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Motivation

Data streams

Data stream clustering

Data stream classification
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s | Classification

SYSTEMS
GROUP

Screw
e Nails
Paper clips

Training data

o New object

Learn from the already classified training data, the rules to classify new
objects based on their characteristics.

The result attribute (class variable) is nominal (categorical)
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The (batch) classification process
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e So far, classification as a batch/ static task

Stream vs batch classification 1/2

LMU

The whole training set is given as input to the algorithm for the generation

of the classification model.

The classification model is static (does not change)

When the performance of the model drops, a new model is generated from

scratch over a new training set.

e But, in a dynamic environment data change continuously

— Batch model re-generation is not appropriate/sufficient anymore

Knowledge Discovery in Databases Il: Data Streams
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Stream vs batch classification 2/2

DATABASE
GROUP

e Need for new classification algorithms that
— have the ability to incorporate new data
— deal with non-stationary data generation processes (concept drift)

o Ability to remove obsolete data
— subject to:
o resource constraints (processing time, memory)
o single scan of the data (one look, no random access)

Knowledge Discovery in Databases Il: Data Streams
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Non-stationary data distribution 2 Concept drift

LMU

In dynamically changing and non-stationary environments, the data distribution
might change over time yielding the phenomenon of concept drift

Different forms of change:
— The input data characteristics might change over time
— The relation between the input data and the target variable might change over time

Concept drift between t, and t, can be defined as

3X  pe (X ) # py (XL w)

— P(X,y): the joint distribution between X and y

ply)plX|y)

Wyl X) = —
PRI = 00

According to the Bayesian Decision Theory:

So, changes in data can be characterized as changes in:
— The prior probabilities of the classes p(y)
— The class conditional probabilities p(X|y).
— The posterior p(y|X) might change

Knowledge Discovery in Databases Il: Data Streams
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Example: Evolving class priors

E.g., evolving class distribution

— The class distribution might change over time

— Example: Twitter sentiment dataset

O

©)
©)
©)

1.600.000 instances split in 67 chunks of 25.000 tweets per chunk

Balanced dataset (800.000 positive, 800.000 negative tweets)
The distribution of the classes changes over time

MU

Dataset online at: https://sites.google.com/site/twittersentimenthelp/for-researchers
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Evolving class distribution [Sinelnikoval2]
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wmese | REAI VS virtual drift
LMU

SYSTEMS
GROUP

e Real concept drift
— Refers to changes in p(y|X). Such changes can happen with or without change in

p(X).
— E.g., “I am not interested in tech posts anymore”

e Virtual concept drift
— If the p(X) changes without affecting p(y|X)

,Original data Rgal -:nngept drift Virtual drift
o0 ¢ o0 o ®@_  _.500
L TN Y I A e® ©00
@ O -~ 90 © g0
, 00 o © o L
® ' o O o

p(y|X) change; p(X) changes, but not p(y|X)

Source: [GamaETAI13]

— Drifts (and shifts)
o Drift more associated to gradual changes

o Shift refers to abrupt changes

Knowledge Discovery in Databases Il: Data Streams



e As data evolve over time, the classifier should be updated to “reflect” the
evolving data

— Update by incorporating new data
— Update by forgetting obsolete data

TimeT; Time T Time T,

The classification boundary gradually drifts from b, (at T,) to b, (at T,) and finally to b, (at T;).
(Source: A framework for application-driven classification of data streams, Zhang et al, Journal Neurocomputing 2012)
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e | Data stream classifiers LMU

SYSTEMS
GROUP

e The batch classification problem:

— Given a finite training set D={(x,y)} , where y={y,, v, ..., ¥\}, |D|=n, find a function
y=f(x) that can predict the y value for an unseen instance x

e The data stream classification problem:

— Given an infinite sequence of pairs of the form (x,y) where y={y,, y,, ..., ¥}, find a
function y=f(x) that can predict the y value for an unseen instance x

e the label y of x is not available during the prediction time

e butitis available shortly after for model update —
Supervised scenario

e Example applications:
— Fraud detection in credit card transactions
— Churn prediction in a telecommunication company
— Sentiment classification in the Twitter stream
— Topic classification in a news aggregation site, e.g. Google news

Knowledge Discovery in Databases Il: Data Streams
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e Decision trees

e Naive Bayes classifiers
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s | (Batch) Decision Trees (DTs)

SYSTEMS
GROUP

e Training set: D = {(x,y)}

— predictive attributes: x=<x,, X,, ...,
— class attribute: y={y,, y,, ..., Y}

e Goal: find y=f(x)

e Decision tree model

Xq>

— nodes contain tests on the predictive attributes

— leaves contain predictions on the class attribute

Training set

Day Outlook Temperature Humidity Wind PlayTennig
D1l Sunny Hot High Weak No
D2 Sunny Hot High  Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Wealk Yes
D5 Rain Cool Normal  Wealk Yes
D6 Rain Cool Normal  Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal  Weak Yes
D10 Rain Mild Normal  Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yes
D13 Overcast Hot Normal  Weak Yes
D14 Rain Mild High  Strong No

Knowledge Discovery in Databases Il: Data Streams
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e | (Batch) DTs: Selecting the splitting attribute

GROUP

e Basic algorithm (ID3, Quinlan 1986)
— Tree is constructed in a top-down recursive divide-and-conquer manner
— At start, all the training examples are at the root node

Main loop:

1. 4 + the “best” decision attribute for next node

]

. Assign A as decision attribute for node

3. For each value of A4, create new descendant of
node

Attribute selection measures:
* Information gain

4. Sort training examples to leal nodes

ot

It training examples perfectly classified, Then

STOP, Else iterate over new leal nodes * Gain ratio
/ * Gini index

— But, which attribute is the best?
(check Lecture 4, KDD |)

[29+,35-] A2="7
¢ Goal: select the most “useful” attribute
* i.e., theoneresultingin the purest
partitioning
[21+,5- [B+,30-] [18+,33-] [11+,2-]

Knowledge Discovery in Databases Il: Data Streams 14
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e | (Batch) DTs: Information gain

GROUP

e UsedinID3
* |t uses entropy, a measure of pureness of the data

* The information gain Gain(S,A) of an attribute A relative to a collection of
examples S measures the gain reduction in S due to splitting on A:

S, |

Gain(S, A) = Entropy(S)— > Entropy(S,)

veValues(A)

* Gain measures the expected reduction in entropy due to splitting on A

The attribute with the higher entropy reduction is chosen

Knowledge Discovery in Databases Il: Data Streams 15
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(Batch) DTs: Entropy

Know

Let S be a collection of positive and negative examples for a binary
classification problem, C={+, -}. . -

p,: the percentage of positive examplesin S / \
p_: the percentage of negative examplesin S T \

Entropy(S)

=
n

Entropy measures the impurity of S:

Entropy(S) =—p, log,(p,)— p_log,(p.)

0.0 0.5 1.0
Examples : o - : P
—  LetS:[9+,5-] Entropy(S) = 1 |092(E) Y |092(ﬂ) =0.940
7 in the general case

7. 7 7
Entropy(S) = ——log, (—) - —log, (—) =1 s
- LletS:[7+,7] ntropy(S) = =17 1092(7) = 15 109: (1) (k-class:f:cat:o:kv problem)

Entropy(S) = Z_ Pi Iogz(pi)

i=1

14

14. 0 0
_ : 1 Ent S)=—""log, (=) - —log,(—) =0
Let S: [14+,0-] Entropy(S) " 092(14) ¥ 092(14)

Entropy = 0, when all members belong to the same class
Entropy = 1, when there is an equal number of positive and negative examples

ledge Discovery in Databases Il: Data Streams 16



e Which attribute to choose next?

5: [9+5-] 5: 9+5-]
E=0.940 E=0.940
Humidity Wind
High Normal Weak Strong
[3+4-] [6+.1-] [6+.2-] [3+.3-]
E=0.985 E=0.592 E=0.811 E=1.00
Gain (S, Humidity ) Gain (S, Wind )
=.940 - (7/14).985 - (7/14).592 =.940 - (8/14).811 - (6/14)1.0
=.151 =.048
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e | FrOmM batch to stream DT induction

GROUP

e Thus far, in order to decide on which attribute to use for splitting
in a node (essential operation for building a DT), we need to have
all the training set instances resulting in this node.

e But, in a data stream environment

— The stream is infinite

— We cant wait for ever in a node

e Can we make a valid decision based on some data?
— Hoeffding Tree or Very Fast Decision Tree (VFDT) [DomingosHulten00]

Knowledge Discovery in Databases Il: Data Streams 18
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Hoeffding Tree [DomingosHulten00]
LMU

DATABASE
SYSTEMS

GROUP

e |dea: In order to pick the best split attribute for a node, it may be
sufficient to consider only a small subset of the training examples

that pass through that node.
— No need to look at the whole dataset
— (which is infinite in case of streams)

e Problem: How many instances are necessary?
— Use the Hoeffding bound!

Knowledge Discovery in Databases Il: Data Streams
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e | 1he Hoeffding bound

SYSTEMS
GROUP

LMU

Consider a real-valued random variable r whose range is R

— e.g., for a probability the rangeis 1

— forinformation gain the range is log,(c), where c is the number of classes
Suppose we have n independent observations of r and we compute its mean r

The Hoeffding bound states that with confidence 1-6 the true mean of the
variable, u,, is at least r-g, i.e., P(u, >r-g) = 1-6

The € is given by:

E_JRHMU5)
2N

This bound holds true regardless of the distribution generating the values, and
depends only on the range of values, number of observations and desired
confidence.

— A disadvantage of being so general is that it is more conservative than a
distribution-dependent bound

Knowledge Discovery in Databases Il: Data Streams
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Using the Hoeffding bound to select the best split

SISTEMS at a node I_MU

e Let G() be the heuristic measure for choosing the split attribute at a node

e After seeing n instances at this node, let

— X, : be the attribute with the highest observed G()

— X, : be the attribute with the second-highest observed G()
e AG=G(X,) - G(X,) >0 the difference between the 2 best attributes
e AG is the random variable being estimated by the Hoeffding bound

e Given a desired 8, if AG>¢ after seeing n instances at the node
— the Hoeffding bound guarantees that with probability 1-6, AG > AG-£>0.
— Therefore we can confidently choose X, for splitting at this node

e QOtherwise, i.e., if AG < g, the sample size is not enough for a stable decision.
— With R and 6 fixed, the only variable left to change € is n

— We need to extend the sample by seeing more instances, until € becomes smaller
than AG

Knowledge Discovery in Databases Il: Data Streams 21
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Hoeffding Tree algorithm

m Input: § desired probability level.
m Output: 7 A decision Tree

m Init: 7 — Empty Leaf (Root)

m While (TRUE)

m Read next Example
m Propagate Example through the Tree from the Root till a
leaf

m Update Sufficient Statistics at leaf e/—

m If leaf(#examples)mod N,,,=0

m Evaluate the merit of each attribute
Let A; the best attribute and A; the second b
Let e = \/R2In(1/6)/(2n)
If G(A1) — G(A2) >«

Install a splitting test based on A;

Expand the tree with two descendant leaves

Knowledge Discovery in Databases Il: Data Streams

MU

Those needed by the heuristic
evaluation function G()

The evaluation of G() after each
instance is very expensive.

- Evaluate G() only after N, ;,
instances have been observed
since the last evaluation.

22
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Hoeffding tree algorithm more details

e Breaking ties

e Grace period (MOA’s term)

— Recomputing G() after each instance is to expensive.

attempting a new split

Knowledge Discovery in Databases Il: Data Streams

LMU

— When 22 attributes have very similar G's, potentially many examples will be
required to decide between them with high confidence.

— This is presumably wasteful, as it makes little difference which is chosen.
— Break it by splitting on current best if AG<e<t, T a user-specified threshold

— A user can specify # instances in a node that must be observed before
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e The HT accommodates new instances from the stream

Hoeffding Tree overview

But, doesn’t delete anything (doesn’t forget!)

With time
— The tree becomes more complex (overfitting is possible)

LMU

— Decision boundary

tn

to 1 t

HT over time [Mahmud15]

Knowledge Discovery in Databases Il: Data Streams

T3

Tn

— The historical data dominate its decisions (difficult to adapt to changes)

DANA
to t2 ts
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wmese | Adaptive Size Hoeffding Tree (ASHT) [BifetEtAl09]

SYSTEMS
GROUP

e Introduces a maximum size (#splitting nodes) bound

e When the limit is reached, the tree is reset
— Test for the limit, after node’s split

Tree with maximum size

/\ \ Reset
to t2 ts

t2 t3

— Decision boundary

|
|

l

to t1 t2 t3 ta
ASHT over time [Mahmud15]

e The tree forgets
— but, due to the reset, it looses all information learned thus far

Knowledge Discovery in Databases Il: Data Streams

LMU
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sz | CONCept-Adapting Hoeffding Tree [HultenEtAlO1]

GROUP

e Starts maintaining an alternate sub-tree when the performance of a node
decays

e When the new sub-tree starts performing better, it replaces the original one

e If original sub-tree keeps performing better, the alternate sub-tree is deleted
and the original one is kept

Error increasing nodes

A /\
A
to t1

t 13 ts

AIternfte branch

Performance degrading Keep original Switch to alternate

[ T

| l
to t: t2 13 ts

AdaHT over time [Mahmud15]

Knowledge Discovery in Databases Il: Data Streams
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Ensemble of classifiers

LMU

* l|dea:
— Instead of a single model, use a combination of models to increase
accuracy
— Combine a series of T learned models, M, M,, ..., M, with the aim of
creating an improved model M*
— To predict the class of previously unseen records, aggregate the predictions
of the ensemble

Combine ( ']fl.‘-i:-.
vinll =5 |]']'4.'-I.'| iction

27
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Many methods

DATABASE
GROUP

e Bagging
— Generate training samples by sampling with replacement (bootstrap)
— Learn one model at each sample

e Boosting

— At each round, increase the weights of misclassified examples

e Stacking
— Apply multiple base learners
— Meta learner input = base learner predictions

Knowledge Discovery in Databases Il: Data Streams
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Ensemble of Adaptive Size Hoeffding Trees

(ASHT) 1/2 LMU

e Bagging using ASHTs of different sizes

AAA

— Smaller trees adapt more quickly to changes
— Larger trees perform better during periods with no or little change
— The max allowed size for the nth ASHT tree is twice the max allowed

size for the (n-1) tree.

— Each tree has a weight proportional to the inverse of the square of its

error

— The goal is to increase bagging performance by tree diversity

Knowledge Discovery in Databases Il: Data Streams 29
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ee | HOEFfAing Tree family overview

GROUP

e All HT, AdaHT, ASHT accommodate new instances from the
stream

e HT does not forget
e ASHT forgets by resetting the tree once its size reaches its limit
e AdaHT forgets my replacing sub-trees with new ones

e Bagging ASHT uses varying size trees that respond differently to
change

Knowledge Discovery in Databases Il: Data Streams 31



e Decision trees

e Naive Bayes classifiers
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smase | BAYyesian classifiers (batch)

GROUP

* Given an instance X with attributes (AA,...A.)
— Goalis to predict class label cin C
— Specifically, we want to find the value c of C that maximizes P(c|X)

¢ | arg max .:ecED(X |c)]%(c) ]
—

max a posteriori = the most likely class likelihood \

* How can we estimate c?

prior

e Class prior P(c): How often c occurs?
o Just count the relative frequencies in the training set

* Instance likelihood P(X|c): What is the probability of an instance X given the class c?
o P(X|c)=P(A,A,..A. |c)

o i.e., the probability of an instance given the class is equal to the probability of a set of
features given the class

Knowledge Discovery in Databases Il: Data Streams 33
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mans: | NAIVE Bayes classifiers (batch)

SYSTEMS
GROUP

e How to estimate P(A/A,...A_|c)?

* Assume independence among attributes A, when class is given:

- P(AALALC) = IIP(A |c)=P(A;|c)P(A,]c)... P(A,|c)

)

Strong conditional
independence assumption!!!

— Can estimate P(A.|c) for all A, and c in C based on training set

— New point is classified to:

c=argmax... P JP(A Ic)

Knowledge Discovery in Databases Il: Data Streams

LMU
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e | NAiVe Bayes classifier (batch): Example

SYSTEMS

GROUP
Training set
]:[))alx (::Lllith T(’ln}I)I(;?:lturo Hl}lﬁ:}lllt,}' 22[11:(1} Ple1}§5;11111> Test insta nce X
D2 Sunny Hot Hilgh Styong .\:o
b e wer e Outlook | Temperature | Humidity | Wind | Play
D5 Rain Cool Normal  Weak Yes
D6 Rain Cool Normal Strong No P
DT Overcast Cool Normal  Strong Yes ‘
D8  Sunny Mild High Wealk No
D9 Sunny Cool Normal  Weak Yes
D10 Rain Mild Normal — Weak Yes
D11 Sunny Mild Normal  Strong Yes
D12 Overcast Mild Ihgh Stwng \(: .
DUt M teh Swom  Ne Observations
P(yes| X) = P(X]|yes)P(yes) P(O="sunny'|yes)P(T="cool"|yes)P(H="high"|yes)P(W="strong"| yes)P(yes)
P(X) P(X)
n 1 2 LA} 1 3 n 1 n 3 n n 3
P(O ="sunny"| yes):§ P(T ="cool |yes):§ P(H ="high |yes):5 P(W ="strong |yes):§
9
P(yes)=—
(yes) 1
P(X|no)P(no) P(O="sunny'\no)P(T ="cool"| no)P(H ="high"| no)P(W ="strong"| no)P(no)
P(no| X) = =
P(X) P(X)

Knowledge Discovery in Databases II: Data Streams 35
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e | NAiVe Bayes for streams MU

e How can we maintain the model estimates over time based on the
stream?

e How can we include new instances in the model?
e How can we forget obsolete instances?

* |n what follows, we assume a stream of documents (text data).
The solutions though are not limited to text

Knowledge Discovery in Databases Il: Data Streams
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«mense | NAive Bayes classifier (batch)

SYSTEMS
GROUP
(fixed) Training set D (fixed) MNB Model
perfect location - Word-class distribution g distribution
xpensive breakfast perfect: (2,0) +3
expensive breakfast, fair rooms - expensive: (0,2) 2
perfect location, fair price - fair@1)

fair parking facilities

e Prediction, for a new document d:

d . d
P(C)P(dlC)ndependence P(C) H|'=|1 P(WllC)fl

P(Cld) = assumption P(Cld) =
P(d) P(d) Wory Clasg
ar
@ esz‘/maz‘(/?gn/ \
P(c) = r
| [ ﬁ('i‘.-'.-‘”ﬂ} _ ~lic T
Fixed counts from D Zj:l Nie

Knowledge Discovery in Databases II: Data Streams 37
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Naive Bayes classifier on stream — accumulative

DATABASE a ro a c h
SYSTEMS
GROUP pp
(up to t) Training set (uptot) MNBmodel
pEl‘fECt location Word-class distribution Class distribution
expensive breakfast perfect: (2,0) +:3
§ § expensive breakfast, fair rooms ‘ expensive: (0,2) -1 2
Il perfect location, fair price - (fair (2,7)
: L ®
” J §l fair parking facilities | e
a ® ®
R @ ]
®

e Prediction: based on model countsup to t
|d|

Pleld) = Ple) ]| p\(u,,i‘c)f:‘

P = TP = t

== ‘Dlt ZL’:I A‘jc

Accumulated counts from the
beginning of the stream

e Model update: add d information to affected, N_, N,.in the model

e Long memory problem
— Nothing is forgotten, new instances are always accumulated

o =@ difficult to adapt in times of change

Knowledge Discovery in Databases II: Data Streams 38
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amase | Ageing-based Naive Bayes | [WagnerEtAlI15]

GROUP

e A temporal model that keeps track of the last time that an observation is made
in the stream

—/For classes: (N.) = (Ng, ti,) last class observation )
4—/_—

time in the stream

_ - irc: ic
For word-class palrs: (NiC) - (NiC' tlo) last word-class observation

M time in the stream
\ %

— Timestamp propagation: from documents = classes, word-class pairs

— Temporal de-coupling of words from documents
e Observation updates might come from different documents

— Allows differentiation of the observations based on their recency

Knowledge Discovery in Databases Il: Data Streams 39
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Ageing-based Naive Bayes I

age(o,t) = e *(t=to)

— Points are halved every 1/A timeunits

LMU

Gradual ageing — exponential ageing function

t: current time
t,: object’s arrival time
A: the decay rate

— higher A, less important the historical data

Updated temporal probability estimates

2 (e

7 St
[ Wha}‘ exactly is ] ageing
stored in the model? - effect
}f’t(-w-‘t) _ (N e M0 )
vy
2 ] T;C X €
j=

Knowledge Discovery in Databases Il: Data Streams
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amense | FAAINEMNB vs AggressiveFadingiMINB

GROUP

/fadingMNB \ ﬂggressiveFadingMNB

* the faded counts are stored in the
* N, and N, . accumulated over the

model
stream .
i : e ageing over the faded counts
* a-posteriori ageing over the

accumulated counts

— More drastic ageing
— @Gaps in observations are penalized,

even if we make the same

— @Gaps in observations are penalized
— But, as soon as an observation re-
appears, all its previous weight is

\ revived. / \

e Easy model maintenance when adding a new document d at t:

observation again later

— Update the model counts based on d
— Set the last observation time (/o) in the affected entries to t

Knowledge Discovery in Databases Il: Data Streams 41
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The ageing effect

DATABASE
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* No-ageing (accumulativeMNB)

100% - e Accuracy ASHT =
= e = Kappa ASHT /
80% -
60% -~
VA NP, N A -, \Isy
40% - \ofv,\ /\ hd ’\,&é \
7.
20% -;
0% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘IT-
O O O O O O O O O O O o o O o o o o o
O O O O O O O O O O O O O ©o ©o ©o ©o o o
O O O O O O O O O O O O O O O o ©o o o
n o n O n O n O Nn O n O n O un O 1n O uwn
N O N 1D &N O 1N &N O N D N O N In N O IS
T H NN T D O NN 00 OO 0O O+ NnhMm
L I B o B B s |

Source: [Sinelnikoval2]

e Effect of ageing (ageing-based MNB)

= accumulativeMNB —fadingMNB aggressiveFadingMNB
1

0,9

Accuracy
e
~

Instances from the stream
Source: [WagnerEtAl15]

Knowledge Discovery in Databases Il: Data Streams
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-nee | NA@IVE Bayes classifiers overview MU

SYSTEMS

GROUP

e Naive Bayes classifiers are ideal choices for streams

— Popular, simple, powerful
— allows for the seamless adaptation of the model based on new instances

— deals with dynamic feature spaces
e AccumulativeMNB counts for new instances but does not forget
— Difficult to adapt to changes

e Ageing-based MNBs provide a temporal model that allows for
ageing of the model based on the recency of the observations

Knowledge Discovery in Databases Il: Data Streams
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wmese | EVA@luation MU

SYSTEMS

GROUP

e Evaluating the quality of a classifier is a critical task

e Traditional evaluation that assumes a fixed training-test set is not
adequate

e The evaluation should also take into account the evolving nature
of the data

Knowledge Discovery in Databases Il: Data Streams
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(batch) Classifier evaluation

LMU

* The quality of a classifier is evaluated over a test set, different from the training set

* For each instance in the test set, we know its true class label

 Compare the predicted class (by some classifier) with the true class of the test instances

 Terminology

Positive tuples: tuples of the main class of interest

Negative tuples: all other tuples

* A useful tool for analyzing how well a classifier performs is the confusion matrix

* For an m-class problem, the matrix is of size m x m

 An example of a matrix for a 2-class problem:

Predicted class

— ¢ C, totals
C n
=2 al ¢ | TP (true positive) | FN (false negative) P
2 O
C, FP(false positive) | TN (true negative) N
Totals P’ N’
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e Accuracy/ Recognition rate:

— % of test set instances correctly classified

accuracy(M) =

TP+TN
P+N

(batch) Classifier evaluation measures

LMU

G

G

totals

TP (true positive)

FN (false negative)

FP(false positive)

TN (true negative)

p’

N’

classes

buy_computer = yes

buy_computer = no

total

recognition(%)

buy_computer = yes 6954 46 7000
buy_computer = no 412 2588 3000
total 7366 2634 10000 95.42

e Error rate/ Missclassification rate: error_rate(M)=1-accuracy(M)
FP+FN

e More effective when the class distribution is relatively balanced

error _rate(M) =

+ N

— Check Lecture 4, KDD | for more evaluation measures also if classes are

imbalanced!
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* Holdout method
— Given data is randomly partitioned into two independent sets

o Training set (~2/3) for model construction, Test set (~1/3) for evaluation

e Cross-validation (k-fold cross validation, k = 10 usually)

— Randomly partition the data into k mutually exclusive subsets D,, ..., D, each
approximately equal size

— Training and testing is performed k times
o Atthei-th iteration, use D, as test set and others as training set

— Accuracy is the avg accuracy over all iterations

e Bootstrap: Samples the given training data uniformly with replacement

— i.e., each time a tuple is selected, it is equally likely to be selected again and re-
added to the training set

e Check Lecture 4, KDD | for more evaluation methods, their pros and cons!
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e Holdout evaluation

— 2 separate datasets for training (~70% - 80% of the dataset) and testing
(~20%-30% of the dataset)

— Train model on training set

— Test model on test set
o Static test set!!!

e Prequential evaluation (Interleaved test-then-train)
— One dataset for training and testing

— Models are first tested then trained in each instance

o Test set is dynamic!!!
o But it assumes the direct availability of the labels of the arriving instances for
testing.
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e Accuracy

e Kappa measure
— normalizes the accuracy of a classifier p, by that of a chance predictor p,

0%-20% bad
— PO~ Pc 21%-40% fair
1_pc
41%60% moderate
61%-80% substantial
81%-100% (almost) perfect

e Both measures are computed based on the most recent samples through some
— sliding window
— fading function
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== accumulativeMNB =—fadingMNB - aggressiveFadingMNB

1
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Prequential evaluation, hourly-aggregated stream [WagnerEtAl15]

Hourly aggregation

Instances from the stream
Instances from the stream

== accumulativeMNB =—fadingMNB -——aggressiveFadingMNB
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Data stream classification: overview

LMU

Extending traditional classification methods for data streams implies that
— They should accommodate new instances
— They should forget obsolete instances

Typically, all methods incorporate new instances from the model

They differ mainly on how do they forget
— No forgetting, sliding window forgetting, damped window forgetting,...

and which part of the model is affected

— Complete model reset, partial reset, ...

So far, we focused on fully-supervised learning and we assumed availability of
class labels for all stream instances

— Semi-supervised learning

— Active learning

Dealing with class imbalances, rare-classes
Dealing with dynamic feature spaces
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