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Outline

1. Introduction and challenges of high dimensionality

2. Feature Selection

3. Feature Reduction and Metric Learning

4. Clustering in High-Dimensional Data
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Introduction

Idea: Instead of removing features, try to find a low dimensional 
feature space generating the original space as accurate as 
possible:
– Redundant features are summarized

– Irrelevant features are weighted by small values

Methods being discussed in the course:

• Reference point embedding 

• Principal component analysis (PCA)

• Singular value decomposition(SVD)

• Fischer-Faces (FF) and Relevant Component Analysis(RCA)

• Large Margin Nearest Neighbor (LMNN)
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Reference Point Embedding 1/2

Idea: Describe the position of each object by their distances to a set of reference 
points.

Given: Vector space F =D1×..× Dn where D ={D1,,..,Dn}.

Target: A k-dimensional space R which yields optimal solutions to given data 
mining task.

Method: For each reference point R = {r1,,..,rk} and a distance measure  d(,):

Transform vector x  F:
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Reference Point Embedding  2/2

• Distance measure is usually determined by the application.

• Selection of reference points:
– use centroids of the classes or cluster-centroids

– using points on the margin of the  data space 

Advantages :

• Simple approach which is easy to implement

• The transformed vectors yields lower and upper bounds of the 
exact distances

Disadvantages:

• Even using d reference points does not reproduce a d-
dimensional feature space

• Selecting good reference points is relevant and difficult
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Principal Component Analysis (PCA): 
A simple example 1/3

• Consider the grades of students in Physics and Statistics.

• If we want to compare among the students, which grade should be more 
discriminative? Statistics or Physics?
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Physics since the variation along 
that axis is larger.

Based on:
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Principal Component Analysis (PCA): 
A simple example 2/3

• Suppose now the plot looks as below. 

• What is the best way to compare students now?
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We should take linear 
combination of the two grades to 
get the best results. 

Here the direction of maximum 
variance is clear.

In general  PCA

Based on: 
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Principal Component Analysis (PCA): 
A simple example 3/3

• PCA returns two principal components

– The first gives the direction of the maximum spread of the data. 

– The second gives the direction of maximum spread perpendicular to the first 
direction
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Based on: 
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Intuition

• The data starts off with some amount of variance/information in it. We would 
like to choose a direction u so that if we were to approximate the data as lying 
in the direction/subspace corresponding to u, as much as possible of this 
variance is still retained.
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Initial data Direction 1
Direction 2

Idea: Choose the direction that maximizes the variance of the projected data
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Principal Component Analysis (PCA)

• PCA computes the most meaningful basis to re-express a noisy, garbled data 
set.

• Think of PCA as choosing a new coordinate system for the data, the principal 
components being the unit vectors along the axes

• PCA asks: Is there another basis, which is a linear combination of the original 
basis, that best expresses our dataset?

• General form: PX=Y

where P is a linear transformation, X is the original dataset and Y the re-
representation of this dataset.

– P is a matrix that transforms X into Y

– Geometrically, P is a rotation and a stretch which again transforms X into Y

– The eigenvectors are the rotations to the new axes

– The eigenvalues are the amount of stretching that needs to be done

• The p’s are the principal components

– Directions with the largest variance … those are the most important, most principal.
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Principal Component Analysis (PCA)

Idea: Rotate the data space in a way that the principal components are placed 
along the main axis of the data space
=> Variance analysis based on principal components

• Rotate the data space in a way that the direction with the largest variance is placed on 
an axis of the data space

• Rotation is equivalent to a basis transformation by an orthonormal basis
– Mapping is equal of angle and preserves distances:

• B is built from the largest variant direction which is orthogonal to all previously selected 
vectors in B.
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What do we need to know for PCA

• Basics of statistical measures: 
– variance 

– covariance

• Basics of linear algebra:
– Matrices

– Vector space

– Basis

– Eigenvectors, eigenvalues
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Variance

• A measure of the spread of the data

• Variance refers to a single dimension, e.g., height
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Covariance

• A measure of how much two random variables vary together

• What the values mean
– Positive values: both dimensions move together (increase or decrease)

– Negative values: while one dimension increases the other decreases

– Zero value: the dimensions are independent of each other.
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Covariance matrix

• Describes the variance of all features and the pairwise 
correlations between them

• Properties:
– For d-dimensional data, dxd covariance matrix

– symmetric matrix as COV(X,Y)=COV(Y,X) 
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Data matrix

• Given n vectors vi  IRd, nd matrix 

is called data matrix

• Centroid/mean vector of D:

• Centered data matrix:
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Covariance matrix and centered data matrix

• The covariance matrix can be expressed in terms of the centered 
data matrix as follows:
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Vector/ Matrix basics

• Inner (dot) product of vectors x, y:

• Outer product of vectors x, y: 

• Matrix multiplication:

• Length of a vector
– Unit vector: if ||a||=1
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Eigenvectors and eigenvalues

• Let D be dxd square matrix.

• A non zero vector vi is called an eigenvector of D if and only if  
there exists a scalar λi such that: Dvi=λivi.
– λi is called an eigenvalue of D.

• How to find the eigenvalues/eigenvectors of D?
– By solving the equation: det(D-λIdxd)=0 we get the eigenvalues

o Idxd is the identity matrix

– For each eigenvalue λi, we find  its eigenvector by solving (D-λi)vi=0

Knowledge Discovery in Databases II:  High-Dimensional Data 21
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Example

Knowledge Discovery in Databases II:  High-Dimensional Data 22

2 eigenvalues:

Find the eigenvector of λ1

Find the eigenvector of λ2
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Eigenvectors decomposition

• Let D be dxd square matrix.

• Eigenvalue decomposition of the data matrix

• The columns of V are the eigenvectors of D

• The diagonal elements of Λ are the eigenvalues of D
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PCA steps

Feature reduction using PCA

1. Compute the covariance matrix 

2. Compute the eigenvalues and the corresponding eigenvectors of 

3. Select the k biggest eigenvalues and  their eigenvectors (V‘)

4. The k selected eigenvectors represent an orthogonal basis

5. Transform the original n  d data matrix D with the d  k basis V‘:
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Example of transformation

• Original

• Transformed data
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Eigenvectors

In the rotated coordinate system

Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf
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Percentage of variance explained by PCA

• Let k be the number of top eigenvalues out of d (d is the number 
of dimensions in our dataset)

• The percentage of variance in the dataset explained by the k 
selected eigenvalues is:

• Similarly, you can find the variance explained by each principal 
component

• Rule of thumb: keep enough to explain 85% of the variation
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PCA results interpretation

• Example: iris dataset  (d=4), results from R

• 4 principal components 
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Singular Value Decomposition (SVD)

Generalization of the eigenvalue decomposition

Let Dnxn be the data matrix and let k be its rank (max number of independent rows/ columns). 

We can decompose D into matrices O, S, A as follows

O is an n × k column-orthonormal matrix ; that is, each of its columns is a unit vector and the dot product 
of any two columns is 0.

S is a diagonal k x k matrix; that is, all elements not on the main diagonal are 0. The elements of S are 
called the singular values of D. 

A is a k x d column-orthonormal matrix. Note that we always use A in its transposed form, so it is the rows 
of AT that are orthonormal. 

Decomposition based on numerical algorithms.
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Example 1 

• D: ratings of movies by users

• The corresponding SVD

• Interpretation of SVD

– O shows two concepts “science fiction” and “romance”

– S shows the strength of these concepts

– A relates movies to concepts
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Example 2 

• A slightly different D

• The corresponding SVD

• Interpretation of SVD

– O shows three concepts “science fiction” and “romance” and “”?

– S shows the strength of these concepts

– A relates movies to concepts
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Dimensionality reduction with SVD

• To reduce dimensionality, we can set the smallest singular values 
to 0 in S and eliminate the corresponding column in O and row in 
AT

– Check previous example

• How Many Singular Values Should We Retain? 
– Rule of thumb: retain enough singular values to make up 90% of the energy 

in Σ

– Energy defined in terms of the singular values (matrix S)

– In previous example, total energy is:  (12.4)2 + (9.5)2 + (1.3)2 = 245.70

– The retained energy is: (12.4)2 + (9.5)2 = 244.01 >99% 
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Connection between SVD and PCA

Apply SVD to the covariance data:

• Here: A is a matrix of eigenvectors
• Eigenvalues of the covariance matrix = squared singular values of D

Conclusion: Eigenvalues and eigenvectors of the covariance matrix  can be determined 
by the SVD of the data matrix D.

 SVD is sometimes a better way to perform PCA (Large dimensionalities e.g., text data)
 SVD can cope is dependent dimensions (k<d is an ordinary case in SVD)
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Recall O is orthonormal matrix, so OTO is the identity matrix 

Recall S is a diagonal matrix, 
transposing has no effect
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Kernel PCA

An extension of PCA using techniques of kernel methods.
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Left figure displays a 2D example in which PCA is effective because data lie near a linear 
subspace. 
In the right figure though, PCA is ineffective, because data the data lie near a parabola. 
In this case, the PCA compression of the data might project all points onto the orange 
line, which is far from ideal. 
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Basic idea

• Project the data into a higher dimensional space 
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These classes are linearly inseparable in 
the input space

We can make the problem linearly
separable by a simple mapping
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Kernel trick

• High-dimensional mapping can seriously increase computation 
time.

• Can we get around this problem and still get the benefit of high 
dimensions?

• Yes! Kernel Trick

• Different types of kernels
– Polynomial

– Gaussian

– …

Knowledge Discovery in Databases II:  High-Dimensional Data 36
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Example: Polynomial kernel

• For degree-d polynomials, the polynomial kernel is defined as

• Example:
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Image from: http://i.stack.imgur.com/qZV3s.png
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Kernel PCA

Connection between the orthonormal busies O und A:

• A is a k-dimensional basis of eigenvectors of DTD
(cf. previous slide)

• Analogously: O is a k-dimension basis of Eigenvectors DDT

– DDT is a kernel matrix for the linear kernell <x,y> (cf. SVMs in KDD I)

– The vectors of A and O are connected in the following way:

The jth d-dimensional eigenvector in A is a linear combination of the vectors in D based on

k-dimensional jth eigenvectors as weighting vector (the ith values is the weight for vector di)

 A basis in vector space corresponds to a basis in the kernel space

 A PCA can be computed for any kernel space based on the kernel matrix 
(Kernel PCA allows PCA in a non-linear transformation of the original data)
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Kernel PCA

Let be a kernel for the non-linear transformation (x).

Assume: K(x,y) is known, but (x) is not explicitly given.

- Let K be the kernel matrix of D w.r.t. K(x,y) :

- The eigenvalue decomposition of K : K = VSVT

where V is a n-dimensional basis from eigenvectors of K

- To map D w.r.t. V the principal components in the target space the vectors xi in 
D must be transformed using the kernel K(x,y).
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Matrix factorization as an Optimization Task

SVD and PCA are standard problems in Algebra.

• Matrix decomposition can be formulated as a optimization task.

• This allows a computation via numerical optimization algorithms

• In this formulation the diagonal matrix is often distributed to both basis 
matrixes

• As an optimization problem: 

(squared Frobenius Norm of a matrix)

subject to: 
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Fischer Faces

Idea: Use examples to increase the discriminative 
power of the target space.

Target:

• Minimize the similarity between objects from 
different classes.
(between class scatter matrix: b) 

b: Covariance matrix of the class centroids

• Maximize similarity between objects belonging 
to the same class
(within class scatter matrix w)

: Average covariance matrix of all classes.
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Fischer Faces

Determine basis xi in a way that is maximized 
subject to

Computation: Determine a orthonormal basis with dimensionality 
d‘ < d. Reduction to the eigenvalue decomposition.

Remark: The vector having the largest eigenvalue corresponds to 
the normal vector of the separating  hyper plane in linear 
discriminant analysis or Fisher‘s discriminant analysis. (cf. KDD I)
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Relevant Component Analysis (RCA)

Fischer Faces are limited due to nature of b and w :

Assumption of mono-modal classes:
each class is assumed to follow a multivariate 

=> distribution of class centroids b

=> within correlation in w

Conclusion: Multi-modal or non-Gaussian distribution are not modeled well

Relevant Component Analysis:

• Remove linear dependent features (e.g. with SVD)

• Given: chunks data which are known to consist of similar objects.

=> replace w with an within-chunk matrix: 

• The covariance of all data objects is dominated by dissimilarity
=> replace b with the covariance matrix of D
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Large Margin Nearest Neighbor (LMNN)

Observation: Objects in a class might vary rather strongly.

Idea: Define an optimization problem only considering the distances the most 
similar objects from the same and other classes.

Define: yi,j=1 if xi and xj are from the same class else yi,j=0 

• Target: L:IRdIRd linear transformation of the vector space:

• Target neighbors: Tx k-nearest neighbors from the same class

i,j =1 : xj is a target neighbor of xi else i,j =0 

• Training by minimizing the following error function:

where

• Problem is a semi-definite program
=> Standard optimization problem where the optimization paramters must 
form a semi-definite matrix. Here the matrix is the basis transformation L(x).
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Summary

• Linear basis transformation yield a rich framework to optimize feature spaces

• Unsupervised methods delete low variant dimensions (PCA und SVD)

• Kernel PCA allows to compute PCA in non-linear kernel spaces

• Supervised methods try to minimize the within class distances while 
maximizing between class distances 

• Fischer Faces extend linear discriminant analysis based on the assumption that 
all classes follow Gaussian distributions

• Relevant Component Analysis(RCA) generalize this notion and only minimize 
the distances between chunks of similar objects

• Large Margin Nearest Neighbor(LMNN) minimizes the distances to the nearest 
target neighbors and punish small distances to non-target neighbors in other 
classes
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