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smese | Problem Setting

GROUP

So far:

e Focus on quality: How can we derive meaningful patterns?
e Data mining tasks yield high complexities

In this chapter:

e How can we mine high volumes of data faster?
e Performance depends on

— the volume of the data set (# records/instances)
— the scalability of the data mining algorithms
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Solutions for Speeding up Data Mining

DATABASE
GROUP

1. Use modern hardware
—  Parallel Data Mining
—  Distributed Data Mining
—  Privacy Preserving Data Mining

2. Reduce the number of objects being processed
— Sampling
— Summarization
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s | SP€€ding up through Modern Hardware 1/2

GROUP

Use modern hardware to speed up data mining:
e Cloud Computing => Parallel Data Mining
e Broadband Networks => Distributed Data Mining

Where does it help?

e high volume data repositories (electronic payments, sales data,
web pages, emails, ...)

=> every data object must be examined at least once
e preprocessing (select relevant data objects)

e data transformation (data discretization, temporal aggregation
etc.)
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Speeding up through Modern Hardware 2/2

DATABASE

GROUP

Limitations of high-performance computing architectures:

e best-case speed up of parallel algorithms: linear in the number of
machines

e in most cases: less than linear due to communication and result
merging overheads

e in problems having a super linear complexity: adding more
machines helps but does not make the problem scalable

What can be done in these cases?
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Speeding up through Sampling and
ssews | Summarization 1/2 LMU

GROUP

Reduce the number of objects being processed
— Sampling and Summarization
Why does this make sense ?

Representative Sample # Large Sample

e A too small data set might not be representative
e Avery large data set can still be biased and not representative
=> there are redundant samples

=> removing these from the data set does not
hurt the representativeness
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DATABASE
SYSTEMS
GROUP

Speeding up through Sampling and
Summarization 2/2

Methods for reducing large data sets:

e Sampling:

— Use a subset of the data set by removing redundant instances
— Find redundant features

e Summarization

— Instead of raw data records, use their summaries

e A popular summary: Microclusters:

— perform data mining on cluster descriptions
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amese | PArallel and Distributed Data Mining

SYSTEMS
GROUP

Goal:

LMU

e use multiple cores /work stations to increase performance

—> parallel data mining

e f datais stored in distributed locations:
= distributed data mining

e if datais confidential:
= privacy preserving data mining

Privacy can only be preached if there are at least two parties (data

owner and data user).
=> closely related to distributed mining
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DATABASE Exa m p I es

GROUP

e (Clustering end customers for distributors:

— Retailer do not want to share customer information but might share distributions
or statistics

— Retailer needs ,privacy-preserving” Clustering algorithms to derive general end
customer groups

e Pharmaceutical companies collect costumer sales data from pharmacies
— helps the company to plan the production of pharmaceutics
— find profitable areas for researching new drugs

But: Individual drug consume of costumers might be sold to insurance companies or
is made available to the public.

(potential employers, landlords, credit institutions,..)
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smemse | PArallel Data Mining

SYSTEMS
GROUP

Parallel Data Mining:

LMU

e Data repository is already integrated and available in a common location.

e data has to be analyzed on k work stations

e performance gain by following a “Divide and Conquer” strategy:

= distribute data to worker tasks
—> each worker analyses the data and returns a local result
—> local results must be combined to global patterns/functions

Important aspects to consider:

e Distribute data in a way that joining local results into global patterns is easy

e Avoid communication between the workers as much as possible
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DATABASE
SYSTEMS
GROUP

Workflow of Parallel Data Mining

LMU

‘ DB joint data repository DB

%

/WO S

51 > Sk

o

S

o

partitioned data

I
I
I

mutiple iterations
might be required

I

A

analyze S,

set of all local patterns

derive.global patterns from local ones

merge-step 4

[global gatterns}
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smemse | DiStributed Data Mining

GROUP

e The distribution of data to the different peers is given
= no effort for data partitioning
—> local patterns are less controllable
= joining local patterns might be more difficult

e an unfavorable distribution might lead to the following
problems:

— Discrepancies between the result of distributed and stationary mining
— Large communication effort

e Differences between parallel and distributed data mining:
— distribution is given

— network costs are usually assumed to be higher
(between companies, mobile clients..)
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DATABASE
SYSTEMS
GROUP

Workflow of Distributed Data Mining

51 > Sk

LMU

distributed data
Sk

I

analyze S,

I
I

I

set of all local patterns

mutiple iterations
might be required

build joint patterns

merge-step

[global gatterns]
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amenst | IMpPoOrtant aspects: Data partitioning

GROUP

e Data partitioning= physically dividing data in different data stores

— Improves scalability, performance, availability, security

e \Vertical Partitioning
— Features are distributed. Objects are available everywhere

" +

e Horizontal Partitioning
— Objects are distributed over workers and sites. Object description is everywhere

the same.
" +

e In practice: Data might be partitioned in both ways.
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Key Name Description Stock Price LastOrdered
ARC1 | Arc welder | 250 Amps 8  |119.00 | 25-MNov-2013
BRKB | Bracket 250mm 46 566 | 18-MNov-2013
BRKS | Bracket 400mm 82 6.98 1-Jul-2013

HOS8 Hose 12" 27 | 27,50 | 18-Aug-2013
WGT4|  Widget Green 16 | 1399 | 3-Feb-2013
WGT6|  Widget Purple 76 | 1399 | 31-Mar-2013

Key Name  Description Price Key Stock LastOrdered

ARCY | Arc welder | 250 Amps | 119.00 ARCL| 8 25-Nov-2013
BRKS | Bracket | 250mm | 566 BRKS | 46 | 18-Nov-2013
BRKS | Bracket 400mm 6.98 BRKS | B2 1-Jul-2013
HOS8|  Hose 12" 27.50 HOS8| 27 | 18-Aug-2013
WGT4|  Widget Green 13.99 WGT4| 16 3-Feb-2013
WGT6| Widget Purple 13.99 WGTe| 76 | 31-Mar-2013

Key Name Description Stock Price LastOrdered
ARC1 | Arc welder | 250 Amps 8 1119.00| 25-MNov-2013

BRKB | Bracket 250mm 46 5.66 | 18-Mov-2013
BRK9 | Bracket 400mm 82 6.98 1-Jul-2013

HOS8 Hose 1/2 27 27.50 | 18-Aug-2013

WGET4|  Widget Green 16 | 13.99 | 3-Feb-2013

WGETH|  Widget Purple 76 | 13.99 | 31-Mar-2013
>

Key Mame Description Stock Price LastOrdered Key Name Description Stock Price LastOrdered

ARCL | Arc welder | 250 Amps 8 | 119.00 | 25-Mov-2013 HOS8 Hose 1z 27 | 27.50 | 18-Aug-2013
BRKS | Bracket 250mm 46 5.66 | 18-Now-2013 WGT4| Widget Green 16 | 1399 | 3-Feb-2013
BRK9 | Bracket 400mm 82 698 | 1-Jul-2013 WGT6E| Widget Purple 76 | 1399 | 31-Mar-2013

Source: https://msdn.microsoft.com/en-us/library/dn589795.aspx
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amese | FUrther Important Aspects
SYSTEMS I—MU

GROUP

2. Data Mining Task: Classification, Clustering, Association Rules

3. Partitioning dependency: Does the result depend on the used/given
partitioning of the data?

4. Type of local patterns: Approximations, data objects, distributions...
Examples: Gaussians, hyper rectangles, centroids...

5. Organization of the distributed workflow:
Master and slave processes, P2P computation
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Parallel and Distributed Data Mining

Privacy Preserving Data Mining

Sampling and Summarization
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Parallel Data Mining Algorithms

DATABASE
GROUP

e Usually the result is expected to be independent from the
partitioning (deterministic result)

e Main focus is speeding up the computation

e The partitioning strategy is often a major part of the algorithm:

— minimize effort for joining local patterns
= local patterns should be independent from each other

=> in case of dependencies: extra communication is required or
inaccurate results have to be accepted

— Runtime depends on the worst runtime of any worker task

= all parallel steps should take about the same amount of time
= all sites should receive the same amount of data

Knowledge Discovery in Databases Il: Large Object Cardinalities
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mnsase | Parallelism via Database Primitives

SYSTEMS
GROUP

e In general data mining algorithms can be based on
database primitives (e.g. e-range queries, kNN
queries).

e parallel computing of the database primitives yields
a better support to general data mining algorithms.

Example:

e parallel computation of &range queries can
accelerate density-based clustering

e parallel kNN queries allow fast kNN classification.

Characteristics:

e The join of the results has to be done on one
machine

e Partitioning might still play a major role

Knowledge Discovery in Databases II: Large Object Cardinalities
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[ Data Mining Algorithm ]

!

DB-Interface

distributed query
processing
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«nense | Parallel Density-based Clustering

GROUP

ldea:
e Horizontal and compact partitioning
e Determine local core points and clusters

e Connect local clusters to global clusters:
— Clusters from different sites
— Noise points from other sites

General problem:

e What happens with objects where their &-range intersects with
other partitions?
— mirror marginal objects
— requires communication between the partitions
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omens: | PDBSCAN [XulJaeKri99]
ol LMU

The problem:

Given a set of d-dimensional points DB ={p,, p,, ...p,}, @ minimal density of clusters
defined by Eps and MinPts, and a set of computers CP ={C,,C,, ...C,} connected by a

message passing network, find the density-based clusters with respect to the given Eps
and MinPts values.

The hardware architecture:

Use a “shared-nothing” architecture with multiple computers interconnected through a
network

NETWORK CONNECTION

Computer 1 Computer 2 ¢ & o Computer N “

Knowledge Discovery in Databases Il: Large Object Cardinalities
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e | PDBSCAN overview |
LMU

SYSTEMS

GROUP

e Three main steps
[Step 1]: divide the input into several partitions, and distribute these partitions
to the available computers.
[Step 2]: cluster partitions concurrently using DBSCAN.

[Step 3]: combine or merge the clusterings of the partitions into a clustering of
the whole database.

e Pseudocode

1. divide the input data set DB into N partitions Sy, S5, ..., Sy such that DB = Uf‘;,S, and
SiNS; =@, fori # j. The partition S; 1s distributed on C; wherei = 1,2, ..., N.

2. process the N partitions concurrently using DBSCAN on the available computers ',
(5. ...,Cy., 1e. call algorithm DBSCAN(S;, Eps, MinPts) concurrently on C; fori =
1,2,...,N.

3. merge the clustering results obtained from the partitions §;,i = 1,2,.... N, into a
clustering result for DB.

Knowledge Discovery in Databases II: Large Object Cardinalities
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Step 1: data placement

DATABASE
GROUP

e Requirements for data placement

— Load balancing: The data should be placed such that in step 2, all
concurrent parallel DBSCAN(S;, Eps, MinPts), i=1:N, will be finished at the
same time.

O Since the run-time of DBSCAN only depends on the size of the input data, the partitions
should be almost of equal size if we assume that all computers have the same processing
(computing and I/0) performance.

— Minimized communication cost: The data should be placed such that the
communication cost is minimized.

0 each local DBSCAN should avoid accessing data located on any of the other computers.
Nearby objects should be organized on the same computer.

— Distributed data access: The data should be placed such that both local and
remote data can be efficiently accessed.

O Locally DBSCAN needs O(|S,|?), which can be improved through some index structure to
O(S; log(S;)).

Knowledge Discovery in Databases Il: Large Object Cardinalities 24
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amense | Wy We need access to remote data?

GROUP

e If no support for accessing remote data, p, is not core in S, and p, is not density
reachable by any pointin S,

e To obtain correct clustering, a “view” over the border of partitions is therefore

necessary

* o °

® ® ® °

® . e * . MinPts =5
° e, ® Pr e °
° P
®

S] ® o9 SZ

e But, we have to pay communication cost for every access to remote data.
— It can be minimized by the replication of indices
— Itis only required for the objects located on the border of two neighboring partitions.
— Another pay-off of remote data access is that we can efficiently merge the clustering results.
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amase | OR*-tree (distributed R*-tree)

GROUP |

Idea: dR*-tree

e Group the MBRs (Minimum Bounding Rectangle) of the R*-tree into N
partitions such that nearby MBRs are assigned to the same partition and
partitions hold a similar number of MBRs.

e Distribute the partitions on all available computers
e Replicate the directory of R* on all available computers

site 1 site 2

/’_lLK \\ é—ll‘\i ‘~\ ...... remote pointer

—— local pointer

] B ™

1 W
TV Ty

> directory node

data page

The dR*-tree index

Knowledge Discovery in Databases II: Large Object Cardinalities
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DATABASE d R & 't ree

GROUP

_______ = ——g—-—-—= ———— =

e Provides efficient access to both local and remote data

e (Querieson S, being completely processible on DBs; can be answered
completely simultaneously

e Access to pages on other sites reduce concurrence and raise communication
costs

=> Algorithms should employ as much local queries as possible

Knowledge Discovery in Databases Il: Large Object Cardinalities
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Step 2: Local clustering PartDBSCAN

DATABASE
GROUP

e Data partitioning in the dR*-tree
e Implemented using the master-slave model
e Slaves are responsible for local clustering and sending results to the master

e PartDBSCAN(S, dR*-tree, Eps, MinPts) for local clustering in partition S
— Modified DBSCAN handling only data within S

— Starts with a point p in S and retrieves all points that are density reachable from p in the space
constraint S.
O If e-range intersects with the margin:

0 Margins might have to be loaded from other sides to determine core point
0 Expanding clusters beyond the margin is to expensive would lead to large communication overheads.

=> store clusters with points outside S in merge list

— Acluster Cfound in S is not necessarily a global cluster

0 If there are members of C outside S, C might need to be merged with another cluster found w.r.t. an adjacent space
constraint.

0 Cis called merging candidate and is sent to the master
— At the end, merging candidates are sent to the master.
— No need to send the whole (local) cluster, only points near the border of S.

Knowledge Discovery in Databases Il: Large Object Cardinalities 28



w

DATABASE
SYSTEMS
GROUP

Step 3: Global Clustering

Join local cluster having common merge points: merge point needs to be a core point

in at least one partition => merge clusters

local pages p, and p, >

P,

margin

5; Sy S, S; S,

(@C csy, C,isaclus-
ter found wrt. the space
constraint DB

(b)pe CI\S1 is a core point; C;

(c)pe Cl\S1 is a border point;
should be merged with C,

pe C T C; and C, are NOT merged!

MinPts =4

Illustration of the relationship between clusters found w.r.t. adjacent space constraints.

Knowledge Discovery in Databases II: Large Object Cardinalities
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DATABASE
SYSTEMS
GROUP

Distributed Density-based Clustering

e Arbitrary distribution of points over the sites

e Density-based clustering does not use a compact cluster model

Partitions might spatially overlap

— Each site S; might store elements of the e-range of point p
— p might be a core point, even if p isn‘t a local core point.

LMU

Partial
view

Partial
view

Global
view

= Transfer local points to determine global clusters

Knowledge Discovery in Databases Il: Large Object Cardinalities
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amemse | DiStributed Partitioning Clustering

GROUP

Idea:

e |f the cardinality of the transferred points is small, multiple
iterations between the sites is not a problem (low traffic)

e Centroids and cluster quality in k-Means or related methods is
suitable for distributed computing:

TD® = Z (Icn;g{d (O,Ci)})2 = Z [Z(Iglig{d (o,Ci)}T] Cluster C;

0cDB S;€DB \ 0€S; Partition Sj

* global centroid C; is computed from local centroids C, ;:

.Y Yo

Z ‘C|,J‘ Ci’jEDB OECi,j

i,jEDB

C

C
e Summary: In each iteration it is possible to optimize the global
clustering by adding up local components.
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-mase | Distributed k-Means Pseudocode

GROUP

Distributed clustering using variance minimization (Master-Slave):

Determine initial distribution and start-centroids
loop:
-transfer centroids to all sites
—assign local points to the current centroids
=> compute local centroids and local TD? values

- Retransfer local centroids, cluster cardinalities
and TD? values

— Add local sum-vectors, cluster cardinalities and TD2
values (implies new global centroids)

— Determine global TD? value
iT TD? value does not improve => terminate

Knowledge Discovery in Databases Il: Large Object Cardinalities
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mense | Distributed K-Means Workflow

SYSTEMS
GROUP

Master Site

LMU

Slave Sites

initialization:

k centroids from each slave site

initialize global model by

<

N~

clustering local centroids

global centroids

local k-partitioning clustering

loop:

SN

N

/

Update global centroids and global /
TD?value

New local centroids

& TD?values

Stop: if TD? doesn‘t improve
else:

Assign local points to global centroids

A

global centroids
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Parallel Data Analysis with MapReduce

DATABASE
GROUP

e MapReduce is a programming model for large scale parallel data processing
using a large number of computers (nodes), referred to as a cluster.

e Hadoop is an open source implementation of MapReduce.
e Programmers specify the computation in terms of a map and a reduce function

— The Map job: takes a set of data and converts it into another set of data, where individual
elements are broken down into tuples (key/value pairs).

— The Reduce job: takes the output from a map as input and combines those data tuples into a
smaller set of tuples.

— Both mapper and reducer can be distributed over multiple worker tasks

e Everything else is handled by the execution framework
— Scheduling: assigns workers to map and reduce tasks
— “Data distribution”: moves processes to data
— Synchronization: gathers, sorts, and shuffles intermediate data
— Errors and faults: detects worker failures and restarts

e Optimization is done automatically by adding workers if necessary
e Trade-off: Parallelism vs. Bandwidth
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amense | IVIAP and Reduce Tasks

GROUP ;

Map(k1,v1)=>list(k2,v2) Reduce(k2,list(v2))=>list(k3, v3)

> Reducers ﬂ[Output ]

e The Map and Reduce functions of MapReduce are both defined with respect to
data structured in (key, value) pairs.

e A Map task perform a transformation, a Reduce task perform an aggregation
e Word count example:
— Map-Step:
Example: <ID3,”to be or not to be”> - <to, 1>,<be,1>, <or,1>, <not,1>, <to,1>, <be,1>

— Shuffle & Sort Step:

Example: 2 <to,1>,<to,1><be,1><be,1>,<or,1><not,1>

— Reduce-Step:
Example: = <to,2>, <be,2><or,1><not,1>

e For complex problems multiple MapReduce steps might be necessary to
implement an algorithm.
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amense | OPtional Steps

GROUP

e Partitioner: Controls the distribution of data over the mapper tasks.
Default: HashPartitioner

e Combiner: Local aggregation step which summarizes data from a mapper
Step is performed between Map step and shuffle step.

=> Transfer volume from the Mappers to shuffle step can be reduced
Example: <Today, <1,1,1,1,>> -> <Today,4>
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«mense | K-IMleans in MapReduce

GROUP

Input: A data set D, desired number of clusters k

TD*(D,C) = Z(mln (dist(c, x)f

ceC

Output: k centroids minimizing TD?

Steps:

e Assign data to cluster centroids

e Compute centroids from a set of objects
e Compute TD?

—> All steps can be done by a linear scan of D

— Results are additive. Cluster centroids and TD? are sums and
therefore, computable in a distributed way. (associative law)
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DATABASE
SYSTEMS
GROUP

k-Means using MapReduce

Master:

Sample k initial centroids C.

WHILE TD? < oldValue

oldvalue = TD?

LMU

assign points 1n D to centroids In C (Mapper)
compute centroids C and quality TD2 (Reducer )
RETURN C

Remark:

e Only the expensive steps are processed in a distributed way

e One MapReduce task for each iteration
e (C has to be transferred to mappers and reducers

Knowledge Discovery in Databases Il: Large Object Cardinalities
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DATABASE
SYSTEMS
GROUP

K-Means: Map Step

LMU

Input: D: dataset,C: set of centroids, k=|C]: # centroids
Output: <centroid i1d, iInstance>

FOR EACH 1nstance Vv in D DO

bestCluster = null; minDist = «©
FOR EACH C 1 in C DO

Mapper: Assign points to centroids

IF minDist > dist(C_1, v) THEN

minDist = dist(C_ 1, Vv)
bestCluster = C_1
ENDIF
END FOR

OUTPUT<bestCluster, v>
END FOR
Shuffle and sort: - <Cluster,<v,,.

Knowledge Discovery in Databases Il: Large Object Cardinalities
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DATABASE
SYSTEMS
GROUP

K-Means: Reduce Step

LMU

Input: <Cluster,<vl,..,vI>> from previous step
Output: <newC, TD2> new centroids and partial TD2

FOR EACH <C, <v,,..,v;>> DO

linearSum = O;
count = O;
TD2 = 0;
FOR EACH v 1In <v,,..,v,> DO
linearSum += v
count = count+l
TD2 +=dist(v,C)
END FOR
newC = li1nearSum/count
OUTPUT< newC, TD2>

END FOR

Knowledge Discovery in Databases Il: Large Object Cardinalities

Reducer: compute new cluster
centers and their quality
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amese | K-Means using MapReduce
LMU

SYSTEMS
GROUP

e Number of calls corresponds to the number of iterations

e Optimization by local combiners which precompute parts of the
linear sums.

e Algorithms does not solve the problem of a suitable initialization

e Newer methods use sampling techniques to cluster data in
sublinear time.
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smense | OUMMary Parallel and Distributed Data Mining
SYSTEMS I—MU

GROUP

e Modern hardware developments can speed up Data Mining

e large scale data mining is necessary nowadays due to the amount
and complexity of collected data.

e Solutions should be: scalable, incremental and interactive

e The raise of the parallel computing recently, is reshaping the area
— MapReduce, Apache Mahout, Apache SPARK (Mlib), Apache STORM,...

Knowledge Discovery in Databases Il: Large Object Cardinalities
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SYSTEMS
GROUP

LMU
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