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1. Introduction and challenges of high dimensionality

2. Feature Selection

[3. Feature Reduction and Metric Learning }

4. Clustering in High-Dimensional Data
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Idea: Instead of removing features, try to find a low dimensional
feature space generating the original space as accurate as

possible:

— Redundant features are summarized

— lIrrelevant features are weighted by small values

Methods being discussed in the course:

Reference point embedding
Principal component analysis (PCA)
Singular value decomposition(SVD)

Fischer-Faces (FF) and Relevant Component Analysis(RCA)

Large Margin Nearest Neighbor (LMNN)
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Idea: Describe the position of each object by their distances to a set of reference
points.

Given: Vector space F =D, x..x D  where D ={D, ,..,D,}.
Target: A k-dimensional space R which yields optimal solutions to given data
mining task.

Method: For each reference point R = {r,,..,r,} and a distance measure d(e,e):

Transform vector x € F: d(r,X)

d(r;,x)
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e Distance measure is usually determined by the application.

e Selection of reference points:
— use centroids of the classes or cluster-centroids
— using points on the margin of the data space

Advantages :
e Simple approach which is easy to implement

e The transformed vectors yields lower and upper bounds of the
exact distances

Disadvantages:

e Even using d reference points does not reproduce a d-
dimensional feature space

e Selecting good reference points is relevant and difficult
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Principal Component Analysis (PCA):

A simple example 1/3 LMU

Consider the grades of students in Physics and Statistics.

If we want to compare among the students, which grade should be more
discriminative? Statistics or Physics?

Stat

60 80 100

2040

0

Physics since the variation along
that axis is larger.

2040 60 80 100
Phys Based on:
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html|
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Principal Component Analysis (PCA):
A simple example 2/3 LMU

e Suppose now the plot looks as below.

e Whatis the best way to compare students now?

=tat

We should take linear
combination of the two grades to
get the best results.

100
I

a0
|

A

Here the direction of maximum
o variance is clear.

40
|

20
|

0
|

| | | | | | In general - PCA
o 20 40 &0 80 100

Fhys

Based on:
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html

Knowledge Discovery in Databases Il: High-Dimensional Data



w

DATABASE
SYSTEMS
GROUP

Principal Component Analysis (PCA):
A simple example 3/3

e PCA returns two principal components

— The first gives the direction of the maximum spread of the data.

MU

— The second gives the direction of maximum spread perpendicular to the first

Stat

i
D —
o (0.695, 0|719)
o _|
w
= _|
= =]
<
=
o (0.719. -(1.695)
D e

0 20 40 60 80 100
Phrys

Based on:

http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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The data starts off with some amount of variance/information in it. We would
like to choose a direction u so that if we were to approximate the data as lying

in the direction/subspace corresponding to u, as much as possible of this
variance is still retained.

X
b4 % X X \ s:sx." b4
x x % Iltyk
b s’
Initial data Direction 1 : :
Direction 2

Idea: Choose the direction that maximizes the variance of the projected data
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e PCA computes the most meaningful basis to re-express a noisy, garbled data
set.

e Think of PCA as choosing a new coordinate system for the data, the principal
components being the unit vectors along the axes

e PCA asks: Is there another basis, which is a linear combination of the original
basis, that best expresses our dataset?

e General form: PX=Y
where P is a linear transformation, X is the original dataset and Y the re-

representation of this dataset.

— P is a matrix that transforms X into Y

— Geometrically, P is a rotation and a stretch which again transforms X into Y

— The eigenvectors are the rotations to the new axes

— The eigenvalues are the amount of stretching that needs to be done
e The p’s are the principal components

— Directions with the largest variance ... those are the most important, most principal.

Knowledge Discovery in Databases ll: High-Dimensional Data 10
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Idea: Rotate the data space in a way that the principal components are placed

along the main axis of the data space
=> Variance analysis based on principal components

..'.. =) ...,.;..- ." ) ..... .: :

Rotate the data space in a way that the direction with the largest variance is placed on
an axis of the data space

Rotation is equivalent to a basis transformation by an orthonormal basis

— Mapping is equal of angle and preserves distances:

x-B=x(b*ll,...,b*,d)z(<x,b*,1>,...,<x,b*,d>) mit V(b,b,)=0A V

i ] 1<i<d

b|=1

B is built from the largest variant direction which is orthogonal to all previously selected
vectors in B.

Knowledge Discovery in Databases ll: High-Dimensional Data 11



e Basics of statistical measures:

— variance

— covariance

e Basics of linear algebra:
— Matrices
— Vector space
— Basis

— Eigenvectors, eigenvalues




e A measure of the spread of the data

n

VAR<x>=§§<xi—u>2

e Variance refers to a single dimension, e.g., height
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e A measure of how much two random variables vary together

COV(X,Y)= 3 (6 -y, - )

e What the values mean
— Positive values: both dimensions move together (increase or decrease)
— Negative values: while one dimension increases the other decreases
— Zero value: the dimensions are independent of each other.

Knowledge Discovery in Databases ll: High-Dimensional Data 14
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e Describes the variance of all features and the pairwise
correlations between them

[ VAR(X,) -+ COV(X,X,)
S = : - s
COV(X4, X,) -+ VAR(X,)
VAR(X ): %Z;:(Xi _/U)Z COV(X ’Y): % inl (Xi — Hy )(Yi _:Uy)

e Properties:

— For d-dimensional data, dxd covariance matrix
— symmetric matrix as COV(X,Y)=COV(Y,X)

Knowledge Discovery in Databases ll: High-Dimensional Data
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Data matrix

Vl Vl,l

Vv Vi1

=1

Vl_ﬁ

Vy~f

Vl,d

Vn,d

Centered data matrix:

Given n vectors v; € IR% nxd matrix

is called data

Centroid/mean vector of D:

matrix

LMU

°
o—e-
°
®
Vv
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e The covariance matrix can be expressed in terms of the centered
data matrix as follows:

[ VAR(X,) - COV(X,X,) .

ZD — : : :HDcTentDcent
\COV(Xd’Xl) VAR(Xd) J
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e Inner (dot) product of vectors x, y:
Vi )
X'y:XT'y:(Xl Xd)' : :<X1y>:ZXi°Yi
Yq -
e Quter product of vectors x, y:

Xy XY o XYy
x@y=x -y'=| I l(yy = y)=| T
X Xa¥1 - X3Yq

e Matrix multiplication:
A=la;],.,:B=|b

Dii L pea
AB=C=|c;],.,.-where c; =row,(4)-col (B)

m=n

e Length of a vector e
— Unitvector:if | |a| |=1 HQH - Ndad :1‘/;@}.

Knowledge Discovery in Databases Il: High-Dimensional Data
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e Let D be dxd square matrix.
e Anon zero vector v, is called an eigenvector of D if and only if
there exists a scalar A; such that: Dv=Av..

— A, is called an eigenvalue of D.

e How to find the eigenvalues/eigenvectors of D?
— By solving the equation: det(D-Al,,4)=0 we get the eigenvalues

o I, is the identity matrix
— For each eigenvalue A, we find its eigenvector by solving (D-A,)v=0

Knowledge Discovery in Databases ll: High-Dimensional Data
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2 7 10y {2-a2 7
A- Al = ny -
(—1 —5} (D J (—1 —5—,;1]

det[A— AN = (2= A)[-6-A)+7=A"+41-5=(21+5)( 1-1)

2 eigenvalues: A=-5 A4 =1

Find the eigenvector of A,

s (1 Jo;

Find the eigenvector of A,

(45l

Knowledge Discovery in Databases ll: High-Dimensional Data
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e Let D be dxd square matrix.
e Eigenvalue decomposition of the data matrix

D=VAV'
d
V=V, V) mitV{v,v;)=0 und\/[v]=1
1=1

1# j

A 0) I

Every eigenvector is a unit vector

0 Ay

The eigenvectors are linearly independent
The corresponding eigenvalues

e The columns of V are the eigenvectors of D
e The diagonal elements of A are the eigenvalues of D

Knowledge Discovery in Databases ll: High-Dimensional Data 23
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Feature reduction using PCA
1. Compute the covariance matrix 2
2. Compute the eigenvalues and the corresponding eigenvectors of 2
3. Select the k biggest eigenvalues and their eigenvectors (V*)
4. The k selected eigenvectors represent an orthogonal basis

5. Transform the original n xd data matrix D with the d x k basis V*:

(X, ) /<x1,v1’> <X1,VL>\
D.V =| : (Vl””"VI’(): : . :
(Xn ) (X Vi) o (X Vi)

Knowledge Discovery in Databases ll: High-Dimensional Data 25
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e QOriginal
(3,4)
8]
(12) ° w3
o
O @

e Transformed data

1 2 3/vVZ 1/V2
2 1 1/v2 =1/v2 ] | 3/v2 -1/V2
3 4 1/vV2 12| TV 12
Lo T/V2 -1/V2

MU

Eigenvectors

a [E

In the rotated coordinate system

3//2,1/2) (7/2,1/2)
O O
O O
3//2,-11/2) 7 S2,-1y2)

Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf
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Let k be the number of top eigenvalues out of d (d is the number

of dimensions in our dataset)
e The percentage of variance in the dataset explained by the k

E:'_ A

d
i=1/1i

e Similarly, you can find the variance explained by each principal

component
e Rule of thumb: keep enough to explain 85% of the variation

Knowledge Discovery in Databases ll: High-Dimensional Data 27
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e Example: iris dataset (d=4), results from R

e 4 principal components

sepal.
sepal.

Fetal

Fetal
1

Importance of components:

Culative Proportion

Length 0.
Width -0.
Length 0.
LWideh

a.

FC1
S0358236
I0E3 602
a7e73a1
S674952

FC1

PCA results interpretation

PCE

25495957
03914419
LO337350E
LO3545628

PCz

PC3

083547
3311625
218927793
5329003

PC3

Knowledge Discovery in Databases ll: High-Dimensional Data

FC4

19147575
LO9125405
LT361873E
53044745

PC4
Proportion of Variance 0.7331 D.2268 0.03325 0.00686

0.7331 0.2599 0.99314 1.00000

LMU
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Singular Value Decomposition (SVD)

LMU

Generalization of the eigenvalue decomposition
Let D,,,, be the data matrix and let k be its rank (max number of independent rows/ columns).
We can decompose D into matrices O, S, A as follows

D =0OSA’
— d — < k > +— k — «— d —
I _X1,1 Xl,dw _01,1 Ol,k_
2 07 [ay, a,, | |
l _O ﬂ'k_ | A1 A g | r
RO Xn,dJ | Oy o tn,k_

O is an n x k column-orthonormal matrix ; that is, each of its columns is a unit vector and the dot product
of any two columns is O.

S is a diagonal k x k matrix; that is, all elements not on the main diagonal are 0. The elements of S are
called the singular values of D.

A is a k x d column-orthonormal matrix. Note that we always use A in its transposed form, so it is the rows
of AT that are orthonormal.

Decomposition based on numerical algorithms.

Knowledge Discovery in Databases Il: High-Dimensional Data
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e D: ratings of movies by users S55: ¢
. JQE I 11 00
e The corresponding SVD Jim 33300
Jack 535500
Tl 00044
- - - - Jenny 000535
1 1 1 0 0 d4 0 Jane |0 00 22
q q 3 D [] ‘12 n Ratings of movies by users
1 4400 96 0 124 0 58 58 5% 0 0
> 5 5 0 01=(.70 0 0 95 o 0o 0 .71 .71
00 0 4 4 0 .60 .
00005 5 0 .75
00 0 2 2| 0 .30 |
D (0] S AT

e Interpretation of SVD
— O shows two concepts “science fiction” and “romance”
— S shows the strength of these concepts

— Arelates movies to concepts

Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf
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e Aslightly different D T -
_ 585 82
e The corresponding SVD e oG
Jim 33300
John 4 4 4 00
1 1 1 0 0] 13 .02 —.01 ] Jack [5 5500
3 3 3 00 A1 07 -=.03 Ji [0 20 4 4
4 4 400 55 .09 —.04 124 0 0 5 59 56 .09 .09 Jdemmy 0O 0055
55 5 0 0= |68 .11 —05 0 95 0 12 —02 .12 —69 —.69 Jane [0 10 2 2
002 0 4 4 15 —.59 .65 0 0 1.3 40 —80 .40 .09 .09
0005 5 07 =73 —.67
(01 0 2 2 | 07 —20 32 |
D 0 S AT

e Interpretation of SVD
— O shows three concepts “science fiction” and “romance” and “”’?
— S shows the strength of these concepts
— A relates movies to concepts

Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf
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e To reduce dimensionality, we can set the smallest singular values
to 0in S and eliminate the corresponding column in O and row in
AT

— Check previous example

e How Many Singular Values Should We Retain?

— Rule of thumb: retain enough singular values to make up 90% of the energy
in2

— Energy defined in terms of the singular values (matrix S)

— In previous example, total energy is: (12.4)? + (9.5)% + (1.3)?= 245.70

— The retained energy is: (12.4)% + (9.5)%>= 244.01 >99%

Knowledge Discovery in Databases ll: High-Dimensional Data 32
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Apply SVD to the covariance data:

1 Recall O is orthanormal matrix, so O'O is the identity matrix
Z:D — H D;rent Dcent
N Recall S is a diagonal matrix,
D = OSA transposing has no effect
312 -0
>, =(0SATJ OSA” = AST(OTO)SA" = A(STS)AT = Al i . i |AT
o --- gi

e Here: Ais a matrix of eigenvectors
e Eigenvalues of the covariance matrix = squared singular values of D

Conclusion: Eigenvalues and eigenvectors of the covariance matrix £ can be determined
by the SVD of the data matrix D.

= SVD is sometimes a better way to perform PCA (Large dimensionalities e.g., text data)
—> SVD can cope is dependent dimensions (k<d is an ordinary case in SVD)

33
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An extension of PCA using techniques of kernel

Kernel PCA

-8

methods.

LMU

Left figure displays a 2D example in which PCA is effective because data lie near a linear
subspace.
In the right figure though, PCA is ineffective, because data the data lie near a parabola.
In this case, the PCA compression of the data might project all points onto the orange

line, which is far from ideal.

Knowledge Discovery in Databases ll: High-Dimensional Data
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Basic idea
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e Project the data into a higher dimensional space

g

ak

=
=2,

‘2t v':_'. &

v od 0

2l

ol

2% )

-1 a 2 3 & 5

These classes are linearly inseparable in
the input space

L) 2 _4__.__,-"&"{ 4
o
ERUSI R | e I i O%
. b 0 rrs ’

B '

We can make the problem linearly
separable by a simple mapping
®:R* >R’

(%, %) = (X%, %, % +X,)

Knowledge Discovery in Databases Il: High-Dimensional Data
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e High-dimensional mapping can seriously increase computation
time.

e Can we get around this problem and still get the benefit of high
dimensions?

e Yes! Kernel Trick
Klx,.x,)=¢(x)" 4(x))

e Different types of kernels
— Polynomial
— Gaussian

Knowledge Discovery in Databases ll: High-Dimensional Data
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e For degree-d polynomials, the polynomial kernel is defined as
K(z,y) = (z'y+ )

e Example:
d: R> - R?
(T1,T2) — (21, 22, 23) := (I% \/(2)$1$2=3?%)
X A Z3
. % ‘ 2 y . « *
by
X f'-._.__-_j“‘x A y X 5 .
3 xff; 5 - K'\\ ¥ Y .;._, \J\ * b4
[ o . 4y 1 oN b
ll\ o -'r =~ _J} x -
) x\\. 2 jf;x N\ _.i-. ;,J\K ¥ ~I
;‘“-—-“‘”' X AN — -
® 1‘\.-
X X " X _
) o

Image from: http://i.stack.imgur.com/qZV3s.png
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Connection between the orthonormal busies O und A: D = OSA'’

e Ais ak-dimensional basis of eigenvectors of D"-D
(cf. previous slide)

e Analogously: O is a k-dimension basis of Eigenvectors D-DT
— D-DTis a kernel matrix for the linear kernell <x,y> (cf. SVMs in KDD |)
— The vectors of A and O are connected in the following way:

D.,=0SA" =0'D_,=0"0SA" =SA" =S '0O'D

Zox

The jth d—dlmen5|onal eigenvector in A is a linear combination of the vectors in D based on

_ AT
cent = A

cent cent

k-dimensional j* eigenvectors as weighting vector (the i" values is the weight for vector d)

= A basis in vector space corresponds to a basis in the kernel space

—> A PCA can be computed for any kernel space based on the kernel matrix
(Kernel PCA allows PCA in a non-linear transformation of the original data)

Knowledge Discovery in Databases ll: High-Dimensional Data
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Let K(x, y)=(®(x),®(y)) be a kernel for the non-linear transformation @(x).
Assume: K(x,y) is known, but ®(x) is not explicitly given.

K(x.l,xl) K(x,x, )

i’ *n

- Let K be the kernel matrix of D w.r.t. K(x,y) : K = : , :
K(x,x) - K(x,x)

n’ n'“*n

- The eigenvalue decomposition of K : K = VSV’
where V is a n-dimensional basis from eigenvectors of K

-  Tomap D w.r.t. Vthe principal components in the target space the vectors x; in
D must be transformed using the kernel K(x,y).

<Cb(y)'ivil®(xi )> iZil:Vi,1<(D(y)’cD(Xi )> ZVMK(Y’ Xi)

ot Sw,at0))| | Sustobot)| | Suktn)
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SVD and PCA are standard problems in Algebra.

e Matrix decomposition can be formulated as a optimization task.

e This allows a computation via numerical optimization algorithms

e In this formulation the diagonal matrix is often distributed to both basis

matrixes
\/Z e 0 \/Z e 0

D=ASB" =| A : . ..t BT [=uVT

0\//17 o\/fk

e As an optimization problem: L(U,V)=HD—UVTHi

(squared Frobenius Norm of a matrix) HM Hzf = Zn:i‘m-'j‘z

1
i=1 j=1

subject to: Vv Z<Vi,vj>:O/\<ui,uj>:0

i#]

Knowledge Discovery in Databases ll: High-Dimensional Data 40
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Fischer Faces

Idea: Use examples to increase the discriminative
power of the target space.

Target:
e Minimize the similarity between objects from

-
o of"lo o

zw{

01
0 0

MU

different classes.
(between class scatter matrix: X,)

2,: Covariance matrix of the class centroids

Z:uc Eb :i

ceC

— _T - —

Iy o~ H

\C

:um_ﬁ :um_ﬁ_

2%

CeC

ZW
cr

e Maximize similarity between objects belonging

to the same class
(within class scatter matrix X))

>.: Average covariance matrix of all classes.
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T

. . . X -2 X . o
Determine basis x; in a way that S =———=— is maximized
i S ) SEEDINED ¢
subject to = j:(x,x;)=0 i aw K

Computation: Determine a orthonormal basis with dimensionality
d‘ < d. Reduction to the eigenvalue decomposition.

ﬂ’l ' X :ﬁfl 'Zw_l'zb

Remark: The vector having the largest eigenvalue corresponds to
the normal vector of the separating hyper plane in linear
discriminant analysis or Fisher‘s discriminant analysis. (cf. KDD 1)
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Fischer Faces are limited due to nature of X, and X, :

Assumption of mono-modal classes:
each class is assumed to follow a multivariate
=> distribution of class centroids 2,

=> within correlation in 2,
Conclusion: Multi-modal or non-Gaussian distribution are not modeled well

Relevant Component Analysis:
e Remove linear dependent features (e.g. with SVD)
e Given: chunks data which are known to consist of similar objects.

=> replace X, with an within-chunk matrix: Ve = L > L C'C
‘C‘ CieC Cl‘
e The covariance of all data objects is dominated by dissimilarity s _ 1 D'D
=> replace 2, with the covariance matrix of D ‘D‘

Knowledge Discovery in Databases ll: High-Dimensional Data
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Observation: Objects in a class might vary rather strongly.

Idea: Define an optimization problem only considering the distances the most

similar objects from the same and other classes.

Define: y,; =1 if x;and x; are from the same class else y; =0

Target: L:IR?—IR? linear transformation of the vector space: D(x,y)=|L(x)-L(y)’
Target neighbors: T, k-nearest neighbors from the same class
1;;=1: x; is a target neighbor of x; else 7,, =0
Training by minimizing the following error function:
n n 2 n n n 2
E(L): sz,j HL(Xi )_ L(Xj )‘ +CZZIZ77L] (1_ Yi, )L"'HL(Xi )_ L(Xj M _HL(Xi )_ L(XI ]‘Zl
i=1 j=1 i=1 j=1 I=1
where [z], = max(z,0)

Problem is a semi-definite program
=> Standard optimization problem where the optimization paramters must
form a semi-definite matrix. Here the matrix is the basis transformation L(x).
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e Linear basis transformation yield a rich framework to optimize feature spaces
e Unsupervised methods delete low variant dimensions (PCA und SVD)
e Kernel PCA allows to compute PCA in non-linear kernel spaces

e Supervised methods try to minimize the within class distances while
maximizing between class distances

e Fischer Faces extend linear discriminant analysis based on the assumption that
all classes follow Gaussian distributions

e Relevant Component Analysis(RCA) generalize this notion and only minimize
the distances between chunks of similar objects

e Large Margin Nearest Neighbor(LMNN) minimizes the distances to the nearest
target neighbors and punish small distances to non-target neighbors in other
classes

Knowledge Discovery in Databases ll: High-Dimensional Data
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