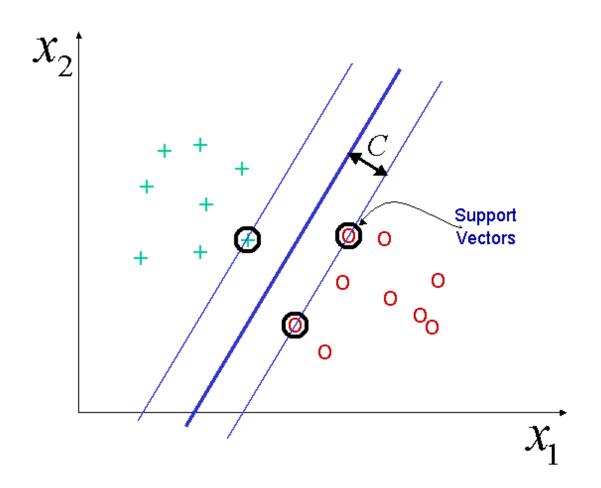
Optimal-trennende Hyperebenen und die Support Vector Machine

Volker Tresp

(Vapnik's) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes)

- ullet Wir betrachten wieder einen linearen Klassifikator mit $y_i \in \{-1,1\}$
- Mit Ausnahme der Perzeptrons trennen die soweit vorgestellten Algorithmen nicht notwendigerweise zwei Klassen, auch wenn diese separabel sind
- Dies ist auch unter Umständen richtig, da Klassen sich überlappen können
- Dennoch ist es wünschenswert, auch Algorithmen im Repertoire zu haben, die trennbare Klassen auch trennen
- Vapnik stellte einen Algorithmus vor, der trennbare Klassen trennt; falls Klassen sich nicht trennen lassen, wird die Anzahl der Missklassifikationen klein gehalten
- ullet Ziel ist es, die Klassen zu trennen und dabei den Margin ${\mathcal C}$ zu maximieren (falls Klassen separabel sind)

Optimal-trennende Hyperebenen (2D)



Kostenfunktion mit Nebenbedingungen

Man verlangt Erfüllung der Nebenbedingungen

$$y_i(\mathbf{x}_i^T \mathbf{w}) = y_i \sum_{j=0}^{M-1} w_j x_{i,j} \ge 1 \quad i = 1, \dots, N$$

erfüllt sind

 Von allen Gewichtsvektoren, die zu einer Lösung führen, die die Nebenbedingungen erfüllen wählt man denjenigen, für den gilt

$$\mathbf{w}_{opt} = \arg\min_{\mathbf{w}} \tilde{\mathbf{w}}^T \tilde{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{j=1}^{M-1} w_j^2$$

wobei $\tilde{\mathbf{w}} = (w_1, \dots, w_{M-1})$. (D.h. bei $\tilde{\mathbf{w}}$ fehlt der Offset w_0); $y_i \in \{-1, 1\}$. Beachte: man minimiert dennoch in Bezug auf (ganz) \mathbf{w}

Margin und Support-Vektoren

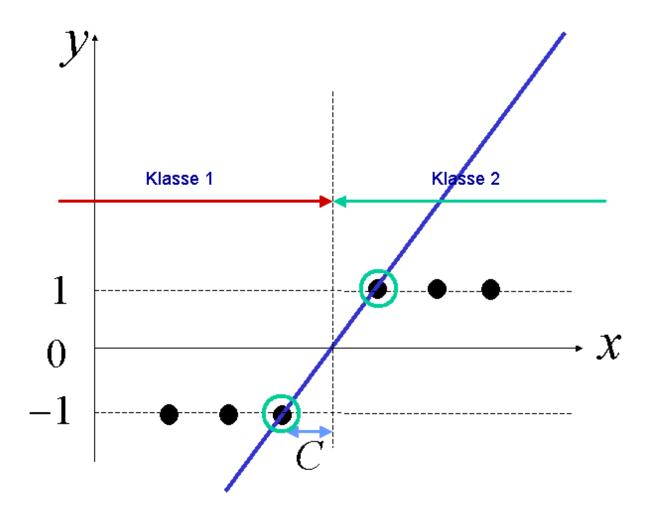
• Der Margin wird dann

$$\mathcal{C} = \frac{1}{||\tilde{\mathbf{w}}_{opt}||}$$

• Für die Support-Vektoren gilt,

$$y_i(\mathbf{x}_i^T \mathbf{w}_{opt}) = 1$$

Optimal-rennende Hyperebenen (1D)



Optimierung: Optimal Separating Hyperplane

 Zur Optimierung mit Randbedingungen (Ungleichheiten) definiert man die Lagrange Funktion

$$L_P = \frac{1}{2}\tilde{\mathbf{w}}^T\tilde{\mathbf{w}} - \sum_{i=1}^N \alpha_i[y_i(\mathbf{x}_i^T\mathbf{w}) - 1]$$

- Die Lagrange Funktion wird in Bezug auf (ganz) w minimiert und in Bezug auf die Lagrange Multiplikatoren $\alpha_i \geq 0$ maximiert (Sattelpunktlösung).
- Intuition:
 - Wenn eine Nebenbedingung nicht erfüllt ist, so ist $[y_i(\mathbf{x}_i^T\mathbf{w}) 1] < 0$ und α_i wird anwachsen (beachte negatives Vorzeichen des 2ten Terms)
 - Die Adaption der Gewichte \mathbf{w} wird gleichzeitig versuchen, den Term in den eckigen
 Klammern zu maximieren bis dieser gleich Null wird
 - Wenn eine Nebenbedingung erfüllt ist, so ist $[y_i(\mathbf{x}_i^T\mathbf{w}) 1] \geq 0$ und α_i wird Null werden und die Nebenbedingung wird inaktiv

Karush-Kuhn-Tucker (KKT)-Bedingungen

- Optima können oft über das Nullsetzen der Ableitungen gefunden worden. Wegen der Ungleichheitsnebenbedingung werden die Bedingungen etwas komplizierter (siehe KKT (1))
- Im Optimum gelten die (Karush-Kuhn-Tucker (KKT)-Bedingungen. KKT (1) ist

$$\alpha_i[y_i(\mathbf{x}_i^T\mathbf{w} - 1)] = 0 \quad \forall i$$

Entweder α_i ist Null oder der Term in den eckigen Klammern ist Null (wir lassen jetzt den Subskript opt) weg) (KKT (1))

• Durch Null-Setzen der Ableitungen von L_P nach $\tilde{\mathbf{w}}$ erhält man KKT (2)

$$\tilde{\mathbf{w}} = \sum_{i=1}^{N} \alpha_i y_i \tilde{\mathbf{x}}_i$$

und nach w_0 KKT (3)

$$0 = \sum_{i=1}^{N} \alpha_i y_i$$

• Beachte, dass KKT (2) bedeutet, dass man die optimalen Parameter als lineare gewichtete Summe der Eingangsvektoren schreiben kann (Kern-Trick)!

KKT (4) ist

$$\alpha_i \geq 0 \quad \forall i$$

(1), (2), (3),(4) und bilden die Karush-Kuhn-Tucker Bedingungen.

Wolfe-Dual

Durch einsetzen von KTT (2) erhält man (Wolfe-Dual) das duale Optimierungsproblem (beachte: $\mathbf{w} = (w_0, \tilde{\mathbf{w}}^T)^T$, $\mathbf{x}_i = (\mathbf{1}, \tilde{\mathbf{x}}_i^T)^T$,

$$L_D = \frac{1}{2} \sum_{i=1}^{N} \alpha_i y_i \tilde{\mathbf{x}}_i^T \sum_{i=1}^{N} \alpha_i y_i \tilde{\mathbf{x}}_i - \sum_{i=1}^{N} \alpha_i [y_i(\mathbf{x}_i^T \mathbf{w}) - 1]$$

$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k \tilde{\mathbf{x}}_i^T \tilde{\mathbf{x}}_k - \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k \tilde{\mathbf{x}}_i^T \tilde{\mathbf{x}}_k$$

$$-w_0 \sum_{i=1}^{N} \alpha_i y_i + \sum_{i=1}^{N} \alpha_i$$

Die ersten beiden Terme sind gleich bis auf die Konstante. Der dritte Term ist im Optimum gleich Null (KKT (3)).

Optimierung: Zusammenfassung

ullet Man löst schließlich: Maximiere in Bezug auf die $lpha_i$

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k \tilde{\mathbf{x}}_i^T \tilde{\mathbf{x}}_k$$

mit den Nebenbedingungen (KKT (4))

$$\alpha_i \geq 0$$

und (KKT (3))

$$0 = \sum_{i=1}^{N} \alpha_i y_i$$

Primale Lösung

- Nachdem die optimalen α_i gefunden sind, setzt man diese in KKT (2) und erhält die optimalen Gewichte.
- Für einen neuen Eingang z erhält man die Vorhersage

$$\hat{t} = \operatorname{sign}(\tilde{\mathbf{z}}^T \tilde{\mathbf{w}} + w_0)$$

Duale Lösung

 Alternativ lässt sich die Lösung schreiben (mit KKT (2)) als gewichtete Summe über die Support-Vektoren,

$$\hat{t} = \operatorname{sign}\left(\sum_{i \in SV} y_i \alpha_i \tilde{\mathbf{x}}_i^T \tilde{\mathbf{z}} + w_0\right) = \operatorname{sign}\left(\sum_{i \in SV} y_i \alpha_i k(\tilde{\mathbf{z}}, \tilde{\mathbf{x}}_i) + w_0\right)$$

mit Kern

$$k(\tilde{\mathbf{z}}, \tilde{\mathbf{x}}_i) = \tilde{\mathbf{z}}^T \tilde{\mathbf{x}}_i$$

- Diese Schreibweise begründet den Begriff Support Vector Machine
- Beachte, dass natürlich ebenso mit Basisfunktionen gearbeitet werden kann, wo dann der Kern wird

$$k(\mathbf{z}, \mathbf{x}_i) = \phi(\mathbf{z})^T \phi(\mathbf{x}_i)$$

Optimal-trennende Hyperebenen: Nicht-trennbare Klassen

- ullet Bei sich überlappenden Klassen führt man slack Variablen ξ_i ein:
- Die optimale Trennebene kann gefunden werden als

$$\mathbf{w}_{opt} = \arg\min_{\mathbf{w}} \tilde{\mathbf{w}}^T \tilde{\mathbf{w}}$$

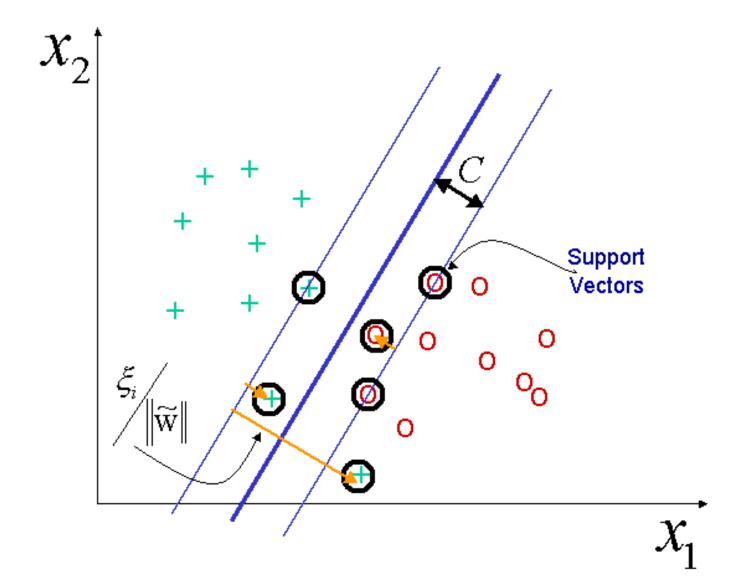
unter den Nebenbedingungen, dass

$$y_i(\mathbf{x}_i^T \mathbf{w}) \ge 1 - \xi_i \quad i = 1, \dots, N$$

$$\xi_i \geq 0$$

$$\sum_{i=1}^N \xi_i \leq 1/\gamma$$

ullet $\gamma>0$ bestimmt den Kompromiss zwischen Trennbarbeit von Klassen und Überlappungsgrad. Für $\gamma\to\infty$ erhält man den separierbaren Fall



Optimal-trennende Hyperebenen: Kommentare

- Die optimale Trennebene wird gefunden über eine trickreiche Optimierung des resultierenden quadratischen Optimierungsproblems mit linearen Nebenbedingungen
- ullet γ ist ein zu optimierender Hyperparameter (Kreuzvalidierung)

Optimierung über Penalty/Barrier Method

- Ziel: Transformation eines Optimierungsproblems mit Nebenbedingungen in ein Problem ohne Nebenbedingungen
- In der Penalty-Methode wird ein Strafterm (penalty) zur Zielfunktion addiert für Punkte, die die Nebenbedingungen verletzen
- Die Barriere-Methoden (interior point method) sind ähnlich, nur dass der Strafterm unendlich ist für Punkte, die die Nebenbedingungen verletzen und endlich für Punkte, die "fast" die Nebenbedingungen verletzen
- Für unser Optimierungsproblem wählt man (Penalty Methode):

$$\arg\min_{\mathbf{w}} 2\gamma \sum |1 - y_i(\mathbf{x}_i^T\mathbf{w})|_+ + \tilde{\mathbf{w}}^T \tilde{\mathbf{w}}$$

wobei $|arg|_+=\max(arg,0)$. Man beginnt in der Optimierung mit kleinem γ und lässt es langsam anwachsen. Für $\gamma\to\infty$ verlangt man, dass alle Nebenbedingungen in der Lösung erfüllt sind. Lässt man γ endlich, dann erlaubt man "Slack"

Vergleich: Musterbasiertes Lernen

Perzeptron

$$w_j \leftarrow w_j + \eta \left(y(t) - \operatorname{sign}\left(x(t)^T w \right) \right) x_j(t)$$

 $y(t) \in \{-1, 1\}$. Beachte, dass die Klammer Null ist, wenn richtig klassifiziert. Ansonsten ist der Term entweder gleich 2 oder gleich -2. Auch

$$w_j \longleftarrow w_j + \eta y(t) x_j(t)$$

für falsch klassifizierte Muster

Logistic regression: Die "natürliche" kontinuierliche Verallgemeinerung

$$w_j \longleftarrow w_j + \eta \left(y(t) - \operatorname{sig}\left(x(t)^T w \right) \right) x_j(t)$$

Neuronale Netze

$$w_j \leftarrow w_j + \eta \left(y(t) - \operatorname{sig}\left(x(t)^T w \right) \right) \operatorname{sig}'\left(x(t)^T w \right) x_j(t)$$

Wird ein Muster mit hoher Sicherheit falsch klassifiziert, ist der Gradient nahezu Null!

Regression (ADALINE)

$$w_j \longleftarrow w_j + \eta \left(y(t) - \left(x(t)^T w \right) \right) x_j(t)$$

Vapniks optimal-trennende Hyperebenen

$$w_j \leftarrow w_j + \eta y(t) x_j(t)$$
 wenn $y(t) \left(x(t)^T w \right) - 1 > 0$

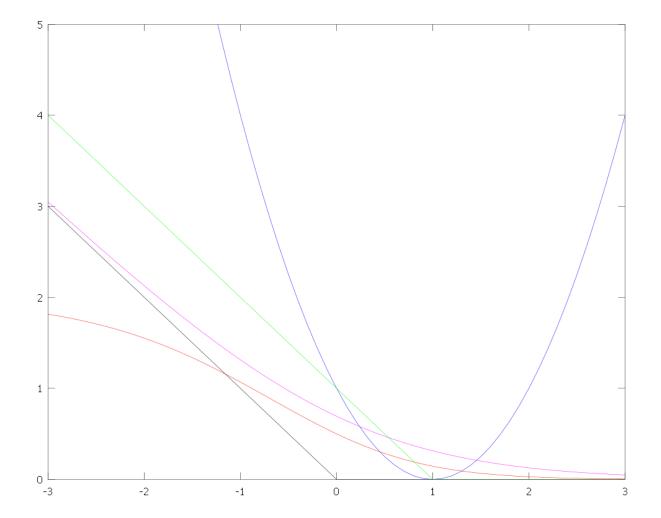
Beachte die große Ähnlichkeit zur Perzeptron Lernregel! Beachte, dass hier die Lösung durch die Regularisierung eindeutig ist!

• Bei allen Iterationen kann man einen regularisierenden weight-decay Term mit hinzunehmen, das heißt den Adaptionsschritt

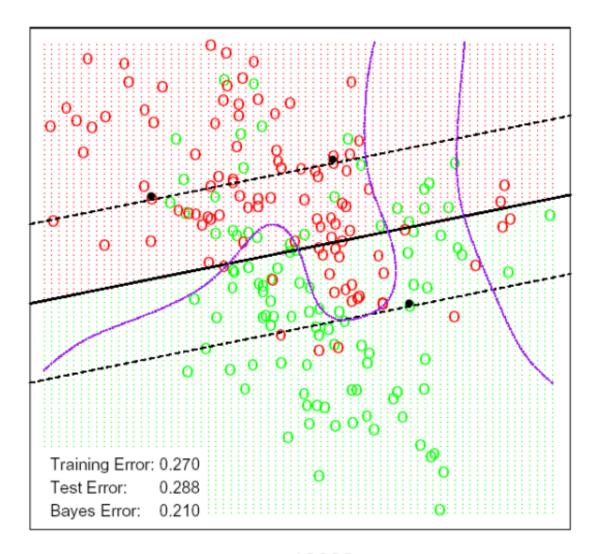
$$w_j \longleftarrow w_j - \eta w_j$$

Vergleich der Kostenfunktionen

- Betrachten wir der Einfachheit einen Datenpunkt der Klasse 1
- Der Beitrag zur Kostenfunktion ist:
 - Quadratische Kostenfunktion (blau) : $(1-(\mathbf{x}_i^T\mathbf{w}))^2$
 - Perzeptron (schwarz) $|-(\mathbf{x}_i^T\mathbf{w})|_+$
 - Vapniks Hyperebenen (grün): $|1-(\mathbf{x}_i^T\mathbf{w})|_+$
 - Logistische Regression (magenta): $\log(1 + \exp(-\mathbf{x}_i^T\mathbf{w}))$
 - Neuronales Netz (rot): $(1 \operatorname{Sig}(\mathbf{x}_i^T\mathbf{w}))^2$

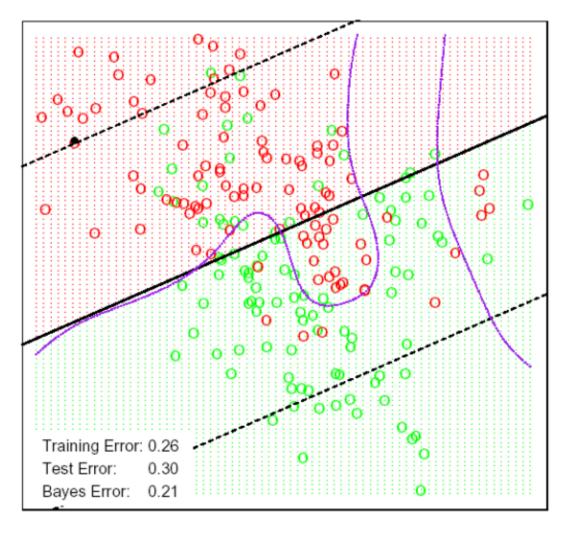


- Daten von zwei Klassen (rote, grüne Kringel) werden generiert
- Die Klassen überlappen
- Die optimale Klassifikationsgrenze ist gestrichelt gezeigt
- ullet Gezeigt ist die Trennebene der linearen SVM mit großem γ



 $\gamma = 10000$

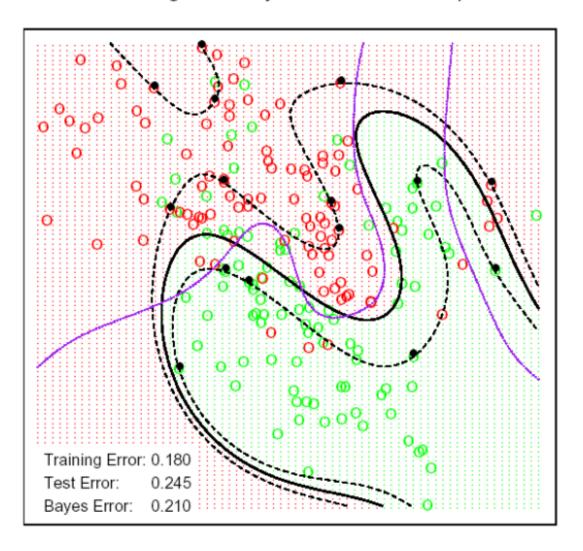
 $\bullet\,$ Gezeigt ist die Trennebene der linearen SVM mit kleinem γ



 $\gamma = 0.01$

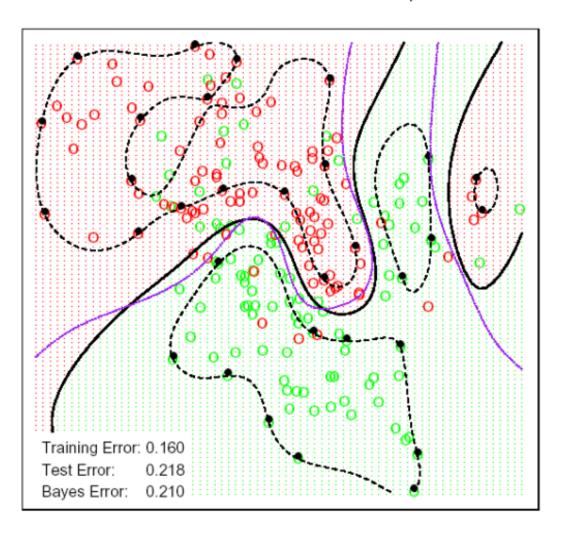
• Mit polynomialen Basisfunktionen

SVM - Degree-4 Polynomial in Feature Space



• Mit radialen Basisfunktionen den besten Testfehler

SVM - Radial Kernel in Feature Space



Bemerkungen

- Der "Kern-Trick" erlaubt es, in unendlich hohen Dimensionen zu arbeiten
- Dennoch können durch die Regularisierung sehr gute Ergebnisse erzielt werden; z.B. hängt die Generalisierung einer SVM vom Margin ab und nicht von der Dimensionalität des Problems

APPENDIX: Regression über Lagrange Parameter (ohne Rauschen)

• Ziel: Minimierung von $\sum_i w_i^2$ unter der Nebenbedingung, dass $y_i = \mathbf{x}_i^T \mathbf{w}$. Mit weniger Daten als Parametern gibt es eine Lösung (die Optimierungsaufgabe gehört zum quadratic programming). Die Langrange Funktion ist

$$L = \sum_{i=0}^{M-1} w_i^2 + \sum_{i=1}^{N} \mu_i (y_i - \mathbf{x}_i^T \mathbf{w})$$
$$= \mathbf{w}^T \mathbf{w} + \mu^T (\mathbf{y} - X \mathbf{w})$$

- ullet μ ist ein Vektor von N Langrange Parametern. L wird minimiert in Bezug auf die Parameter und maximiert in Bezug auf die Lagrange Parameter. Die Lösung kann explizit berechnet werden durch Nullsetzen der Ableitung nach den Gewichten \mathbf{w} : $\mathbf{w}_{opt} = 1/2X^T\mu$
- Dies setzen wir in die Kostenfunktion ein. Nullsetzen der Ableitung nach den Lagrange Parametern μ ergibt: $\mu_{opt}=2(XX^T)^{-1}\mathbf{y}$

• Somit

$$\mathbf{w}_{opt} = X^T (XX^T)^{-1} \mathbf{y}$$

APPENDIX: Regression über Lagrange Parameter mit Slack Variablen

- Minimiere $\sum_i w_i^2$ mit Gleichheitsebenbedingung $y_i = \mathbf{x}_i^T \mathbf{w} + \epsilon_i$ wobei ϵ_i die Slack Variablen sind und Ungleichheitsnebenbedingung $\sum_i \epsilon_i^2 \leq A$
- Lagrange Funktion mit Lagrange Parametern und Slack Variablen

$$L = \sum_{i=0}^{M} w_i^2 + \beta \left(\sum_{i=1}^{N} \epsilon_i^2 - A \right) + \sum_{i=1}^{N} \mu_i (y_i - \mathbf{x}_i^T \mathbf{w} + \epsilon_i)$$

$$= w^T w + \beta (\epsilon^T \epsilon - A) + \mu^T (\mathbf{y} - X\mathbf{w} + \epsilon)$$

- μ ist ein Vektor als N Langrange Parametern und $\beta \geq 0$ ist ein zusätzlicher Lagrange Parameter und es gilt A > 0.
- ullet Nullsetzen der Ableitung nach den Gewichten w ergibt: $w_{opt}=1/2X^T\mu$
- Nullsetzen der Ableitung nach den Slack-Variablen ϵ ergibt: $\epsilon_{opt} = -\frac{1}{2\beta}\mu$

- Beides setzen wir in die Kostenfunktion ein. Nullsetzen der Ableitung nach den Lagrange Parametern μ ergibt: $\mu_{opt} = 2(XX^T + 1/\beta I)^{-1}y$.
- Somit (unter Verwendung eines Matrix Inversions Lemmas)

$$w_{opt} = X^T (XX^T + 1/\beta I)^{-1} y = (X^T X + 1/\beta I)^{-1} X^T y$$

Somit kann man den Regularisierungsparameter λ in Bezug bringen zu einem Lagrange Parameter!

• Schließlich gilt die KKT Bedingung $\beta\left(\sum_{i=1}^N \epsilon_i^2 - A\right) = 0$. Wenn A sehr groß gewählt wird, kann die Lösung tatsächlich sein $\beta_{opt} = 0$ und damit $\mathbf{w}_{opt} = 0$. Sonst ist $\left(\sum_{i=1}^N \epsilon_i^2 - A\right) = 0$ und ich kann β_{opt} durch A ausdrücken.