regression parameters are calculated

using the well-known equations for linear regression
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Review: Penalized LS for Linear Regression

• Multidimensional Linear Model:

f(xi,w) = w0 +
M−1∑
j=1

wjxi,j = xTi w

• Regularized cost function

costpen(w) =
N∑
i=1

(yi − f(xi,w))2 + λ

M−1∑
i=0

w2
i

• Die PLS-Solution

ŵpen =
(
XTX + λI

)−1
XTy with X =

 x1,0 . . . x1,M−1
. . . . . . . . .
xN,0 . . . xN,M−1
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Regression with Basis Functions

• Model with basis functions:

f(xi,w) =

Mφ∑
j=1

wjφj(xi)

• Regularized cost function

J
pen
N (w) =

N∑
i=1

(yi − f(xi,w))2 + λ

MΦ∑
i=1

w2
i

• The PLS-solution

ŵpen =
(
ΦTΦ + λI

)−1
ΦTy
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with

Φ =

 φ1(x1) . . . φMφ
(x1)

. . . . . . . . .
φ1(xN) . . . φMφ

(xN)





Nonlinear Models for Regression and Classification

• Regression:

f(x) =

Mφ∑
j=1

wjφi(x)

As discussed, the weights can be calculated via PLS

• Classification:

ŷ = sign(f(x)) = sign

Mφ∑
j=1

wjφj(x)


The Perceptron learning rules can be applied, if we replace 1, xi,1, xi,2, ... with

φ1(xi), φ2(xi), ...
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Which Basis Functions?

• The challenge is to find problem specific basis functions which are able to effectively

model the true mapping
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Radial Basis Function (RBF)

• We already have learned about polynomial basis functions

• Another class are radial basis functions (RBF). Typical representatives are Gaussian

basis functions

φj(x) = exp

(
−

1

2s2
j

|x− cj|2
)
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Three RBFs (blue) form f(x) (pink)
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Optimal Basis Functions

• So far all seems to be too simple

• Here is the catch: the number of “sensible” basis functions increases exponential with

the number of inputs

• If I am willing to use K basis functions per dimension. then I need KM RBFs in M

dimensions

• We get a similar exponential increase for polynomial basis functions

• The most important challenge: How can I get a small number of relevant basis func-

tions
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Model Selection: Polynomial Basis functionen

• First we only work with the original inputs and forma linear model

• Then we sequentially stepwise add basis functions that improve the model significantly

• Alternative: we start with many polynomial basis functions and remove the ones whose

removeal does not deteriorate performance significantly

• Polynomklassifikatoren: Siemens-Dematic OCR, J. Schürmann):

– Pixel-based image features

– Dimensional reduction via PCA

– Additional basis functions (significant polynomials)

– Linear Classification
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Model Selection: RBFs

• Sometimes it is sensible to first group (cluster) data in input space and to then use

the cluster centers as positions for the Gaussian basis functions

• The widths of the Gaussian basis functions might be derived from the variances of the

data in the cluster

• An alternative is to use one RBF per data point. The centers of the RBFs are simply

the data points themselves and the widths are determined via some heuristics (or via

cross validation, see later lecture)
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RBFs via Clustering
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One Basis Function per Data Point
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Application-Specific Features

• Often the basis functions can be derived from sensible application features

– Given an image with 256 × 256 = 65536 pixels. The pixels form the input

vector for a linear classifier. This representation would not work well for face

recognition

– With fewer than 100 appropriate features one can achieve very good results (ex-

ample: PCA features, see later lecture)

• The definition of suitable features for documents, images, gene sequences, ... is a very

active research area

• If the feature extraction already delivers many features, it is likely that a linear model

will solve the problem and no additional basis functions need to be calculated

• This is quite remarkable: learning problems can become simpler in high-dimensions, in

apparent contradiction to the famous “curse of dimensionality” (Bellman)
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Appendix: Detour on Function
Spaces
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Vectors

• To describe a vector f we need basis vectors φi that define the orthogonal unit vectors

in a coordinate system and the coordinates of a vector wi, and f =
∑
iwiφi

• Orthogonality of basis vectors:
〈
φi, φj

〉
Φ = δi,j

• The coordinates of a vector in a coordinate system are defined by the inner product

of the vector with the basis vectors wi = 〈φi, f〉Φ

• The inner product of two vectors is then 〈f, g〉Φ =
∑
iwf,iwg,i

• To move from one coordinate system to a reference coordinate system we need the

coordinates of the basis vectors in the reference coordinate system
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Functions are Vectors

• Functions are just like vectors in a vector space f =
∑
iwiφi

• The reference system is defined by delta functions δ(x − x′). The coordinates are

simply the functional values: 〈δx, f〉δ = wx = f(x)

• In this coordinate system, 〈f, g〉δ =
∫
f(x)g(x)dx =

∑
i,j wf,iwg,j

〈
φi, φj

〉
δ

• The representation of another basis vector φi in the reference coordinate system is

〈δx, φi〉δ = φi(x). Thus f(x) =
∑
iwiφi(x)

• Similarly, we have wi = 〈φi, f〉Φ, and 〈f, g〉Φ =
∑
iwf,iwg,i

• Note, that in general: 〈f, g〉δ 6= 〈f, g〉Φ
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Rewriting the Cost Function

• Also note that

f(x) =
∑
i

wiφi(x)

can be thought of as an inner product between the function f(x′) =
∑
wiφi(x

′)
and the function k(x, x′) =

∑
φi(x)φi(x

′), thus

f(x) = 〈f, kx〉Φ

• Here, k(x, x′) is a kernel function and is called the reproducing kernel

• With all of this, we can write our cost function as

costpen =
N∑
i=1

(
yi − 〈f, kxi〉Φ

)2
+ λ 〈f, f〉Φ
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Fourier Basis Functions

• A common set of basis functions (in 1-D or 2-D) are Fourier basis functions φc,ωi =

cos(ωix), φs,ωi = sin(ωix)

• They are orthogonal in the basis function space, but also in the reference space〈
φωi, φωj

〉
Φ

=
〈
φωi, φωj

〉
δ

= δi,j

• Thus we can write f(x) =
∑
iwc,i cos(ωix) +ws,i sin(ωix) and the wc,i and

the ws,i form the spectrum
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An Interesting Connection to Quantum Mechanics

• The state is described by a (complex valued) wave function ψ

• In the reference system, the basis function for location are δ(x− x′) and the weight

is called wx(x) = ψ(x)

• The basis function for momentum p is φp and its representation in location space is

( h̄ = h/(2π) where h is the Planck constant, i =
√
−1)

ψp(x) =
1√
2πh̄

exp(ipx/h̄)

• Given, ψ, the probability that the particle is measured in location x is

|wx|2 = |ψ(x)|2

• Given, ψ, the probability that the particle is measured with momentum p is

|wp|2
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Collapse of the Wave function

• What if I do another measurement, would I get the same probabilities? The answer is

no! After I do a measurement on the particle, ψ become identical to the basis function

associated with the measurement (collapse of the wave function)

• Thus if I measure the particle at location x, the wave function changes to

ψ(x) = δx

• Thus if I measure the particle with momentum p, the wave function changes to ψp

with

ψp(x) =
1√
2πh̄

exp(ipx/h̄)

• This collapse of the wave function is still a big riddle and has let to different interpre-

tations of the quantum theory (Copenhagen, Many-world, ...)
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Uncertainty Principle

• Note that wx and wp are Fourier transforms of one another (The complex exponential

is a convenient way of writing cosine and sine)

• This means that if I measure location, then momentum is flat (all p have same proba-

bility) and if I measure momentum, then location is flat (all x have same probability)

• This is the uncertainty principal: I cannot measure location and momentum of a particle

at the same time!

• If I make location x more blurred, I can get a more focussed p, but

σxσp ≥
h̄

2
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