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Chapter Overview

1. Solutions for Large Object Cardinalities

2. Parallel and Distributed Data Mining

3. Privacy Preserving Data Mining

4. Sampling and Summarization

2Knowledge Discovery in Databases II: Large Object Cardinalities



DATABASE
SYSTEMS
GROUP

Why it is important?

Why is privacy preservation important ?

• A lot of data is only provided by the data owners if the privacy is saved

– Example:  Analyze clickstreams from web browsers

• Data mining should not be used as a excuse to collect data.

• Protection from misuse of the provided information by third parties. 

– Example: Publication of results about the surfing behavior is used to personalize 
spam mails and fishing attempts.

Conclusion:

• Data Mining does not necessarily violate privacy constraints.

• Results are general patterns which should not contain object specific 
information.

• The same patterns can be derived from different samples drawn from the 
data distribution.
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nothing about an individual should be learnable from
the database that cannot be learned without access to

the database
T. Dalenius, 1977
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Privacy Preservation

• Idea: Change data in a way that patterns are preserved but object-specific 
information is removed

• Solutions depend on the way the data is generalized in the given data mining 
method:

overfitting patterns have the tendency to contain too specific information

 generality of the patterns is complementary to privacy preservation

Privacy protection is achieved through different ways:

• Changing data objects (data perturbation)

• Use a general model for the data (distribution functions)

• Generate new data following the same distribution 
(sampling from distribution functions)
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Basic Techniques: Discretization

Discretization:

• Disjunctive distribution of the value set into several discrete subsets

• Actual values are replaced by an interval of values

Example:

• original information: Person A earns 42.213 € p.a.

• discrete information: Person A earns between 35.000 € and 55.000 € p.a.

Problem: 

• Information is weaker but still detectable

• If the number of objects in any interval is too small, possible privacy breach

 Uniform distribution of the number of objects per interval
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Basic Techniques: Data Pertubation [AgrSri00]

Data Perturbation:
• Add a noise component to the original data

• Instead of the original value xi, transmit the sum of the original value xi and a 
number r drawn from an error distribution f, i.e, : xi +r

• Distributions f for r : 

– Uniform distribution [-,..,] IR+

– Normal distribution with 0 mean and standard deviation 

• The intent is to allow legitimate users the ability to access important 
aggregate statistics (such as mean, correlations, etc.) from the entire 
database while ‘protecting’ the individual identify of a record.
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Privacy-level

• Indicates how closely the sensitive information, that has been hidden, can 
still be estimated.

• Definition privacy level: if it can be estimated with c% confidence that a 

value x  lies in the interval [x1, x2], then the width of the interval (x2- x1) 
defines the amount of privacy at c% confidence level.

• input: the changed feature values yi, constructed from the original feature 
values and the noise component, xi + r. the error distribution

• output: Breadth of the interval [y-v, y+v] in which the original value x is 
contained with c % probability. (Privacy Level=2v)
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Privacy Level

Example:

• error r is uniformly distributed in  [-,..,].

• For c=100 % confidence (value must been within 
the interval [y-a, y+a]), the interval is 2a.

– Privacy level = 2a

• With c=50 % confidence, 

– Privacy level = 

• General formula: 

– v = c% * 2

– Privacy increases with a 

y

y+vy-v

x

y

y+vy-v

xy- y+

y- y+
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Reconstruction  of the original distribution 

Given the noise distribution functions fY and the pertubed data set x1+y1, x2+y2, 
xn+yn, one could reconstruct the original dataset’s distribution fX (but not actual 
data values)

Input: The set of perturbated data  W = {w1,..,wn}, where wi=xi+yi

and the probability density functions of noise fY.

Output: Approximation of the original distribution fX

Solution: Iterative approximation algorithms (initialize fx with uniform)
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Basic techniques: Data swapping

• Data swapping = the values across different records are swapped
original feature vectors cannot be reconstructed

Well-suited for algorithms assuming independent features like Naïve 
Bayes

Patterns depending on feature correlation are destroyed
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Basic techniques: Data approximation

Idea:

• Data owners provide local patterns/distributions instead of 
instances

• Patterns/Distributions must be general enough to preserve the 
privacy

Possible solutions: 

• distribution function 

• explicit cluster models (centroids covariance matrix)

• locally frequent patterns
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Summary Privacy Preservation

• Distributed mining is based on sharing data for a special purpose

• Privacy breach when the shared data is used for other purposes

• Generally patterns, functions, models are not a problem for 
privacy if generalization is performed well-enough

• Data mining algorithms can be made aware of this problems and 
can be tuned to allow a certain level of privacy

Caution:

• Data Mining can be used to learn private information
(e.g. link prediction, predict unknown values from available 
information)
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Chapter Overview

1. Solutions for Large Object Cardinalities

2. Parallel and Distributed Data Mining

3. Privacy Preserving Data Mining

4. Sampling and Summarization
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Reducing the cardinality of the input set

• If data mining algorithms have a super linear complexity, parallel 
processing and hardware can help, but do not solve the problem

• In such cases, runtimes can only be reduced by limiting the 
number of input objects

• Solution: 
– reduce the input data to a smaller set of objects

– perform data mining on the reduced set

Results may vary from using the complete data set

Parallel processing can be used for this preprocessing step
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Approaches

Methods for reducing large data sets:

• Sampling
– Select a subset of the input dataset

– Use the subset, instead of the original dataset, for mining

• Summarization
– Summarize the input dataset through appropriate summaries.

– Use the summaries, instead of the original raw data, for mining.

19Knowledge Discovery in Databases II: Large Object Cardinalities



DATABASE
SYSTEMS
GROUP

Sampling

• Idea: Select a limited subset from the original dataset.

• It is important that the group selected be representative of the 
population, and not biased in a systematic manner

• Sampling approaches:
– Random sampling: draw k times from the data set and remove the drawn 

elements

– Bootstrapping: draw k times from the input data set but do not exclude the 
drawn elements from the set

– Stratified sample: Draw a sample which maintains a distribution w.r.t. to 
some attributes (e.g., class labels)
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Random sampling

• Each instance of the input dataset is chosen entirely by chance.

• Each instance has an equal chance of being included in the 
sample. 

• Procedure: if you want to select k out of n instances (n: the 
cardinality of the input dataset):
– Generate an independent random integer i, 1≤ i ≤n

– Draw instance i, if not already selected

– Repeat k times

Knowledge Discovery in Databases II: Large Object Cardinalities 21



DATABASE
SYSTEMS
GROUP

Random sampling (R)
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Bootstrapping

• Random sampling with replacement

• Procedure: if you want to select k out of n instances (n: the 
cardinality of the input dataset):
– Generate an independent random integer i, 1≤ i ≤n

– Draw instance i

– Repeat until k instances have been drawn.

• Difference to random sampling: The already drawn elements are not excluded 
from future selection.
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Bootstrap sampling (R)
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Stratified sampling

• Stratification is the process of dividing the initial dataset into 
homogeneous subgroups (strata) before sampling.
– Every instance is assigned to only one stratum

– No instance is excluded 

• Apply random sampling, within each stratum.

• It ensures the presence of key subgroups in the sample
– Even small groups are represented

• Class labels is a typical way to define the strata. 
– Stratified sampling to deal with unbalanced data classification

• Other (sets of) dimensions can be also used, e.g., demographics
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Stratified sampling example  (R)
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Spatial Sampling 1/2 

Index-based sampling [EstKriXu95]

• Random sampling is problematic in spatial data 

• Use spatial index structures to estimate spatial distributions

• index structures obtain a coarse pre-clustering; neighboring objects are 

stored on the same / a neighboring disk block

• index structures are efficient to construct (sometimes are already there)

• allow fast access methods for similarity queries
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Spatial Sampling 2/2

Method

• build an R*-tree
• sample a set of objects from all leaf nodes

Structure of an R*-
tree
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Summarization

• Instead of selecting a subset of the input dataset, summarize the 
input data into a set of summaries.

• “Forget” the raw data, apply data mining algorithms upon the 
summaries afterwards

• Cluster feature vectors/ BIRCH algorithm

• Data bubbles
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Micro-Clustering / BIRCH

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) 
[ZhaRamLiv96]

BIRCH overview

• Build a compact description of the dataset using cluster feature (CF) vector 
summaries

• Organize custer features in a tree structure (CF-tree)

• The leaves of the tree have a maximal expansion which control how tight these 
summaries are.

• Use leaves as data objects for data mining algorithms

• BIRCH is the first approach for clustering large scale data 

• BIRCH introduced the idea of cluster feature vectors 

 also known as microclusters (more on this in the stream clustering lecture)
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The cluster feature vector (CF) summary

Given N d-dimensional points in a cluster C, the cluster feature 
(CF) vector of C is defined as a triple:

where

• N = |C|, the number of points in C

• , the linear sum of the N data points

• , the square sum of the N data points





N

i

iXLS
1







N

i

ii

N

i
i

XXXSS
11

2 ,


31Knowledge Discovery in Databases II: Large Object Cardinalities

),,( SSLSNCF 



DATABASE
SYSTEMS
GROUP

CF vector example

Example:
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(5,1)

(7,3)

(7,4)

(8,5)
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CF vector properties 1/2

The CF vector is not only efficient, as it compresses the input 
dataset, but also accurate, as it is sufficient to compute several 
measures we need for clustering.

• the centroid  of C: 

• the radius of C (avg distance to the centroid):

• the diameter of C (avg pairwise distance within a cluster)

33Knowledge Discovery in Databases II: Large Object Cardinalities

N

LS

2











n

LS

n

SS

Homework!



DATABASE
SYSTEMS
GROUP

CF vector properties 2/2

• CF additivity property: Let two disjoint clusters C1 und C2. The CF vector of the 
cluster that is formed by merging the two disjoint clusters, is:

CF(C1  C2) = CF (C1) + CF (C2) = (N1+ N2, LS1 + LS2, QS1 + QS2) 

• CF incremental property: The updated CF of a cluster C1 after the addition of a 
new point p, is:

CFT(C1 U p) = CFT(C1) + p

• Based on CFs several distance functions can be supported:

• Why CFs?

– Summarize info for a single cluster 

– Easy merge of clusters based on the additivity property

– Easy incorporation of new points based on the incremental property

34Knowledge Discovery in Databases II: Large Object Cardinalities
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CF-tree

• A CF tree is a height balanced tree with 
2 parameters
– a branching factor B & a threshold T

– A non-leaf node, contains at most B entries 
of the form [CFi,childi], i=1:B, where CFi is 
the CF vector of the subcluster represented 
by the ith child.

– A leaf node contains at most L entries of the 
form [CFi].

o The diameter (or radius) of all contained 
entries is less than the threshold T

o Each leaf has two pointers previous and 
next to a allow sequential access
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CF-tree example

CF1

child1

CF3

child3

CF2

child2

CF6

child6

CF7

child7

CF9

child9

CF8

child8

CF12

child12

CF90 CF91 CF94
prev next CF95 CF96 CF99

prev next

B = 6, L = 5 Root

inner nodes

leaves 

CF1 = CF7 + . . . + CF12

CF7 = CF90 + . . . + CF94
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A very compact representation of the dataset: 
Each leaf entry is not a single point but a subcluster which absorbs 
many data points with diameter (or radius) under the threshold T.
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CF-tree construction

Construction of a CF-tree (analogue to constructing a B+-tree)

• For each point p in the initial dataset (CFp=(1, p, p2))

• Identify the proper leaf node: Starting from root and traversing the CF tree by 
choosing the closest child based on distance function (e.g., D0, D1)

• Modifying the lead node: Find its closest leaf entry L and check the threshold T in L 
after addition of p

• If T is not violated, 

– CFp is absorved into M

• else

– A new entry for p is added to the leaf

– If there is space for the new entry OK, otherwise, we must split the leaf node

• select the pair of CFs having the largest distance as seeds

• assign the remaining  CFs to their closest seeds

• Modifying the path to the leaf: The addition of p should be reflected in the path
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CF-tree example (from [Miroslav11]) 1/4
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CF-tree example 2/4
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When a new point arrives, find the closest cluster 
(A) and check whether its radius exceeds the 
threshold T. 
• If T is not violated, the new point is absorbed by the 
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CF-tree example 3/4 
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• If T is violated, the cluster is split 
into two clusters
and the points 
are redistributed. 
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CF-tree example 4/4
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CF vectors are maintained which are adequate 
for all the node-related operations.
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BIRCH: Clustering using clustering feature vectors

Phase 1

• construct a CF-tree by successively adding new points B1

Phase 2 [Optional]

• if B1 is to big, scan its leaf entries and build smaller CF-tree (B2) by merging
subclusters and removing outliers

Phase 3

• Cluster all leaf entries through some clustering algorithm

• Each subcluster can be treated as a single point (the centroid)

• Or, the cardinality of the clusters can be also considered

• The clustering algorithm can use special distance measures on CFs (e.g., D0,
D1)
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Cluster feature vectors discussion

Advantages:
• Compression rate is adjustable

• The tree is a function of T: larger Tsmaller tree

• Scans the whole dataset only once (to build the CF tree)
– Additional passes are optional to refine the result.

• Handles outliers

Disadvantages:

• results depend on insertion order

• only suitable for numerical vector spaces

• More suitable for spherical clusters (uses radius/ diameter to control the 
boundary of a cluster) 
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Data bubbles motivation [BreKriKroSan01]

• CF vectors of BIRCH are effective for k-means type of clustering

• For hierarchical clustering though, their success is limited

• Hierarchical clustering is based on distances between points which are not 
represented well by the distances between representative objects, especially if 
the compression rate is high

– The structural distortion problem 

• Below, based only on centroids: dist(rA,rB)=dist(rC,rD).

Knowledge Discovery in Databases II: Large Object Cardinalities 44

rA
rB

dist(rA,rB)

“real-distance”

rC

dist(rC,rD)

rD

“real-distance”



DATABASE
SYSTEMS
GROUP

Data bubbles definition

Data Bubbles: add more information to the representation

A generic definition for data bubbles: 

Let X={Xi} be a set of n objects. The data bubble B w.r.t. X is defined as a tuple: 

B=(rep,n, extent, nnDist)

• rep is a representative point for X (not necessarily a Xi)

• n is the number of points

• extent is a real number such that “most“ objects of X are located within a 
radius “extent“ around rep

• nnDist(k,B) is a function denoting the estimated avg kNN distance within X for 
some value k. 
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Distance between data bubbles

• Let B, C be two data bubbles, their distance is given as follows
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Data bubbles for Euclidean Vector Spaces

Definition: Let X={Xi} be a set of n objects. The data bubble B w.r.t. X is defined as 
a tuple: 

B=(rep,n, extent, nnDist)

• rep is the center of X

• extent is the radius of X

• nnDist 

– Expected kNN distance in X (assuming a 
uniform distribution of the points 
inside the sphere with center M and radius r)
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Clustering using data bubbles

• Data bubbles can be generated in different ways
– from m sampled objects and by assigning the rest instances to their 

closest objects 

– from the leaf nodes of a CF-tree

• Apply clustering over the data bubbles
– e.g., a classical hierarchical clustering algorithm like single link

– e.g., OPTICS
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Summaries and sampling: discussion

• Often, the same results can be achieved on much smaller samples

• Both sampling and summarization try to approximate the data 
distribution by a smaller subset of the data

• It is important that the sample is representative of the input 
dataset

• There are similar approaches for instance selection in 
classification
– Select samples from each class which allow to approximate the class 

margins

– Samples being very “typical” for a class might be useful to learn a 
discrimination function of a good classifier.

– Similar to the concept of support vectors in SVMs
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