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Outline

1. Introduction and challenges of high dimensionality

2. Feature Selection

3. Feature Reduction and Metric Learning

4. Clustering in High-Dimensional Data
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The more the merrier or more is less?

• Baby shapes game example

Knowledge Discovery in Databases II:  High-Dimensional Data 3

Based on shape grouping Based on color grouping

What about grouping based on both shape and color?
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Examples of High-Dimensional Data 1/2

• Image data

 low-level image descriptors
(color histograms, textures, shape information ...)

 If each pixel a feature, a 64x64 image  4,096 features

 Regional descriptors

 Between 16  and 1,000 features

• Metabolome data

 feature = concentration of one metabolite

 The term metabolite usually restricted to small molecules, that are 
intermediates and products of metabolism.

 The Human Metabolome Database contains 41,993 metabolite entries

 Bavaria newborn screening (For each newborn in Bavaria, the blood 
concentrations of 43 metabolites are measured in the first 48 hours after birth)

 between 50 and 2,000 features

... ...
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Examples of High-Dimensional Data 2/2

• Microarray data

 Features correspond to genes

 Thousands or tens of thousands of 

genes in a single experiment

 Up to 20,000 features

 Dimensionality is much higher than the sample size

• Text data

 Features correspond to words/terms

 Different documents have different words

 between 5,000 and 20,000 features

 Very often, esp. in social media, 
 Abbreviations (e.g., Dr) 

 colloquial language (e.g., luv)

 Special words (e.g, hashtags, @TwitterUser) 
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Excerpt from LMU website:
http://tinyurl.com/qhq6byz
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Challenges due to high dimensionality 1/5

• Curse of Dimensionality

– Distance to the nearest and the farthest neighbor converge

– The likelihood that a data object is located on the margin of the data space 
exponentially increases with the dimensionality

0 1

1

0 1 PFS = 11 = 1

Pcore = 0.81 = 0.8

Pmargin = 1 – 0.8  =  0.2

feature space (FS)

core

margin:  0.1

nearestNeighborDist

farthestNeighborDist
 1

1D:

PFS = 12 = 1

Pcore = 0.82 = 0.64

Pmargin = 1 – 0.64  =  0.36

2D:

PFS = 13 = 1

Pcore = 0.83 = 0.512

Pmargin = 1 – 0.512  =  0.488

3D:

10D: PFS = 110 = 1

Pcore = 0.810 = 0.107

Pmargin = 1-0.107=0.893
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Challenges due to high dimensionality 2/5

• Pairwise distances example: sample of 105 instances drawn from a uniform [0, 
1] distribution, normalized (1/ sqrt(d)). 
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Source: Tutorial on Outlier Detection in High-Dimensional Data, Zimek et al, ICDM 2012
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Challenges due to high dimensionality 3/5

Further explanation of the Curse of Dimensionality:

• Consider the feature space of d relevant features for a given application

=> truly similar objects display small distances in most features

• Now add d*x additional features being independent of the initial  feature space

• With increasing x the distance in the independent subspace will dominate the 
distance in the complete feature space

 How many relevant features must by similar to indicate object similarity?

 How many relevant features must be dissimilar to indicate dissimilarity?

 With increasing dimensionality the likelihood that two objects are similar in 
every respect gets smaller.
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Challenges due to high dimensionality 4/5

• The more features, the larger the hypothesis space

• The lower the hypothesis space 
– the easier to find the correct hypothesis

– the less examples you need

Knowledge Discovery in Databases II:  High-Dimensional Data 9
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Challenges due to high dimensionality 5/5

• Patterns and models on high-dimensional data are often hard to interpret.

– e.g., long decision rules

• Efficiency in high-dimensional spaces is often limited

– index structures degenerate

– distance computations are much more expensive

• Pattern might only be observable only in subspaces or projected spaces

• Cliques of correlated features dominate the object description
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Outline

1. Introduction and challenges of high dimensionality

2. Feature Selection

3. Feature Reduction and Metric Learning

4. Clustering in High-Dimensional Data
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Feature selection

• A task to remove irrelevant and/or redundant features

– Irrelevant features: not useful for a given task

• Relevant vs irrelevant

– Redundant features: a relevant feature may be redundant in the presence 
of another relevant feature with which it is strongly correlated.

• Deleting irrelevant and redundant features can improve the efficiency as well 
as the quality of the found methods and patterns.

• New feature space: Delete all useless features from the original feature space.

• Feature selection ≠ Dimensionality reduction 

• Feature selection ≠ Feature extraction 

Knowledge Discovery in Databases II:  High-Dimensional Data 12
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Irrelevant and redundant features 
(unsupervised learning case)

• Irrelevance • Redundancy
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Feature y is irrelevant, because if we 
omit x, we have only one cluster, 
which is uninteresting. 

Features x and y are redundant, 
because x provides the same 
information as feature y with regard 
to discriminating the two clusters

Source: Feature Selection for Unsupervised Learning, Dy and Brodley, Journal of Machine Learning Research 5 (2004)
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Irrelevant and redundant features 
(supervised learning case)

• Irrelevance

• Redundancy

Knowledge Discovery in Databases II:  High-Dimensional Data 14

Feature y separates well the two classes.
Feature x is irrelevant.
Its addition “destroys” the class separation. 

Features x and y are redundant.

Source: http://www.kdnuggets.com/2014/03/machine-learning-7-pictures.html

• Individually irrelevant, 
together relevant
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Problem definition

• Input: Vector space F =d1×..× dn with dimensions D ={d1,,..,dn}.

• Output: a minimal subspace M over dimensions D` D which is optimal for a 
giving data mining task.

– Minimality increases the efficiency, reduces the effects of the curse of 
dimensionality and  increases interpretability.

Challenges:

• Optimality depends on the given task

• There are 2d possible solution spaces (exponential search space)

• There is often no monotonicity in the quality of subspace

(Features might only be useful in combination with certain other features)

 For many popular criteria, feature selection is an exponential problem

 Most algorithms employ search heuristics

Knowledge Discovery in Databases II:  High-Dimensional Data 15
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2 main components

1. Feature subset generation
– Single dimensions

– Combinations of dimensions (subpaces) 

2. Feature subset evaluation
– Importance scores like information gain, χ2

– Performance of a learning algorithm

Knowledge Discovery in Databases II:  High-Dimensional Data 16
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Feature selection methods 1/4

• Filter methods
 Explores the general characteristics of the data, independent of the learning 

algorithm.

• Wrapper methods
– The learning algorithm is used for the evaluation of the subspace

• Embedded methods
– The feature selection is part of the learning algorithm

Knowledge Discovery in Databases II:  High-Dimensional Data 17
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Feature selection methods 2/4

• Filter methods
– Basic idea: assign an ``importance” score to each feature to filter out the 

useless ones

– Examples: information gain, χ2-statistic, TF-IDF for text

– Disconnected from the learning algorithm.  

– Pros: 

o Fast 

o Simple to apply

– Cons: 

o Doesn’t take into account interactions between features

o Individually irrelevant features, might be relevant together (recall slide 14)
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Feature selection methods 3/4

• Wrapper methods
– A learning algorithm is employed and its performance is used to determine 

the quality of selected features.

– Pros: 

o the ability to take into account feature dependencies. 

o interaction between feature subset search and model selection

– Cons: 

o higher risk of overfitting than filter techniques

o very computationally intensive, especially if building the classifier has a high 
computational cost.

Knowledge Discovery in Databases II:  High-Dimensional Data 19
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Feature selection methods 4/4

• Embedded methods
– Such methods integrate the feature selection in model building

– Example: decision tree induction algorithm: at each decision node, a 
feature has to be selected.

– Pros: 

o less computationally intensive than wrapper methods.

– Cons: 

o specific to a learning method

Knowledge Discovery in Databases II:  High-Dimensional Data 20
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Search strategies in the feature space

• Forward selection
– Start with an empty feature space and add relevant features

• Backward selection
– Start with all features and remove irrelevant features procedurally

• Branch-and-bound
– Find the optimal subspace under the monotonicity assumption

• Randomized
– Randomized search for a k dimensional subspace

• …

Knowledge Discovery in Databases II:  High-Dimensional Data 21
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Selected methods in this course

1. Forward Selection and Feature Ranking

– Information Gain , 2-Statistik, Mutual Information

2. Backward Elimination and Random Subspace Selection

– Nearest-Neighbor criterion, Model-based search

– Branch and Bound Search

3. k-dimensional subspace projections

– Genetic Algorithms for Subspace Search

– Feature Clustering for Unsupervized Problems

Knowledge Discovery in Databases II:  High-Dimensional Data 22
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1. Forward Selection and Feature Ranking

Input: A supervised learning task

– Target variable C

– Training set of labeled feature vectors <d1, d2, …, dn>

Approach

• Compute the quality q(di ,C) for each dimension di {d1,,..,dn} to predict the 
correlation to C

• Sort the dimensions d1,,..,dn w.r.t. q(di ,C)

• Select the k-best dimensions

Assumption: 

Features are only correlated via their connection to C

=> it is sufficient to evaluate the connection between each single feature d and 
the target variable C

Knowledge Discovery in Databases II:  High-Dimensional Data 23



DATABASE
SYSTEMS
GROUP

Statistical quality measures for features

How suitable is feature d for predicting the value of class attribute C?

Statistical measures :

• Rely on distributions over feature values and target values.

– For discrete values: determine probabilities for all value pairs.

– For real valued features: 
• Discretize the value space (reduction to the case above)

• Use probability density functions (e.g. uniform, Gaussian,..)

• How strong is the correlation between both value distributions?

• How good does splitting the values in the feature space separate values in the 
target dimension?

• Example quality measures:
– Information Gain

– Chi-square χ2-statistics

– Mutual Information

Knowledge Discovery in Databases II:  High-Dimensional Data 24
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Information Gain 1/2

• Idea: Evaluate class discrimination in each dimension (Used in ID3 algorithm)

• It uses entropy, a measure of pureness of the data

• The information gain Gain(S,A) of an attribute A relative to a training set S 
measures the gain reduction in S due to splitting on A:

• For nominal attributes: use attribute values

• For real valued attributes: Determine a splitting position in the value set.
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Information Gain 2/2

• Which attribute, “Humidity” or “Wind” is better?

• Larger values better!

Knowledge Discovery in Databases II:  High-Dimensional Data 27
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Chi-square χ2 statistics 1/2

• Idea: Measures the independency of a variable from the class variable.

• Contingency table

– Divide data based on a split value s  or based on discrete values

• Example: Liking science fiction movies implies playing chess?

• Chi-square χ2 test

Knowledge Discovery in Databases II:  High-Dimensional Data 28
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Chi-square χ2 statistics 2/2

• Example

• χ2 (chi-square) calculation (numbers in parenthesis are expected counts 
calculated based on the data distribution in the two categories)

• Larger values better!
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Mutual Information (MI)
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• In general, MI between two variables x, y measures how much knowing one of these 
variables reduces uncertainty about the other

• In our case, it measures how much information a feature contributes to making the 
correct classification decision.

• Discrete case:

• Continuous case:

• In case of statistical independence:   
– p(x,y)= p(x)p(y)  log(1)=0
– knowing x does not reveal anything about y

p(x,y): the joint probability distribution function
p(x), p(y): the marginal probability distributions

Relation to entropy
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Forward Selection and Feature Ranking -
overview

Advantages:
• Efficiency: it compares {d1, d2, …, dn} features to the class attribute C instead of             

subspaces

• Training suffices with rather small sample sets

Disadvantages: 
• Independency assumption:  Classes and features must display a direct 

correlation. 

• In case of correlated features: Always selects the features having the strongest 
direct correlation to the class variable, even if the features are strongly 
correlated with each other.
(features might even have an identical meaning)

Knowledge Discovery in Databases II:  High-Dimensional Data
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Selected methods in this course

1. Forward Selection and Feature Ranking

– Information Gain , 2-Statistik, Mutual Information

2. Backward Elimination and Random Subspace Selection

– Nearest-Neighbor criterion, Model-based search

– Branch and Bound Search

3. k-dimensional projections

– Genetic Algorithms for Subspace Search

– Feature Clustering for Unsupervized Problems

Knowledge Discovery in Databases II:  High-Dimensional Data 33
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2. Backward Elimination

Idea:  Start with the complete feature space and delete redundant features

Approach: Greedy Backward Elimination

1. Generate the subspaces R of the feature space F

2. Evaluate subspaces R with the quality measure q(R)

3. Select the best subspace R* w.r.t. q(R)

4. If R* has the wanted dimensionality, terminate

else start backward elimination on R*.

Applications: 

• Useful in supervised and unsupervised setting
– in unsupervised cases, q(R) measures structural characteristics

• Greedy search if there is no monotonicity on q(R)
=> for monotonous q(R) employ branch and bound search

Knowledge Discovery in Databases II:  High-Dimensional Data 34
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Distance-based subspace quality

• Idea: Subspace quality can be evaluated by the distance between the within-
class nearest neighbor and the between-classes nearest neighbor

• Quality criterion:

For each o  D, compute the closest object having the same class NNC(o) 
(within-class nearest neighbor) and the closest object belonging to another 
class NNKC(o) (between-classes nearest neighbor) where  C = class(o).

Quality of subspace U:

• Remark: q(U) is not monotonous.

By deleting a dimension, the quality can increase or decrease.
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Model-based approach

• Idea: Directly employ the data mining algorithm to evaluate the subspace.

• Example: Evaluate each subspace by training a Naive Bayes classifier

Practical aspects:

• Success of the data mining algorithm must be measurable

(e.g. class accuracy)

• Runtime for training and applying the classifier should be low

• The classifier parameterization should not be of great importance

• Test set should have a moderate number of instances

Knowledge Discovery in Databases II:  High-Dimensional Data 36
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Backward Elimination - overview

Advantages:
• Considers complete subspaces (multiple dependencies are used)

• Can recognize and eliminate redundant features

Disadvantages:
• Tests w.r.t. subspace quality usually requires much more effort

• All solutions employ heuristic greedy search which do not necessarily find the 
optimal feature space.
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Backward elimination: Branch and Bound Search

Knowledge Discovery in Databases II:  High-Dimensional Data 38

• Given: A classification task over the feature space F.

• Aim: Select the k best dimensions to learn the classifier.

• Backward elimination approach “Branch and Bound”, by Narendra and 
Fukunaga, 1977 is guaranteed to find the optimal feature subset under the 
monotonicity assumption

• The monotonicity assumption states that the addition of features can only 
increase the value of the objective function J, this is

• Branch and Bound starts from the full set and removes features using a depth-
first strategy

– Nodes whose objective function are lower than the current best are not explored 
since the monotonicity assumption ensures that their children will not contain a 
better solution.

Slide adapted from: http://courses.cs.tamu.edu/rgutier/cs790_w02/l17.pdf
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Example: Branch and Bound Search 1/8

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.     

selected feature        removed feature

(All)=0.0

Knowledge Discovery in Databases II:  High-Dimensional Data 40

A B C D

//Start from the full set
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Example: Branch and Bound Search 2/8

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.     

selected feature        removed feature

(All)=0.0

Knowledge Discovery in Databases II:  High-Dimensional Data 41

A B C D

//Generate subspaces

IC (BCD)=0.0
IC(ACD)=0.015 IC(ABD)=0.021 IC(ABC)=0.03
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Example: Branch and Bound Search 3/8

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.     

selected feature        removed feature

(All)=0.0
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A B C D

//Choose the best 
one and generate 
its subspaces

IC (BCD)=0.0
IC(ACD)=0.015 IC(ABD)=0.021 IC(ABC)=0.03

IC(CD)=0.015 IC (BC)=0.1IC (BD)=0.1
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Example: Branch and Bound Search 4/8

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.     

selected feature        removed feature

(All)=0.0

Knowledge Discovery in Databases II:  High-Dimensional Data 43

A B C D

//Choose the 
best one 
and generate 
its subspaces

IC (BCD)=0.0
IC(ACD)=0.015 IC(ABD)=0.021 IC(ABC)=0.03

IC(CD)=0.015 IC (BC)=0.1IC (BD)=0.1

IC(D)=0.02 IC(C)=0.03

aktBound = 0.02

//Desired dimensionality reached, 
what is the bound?



DATABASE
SYSTEMS
GROUP

Example: Branch and Bound Search 5/8

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.     

selected feature        removed feature

(All)=0.0
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A B C D

IC (BCD)=0.0
IC(ACD)=0.015 IC(ABD)=0.021 IC(ABC)=0.03

IC(CD)=0.015 IC (BC)=0.1IC (BD)=0.1

IC(D)=0.02 IC(C)=0.03

aktBound = 0.02

//Backward elimination using the bound

IC(BD) >aktBound stop branching
IC(BC) >aktBound stop branching
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Example: Branch and Bound Search 6/8

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.     

selected feature        removed feature

(All)=0.0
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A B C D

IC (BCD)=0.0
IC(ACD)=0.015 IC(ABD)=0.021 IC(ABC)=0.03

IC(CD)=0.015 IC (BC)=0.1IC (BD)=0.1

IC(D)=0.02 IC(C)=0.03

aktBound = 0.02

//Backward elimination using the bound

IC(ACD) <aktBound do branching
IC(AD)>aktBound stop branching
IC(AC)>aktBound stop branching

IC(AC)=0.03IC (AD)=0.1
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Example: Branch and Bound Search 7/8

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.     

selected feature        removed feature

(All)=0.0
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A B C D

IC (BCD)=0.0
IC(ACD)=0.015 IC(ABD)=0.021 IC(ABC)=0.03

IC(CD)=0.015 IC (BC)=0.1IC (BD)=0.1

IC(D)=0.02 IC(C)=0.03

aktBound = 0.02

//Backward elimination using the bound

IC(ABD)>aktBound stop branching
IC(ABC)>aktBound stop branching

IC(AC)=0.03IC (AD)=0.1



DATABASE
SYSTEMS
GROUP

Backward elimination: Branch and Bound Search

Given: A classification task over the feature space F.

Aim: Select the k best dimensions to learn the classifier.

Backward-Elimination based in  Branch and Bound:

FUNCTION BranchAndBound(Featurespace F, int k)

queue.init(ASCENDING);

queue.add(F, quality(F))

curBound:= INFINITY;

WHILE queue.NotEmpty() and aktBound > queue.top() DO

curSubSpace:= queue.top();

FOR ALL Subspaces U of curSubSpace DO

IF U.dimensionality() = k THEN

IF quality(U)< curBound THEN

curBound := quality(U);

BestSubSpace := U;

ELSE

queue.add(U, quality(U));

RETURN BestSubSpace

Knowledge Discovery in Databases II:  High-Dimensional Data 48
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Subspace Inconsistency (IC)

• Idea: Having identical vectors u ,v ( vi = ui 1 i  d) in subspace U but the class 
labels are different (C(u) C(v) )

 the subspace displays an inconsistent labeling

• Measuring the inconsistency of a subspace U

– XU(A):  Amount of all identical vectors A in U

– Xc
U(A): Amount of all identical vectors in U having class label C

• ICU(A): inconsistency w.r.t.  A in U

Inconsistency of  U:

Monotonicity:
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Branch and Bound search - overview

Advantage:

• Monotonicity allows efficient search for optimal solutions

• Well-suited for binary or discrete data
(identical vectors are very likely with decreasing dimensionality)

Disadvantages:

• Useless without groups of identical features (real-valued vectors)

• Worse-case runtime complexity remains exponential in d
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Selected methods in this course

1. Forward Selection and Feature Ranking

– Information Gain , 2-Statistik, Mutual Information

2. Backward Elimination and Random Subspace Selection

– Nearest-Neighbor criterion, Model-based search

– Branch and Bound Search

3. k-dimensional projections

– Genetic Algorithms for Subspace Search

– Feature Clustering for Unsupervised Problems
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k-dimensional projections

• Idea: Select n random subspaces having the target dimensionality k out of the

possible subspaces and evaluate each of them.

• Application:

– Needs quality measures for complete subspaces 

– Trade-off between quality and effort depends on k.

• Disadvantages: 

– No directed search for combining well-suited and non-redundant features.

– Computational effort and result strongly depend on the used quality measure and 
the sample site.

• Randomization approaches
– Genetic algorithms

– k-medoids feature clustering
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Genetic Algorithms

• Idea:  Randomized search through genetic algorithms

Genetic Algorithms: 

• Encoding of the individual states in the search space: bit-strings 

• Population of solutions := set of k-dimensional subspaces

• Fitness function: quality measure for a subspace

• Operators on the population:

– Mutation: dimension di in subspace U is replaced by dimension dj with a likelihood of x%

– Crossover: combine two subspaces U1, U2

o Unite the features sets of U1 and  U2. 

o Delete random dimensions until dimensionality is k

• Selection for next population: All subspaces having at least a quality of y% of 
the best fitness in the current generation are copied to the next generation.

• Free tickets: Additionally each subspace is copied to the next generation with a 
probability of u% into the next generation.
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Genetic Algorithm: Schema

Generate initial population

WHILE Max_Fitness > Old_Fitness DO

Mutate current population

WHILE nextGeneration < PopulationSize DO 

Generate new candidate from pairs of old subspaces

IF K has a free ticket or K is fit enough THEN

copy K to the next generation

RETURN fittest subspace
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Genetic Algorithms

Remarks: 

• Here: only basic algorithmic scheme  (multiple variants)

• Efficient convergence by “Simulated Annealing”

(Likelihood of free tickets decreases with the iterations)

Advantages:

• Can escape from local extreme values during the search

• Often good approximations for optimal solutions

Disadvantages:

• Runtime is not bounded can become rather inefficient

• Configuration depends on many parameters which have to be tuned to achieve 
good quality results in efficient time

Knowledge Discovery in Databases II:  High-Dimensional Data 55



DATABASE
SYSTEMS
GROUP

Feature-clustering

Given: A feature space F and an unsupervised data mining task.

Target: Reduce F to a subspace of k (original) dimensions while reducing 
redundancy.

Idea: Cluster the features in the space of objects and select one representative 
feature for each of the clusters.
(This is equivalent to clustering in a transposed data matrix)

Typical example: item-based collaborative filtering
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Feature-clustering

• Feature similarity, e.g.,
– Cosine similarity

– Pearson correlation: 

• Algorithmic scheme: 
– Cluster features with a k-medoid clustering method based on correlation

– Select the medoids to span the target data space

• Remark: 
– For group/cluster of dependent features there is one representative feature

– Other clustering algorithms could be used as well.

– For large dimensionalities, approximate clustering methods are used due to there linear 
runtime (c.f., BIRCH upcoming lectures)
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Feature-Clustering based on correlation

Advantages:

• Depending on the clustering algorithm quite efficient

• Unsupervised method

Disadvantages:

• Results are usually not deterministic (partitioning clustering)

• Representatives are usually unstable for different clustering methods and 
parameters.

• Based on pairwise correlation and dependencies

=> multiple dependencies are not considered
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Feature selection: overview

• Forward-Selection: Examines each dimension D‘ {D1,,..,Dd}. and selects the k-
best to span the target space.

– Greedy Selection  based on Information Gain, 2 Statistics or Mutual Information

• Backward-Elimination: Start with the complete feature space and successively 
remove the worst dimensions.

– Greedy Elimination with model-based and nearest-neighbor based approaches

– Branch and Bound Search based on inconsistency

• k-dimensional Projections:  Directly search in the set of k-dimensional 
subspaces for the best suited

– Genetic algorithms (quality measures as with backward elimination)

– Feature clustering based on correlation
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Feature selection: discussion

• Many algorithms based on different heuristics

• There are two reason to delete features:

– Redundancy: Features can be expressed by other features.

– Missing correlation to the target variable

• Often even approximate results are capable of increasing efficiency and quality 
in a data mining tasks

• Caution: Selected features need not have a causal connection to the target 
variable, but both observation might depend on the same mechanisms in the 
data space (hidden variables).

• Different indicators to consider in the comparison of before and after selection 
performance

– Model performance, time, dimensionality, …
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What you should know by now

• Reasons for using feature selection 

• Curse of dimensionality

• Forward selection and feature ranking

– Information Gain

– 2 Statistics

– Mutual Information

• Backward Elimination

– Model-based subspace quality

– Nearest neighbor-based subspace quality

– Inconsistency and Branch & Bound search

• k-dimensional projections

– Genetic algorithms

– Feature clustering
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