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Chapter Overview

1. Graphs, Networks and Linked Data

2. Similarity and Distance Measures for Graph Data

3. Frequent Subgraph Mining

4. Ranking Nodes and Centrality

5. Link Prediction

6. Graph Clustering
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Graphs everywhere

• Molecule structures

• Protein interaction networks

• Social networks

• WWW

• Spatial networks

• Sensor networks
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An introduction to graphs

• Definition: A graph is a tuple G=(V,E) where V is a set of vertices and E  V×V
a set of edges.

• Usually: vertices = objects, edges =relationships between objects

• Graphs provide a lot of flexibility for data modeling as one can define what 
are the objects (nodes) and the relationships (edges) between the objects.

• From objects to graphs

– Objects  vertices

– Object properties  vertex labels

– Relation  between two objects  edge

– Type of relation  edge label
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An introduction to graphs

• A graph is representable as a square matrix (Adjacency Matrix) 
– Rows/ columns correspond to the objects

– Entries correspond to the edges between the corresponding objects

• Typically, the adjacency matrix of a graph G=(V,E) is defined as:

• In general, different “mappings” from edges to entry values are possible:
– An example (source: Wikipedia)
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An introduction to graphs

• Node degree: The degree of a node  vi in G=(V,E) denoted as dG(vi) is number of adjacent 
edges: 

• Walk: A walk w=(v1,v2,..,vk) is a sequence of nodes vi  V where (vi-1, vi) E for 1 ≤ i ≤ k.

• Path: w is a path if vi≠vj with i≠j. (i.e., no node is allowed to appear twice)

• Cycle: Let w=(v1,..,vk), v1= vk and for all 1 < i,j < k it hold that vi≠vj then w is called cycle.

Walk Path

   Evvvvd jijiG  ),(

Cycle
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An introduction to graphs

• Directed vs undirected graphs:

– directed graph: (vk,vl) ≠ (vl,vk) , adjacency matrix is not symmetric

• Labeled vs unlabeled graphs

– labeled graphs: both nodes and edges.

o node labels: for every node v V there is a label lv  FE.

o edge labels: for each edge e  E there is a edge label le  FE .

– Labels can be arbitrary types of information

– In most cases, labels are symbols from a given alphabet 

• Subgraph: Let G =(V,E) be a graph then G‘=(V‘,E‘) is a subgraph of G,
if V‘ V and E‘ (V‘×V’E).
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Comparing Graphs

Input: Two graphs G and G‘ from the graph space G.

Output: A mapping s: G × G  IR computing the similarity  of G and G‘.

Different comparison approaches:

• Isomorphism: 2 graphs are equal if there exists a bijection between nodes 
inducing a bijection of edges.

• Edit-distance: Similarity is computing by counting the minimal amount of 
operations transforming one graph into the other.

• Topological descriptors: Two graphs are similar if the have similar values w.r.t. 
topological properties like number of edges, nodes, node degrees, label 
distributions, ...
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Graph Isomorphism

• Graph-Isomorphism:

Let G=(V,E) and G‘=(V‘,E‘) be two graphs. G and G‘ are isomorphic (           ) if there exists a 

bijection f: VV‘ such that  (v,v‘)E  (f(v),f(v‘)) E‘ for all node pairs v,v‘ V.

– i.e., there is a 1-1 correspondence between the nodes that preserves the edge structure 

• Subgraph-Isomorphism:

Let G=(V,E) and G’=(V’,E’) be two graphs. An injective function f:VV’ is a 

subgraph isomorphism if there exists a subgraph G’’ of G’ such that f is a graph 

isomorphism between G and G’’.

GG 
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Graph Isomorphism

• Common Subgraph

Let G, G’ be two graphs. Let g a subgraph of G and let g’ subgraph of G’. If there exists a 
graph isomorphism between g and g’, then both g and g’ are called a common subgraph 
of G and G’.

• Maximum Common Subgraph

Let G, G’ be two graphs and let g, g’ are a common subgraph of G, G’. If there is no other 
subgraph of G, G’ that has more nodes than g and g’, then g and g’ are called maximum 
common subgraph mcs(G, G’).

– Represents the maximal part of both graphs that is identical

11Knowledge Discovery in Databases II:  Variety - Linked data

G G’ Bijection

Source: http://www.lsis.org/tuples/workshop/wscp_bgbtp_1.pdf



DATABASE
SYSTEMS
GROUP

Graph Isomorphism

• Minimum Common Supergraph

Let G, G‘ be two graphs. A graph S is a minimum common supergraph MCS(G,G‘) if G and 
G‘ are common subgraphs of S and there is no other graph containing  G and G’ having 
less nodes.

12Knowledge Discovery in Databases II:  Variety - Linked data

Graph (a) is a minimum common supergraph of graph (b) and (c)
Source: [AggWan10]
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Similarity based on graph isomorphism

Notation: mcs: maximum common subgraph, MCS: minimum common supergraph

• Distance Measure 1: Relative size of the maximum common subgraph

– The larger the mcs, the larger the similarity

– Value range:  [0,1]

o 0, if G, G’ are isomorphic

o 1, if G, G’ have no part in common

• Distance Measure 2: Difference of the size of MCS(G,G‘) and mcs(G,G‘)

– mcs provides a lower bound on the similarity, MCS an upper bound

– 0 if G and G’ are isomorphic

– As G and G’ become more dissimilar,|mcs| decreases and |MCS| increases 

– The normalized version of d2: 

• MCS and mcs require to solve the  subgraph isomorphism problem (NP-complete).

 GG
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Edit distances for graphs

Idea: Distance = minimum cost to transform G to G‘.

• Differences are removed by performing different graph operations: 
– Delete, Add, Relabel, for both  nodes and edges

• Costs for each operation might vary depending on the labels

• Metric properties rely on the employed costs

• Graph Edit Distance: The shortest or the least cost sequence of elementary 
graph edit operations that transform one graph into the other

where c(S) is the sum of edit costs.

Problem:

• Still has to solve (sub)graph isomorphism => computation is very expensive.

• Choosing cost function for different operations is difficult

 G' intoG  ngtransformioperation  of sequence )(min),( SScGGd
S
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Edit distances for graphs

Performance:

• in general cases the complexity cannot be descreased

• for special cases faster methods are possible

• e.g. trees 

=> unique serialisations are generall possible (order of subtrees)

=> Edit-distance for  strings is in O(n2)

=> Problem: Insertion costs have to be selected to fit the change of topology

A

B C

A

A

B

[A[B[A][B[A]]][C]] [A[B[A][B[A]]][C]]

[A[B[A][B]][C]]

Deletion  of A in a leaf node
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Isomorphism- and edit distance-based overview

• Mathematically sound approach

• Graphs can be compared on all of their properties

• Isomorphism-based methods depend on the definition of  |G|

• Edit-distance is a generalization of isomorphism-based methods

• Computational complexity is very high (Subgraph Isomorphism is NP complete)

• Limiting the problem to certain types of topologies can reduce the complexity
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Topological Descriptors and Graph Kernels

Idea: Since the aforementioned approaches are too expensive 

• Map each graph to a feature vector

• Compare these vectors

Pros: reuse known and efficient tools for feature vectors

Cons: Efficiency comes at a price: feature vector transformation leads to loss of 
topological properties (or includes subgraph isomorphism as one step)
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label distribution: (3    , 3     )
node degrees: (0 (0), 1 (1), 0(2), 5(3)) 

Topological Descriptors and Graph Kernels

Basic descriptors:

• Graph summarization:  Distribution of edge costs, label frequencies, node 
degrees

• Consider graphs as sets of nodes and edges

=> 2 Views: Multi-Instance Object of nodes, Multi-Instance object of edges

edge set

node set
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Topological Descriptors

But: Graph topology is still insufficiently represented

 Topological descriptors

e.g., properties of walks, paths, subgraphs,..

 Topological descriptors decompose a graph into sets of simpler topological objects.

Example: Wiener Index

The Wiener Index W(G) for a graph G=(V,E) is defined as the sum of distances 

between all distinct pairs of nodes

where d(vi,vj) is the cost of the shortest path between vi and vj in G.

Remark: IF  W(G) = W(G‘). 

However,  W(G) = W(G‘) does not imply
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Similarity Measures based on Topological 
Descriptors

Idea: Use topological descriptors and graph decompositions to define graph 
similarity measures.

Approaches:

• Derive feature spaces based on topological descriptors that are computable 
in polynomial time

• Integrate topological decomposition into similarity measures

• Use graph kernels
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What is a kernel?

• A kernel is a transformation/ mapping φ of the input data x, x’ into a feature 
space H.

• Measure the similarity in H  as <φ(x), φ(x‘)>

• Kernel trick: Compute inner product in H as kernel in input space: K(x, x‘) = 
<φ(x), φ(x‘)>

Knowledge Discovery in Databases II:  Variety - Linked data 21

These classes are linearly 
inseparable in the input space

We can make the problem linearly
separable by a simple mapping
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R-Convolution Kernels

• Compare decompositions of structured objects

• Let X be a set of composite objects (e.g., cars), and be sets of parts 
(e.g., wheels, brakes, etc.). All sets are assumed countable.

• Let R denote the relation “being part of” (i.e., if the decomposition is valid):

• The inverse relation R−1 is defined as: 

• In other words, R −1 (x) contains valid decompositions for x.

Remarks:
• All pairs of valid object decompositions are compared and summed up.

• For all elements of the objects the comparison between the corresponding parts are 
multiplied
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R-Convolution Kernel

Simple Example: Comparing Graphs as  Multi-Instance Objects

Input: Two labeled graphs G=(V,E) and G‘=(V‘,E‘)

Node labels L: V IRd.

Decomposition of G: D(G)=V (set of nodes)

Linear Kernel of the node labels K: K(v,v‘)=L(v),L(v‘)

Remark:

Multi-Instance Objects can be considered as graphs without edges.

  
   


Vv VvVv Vv i
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1
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R-Convolution Kernel and Topological Descriptors

• Let S(G) be the set of all subgraphs of G. 

• All Subgraph Kernel for G and G‘:

Remarks: 

• Compares all subgraphs for isomorphism

• NP-complete kernel due to subgraph-isomorphism
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Product Graphs and Walk-based Kernels

Idea: Find matching walks in G and G‘ to define graph similarity.

Graph products simplify the search for common subgraphs.

Direct Graph Product :

G×=G×G‘ for G=(V,E,L) and G=(V‘,E‘,L‘) is defined as:
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Random Walk Kernel

• Idea: Given two graphs G and G’, perform random walks on both and count 
the number of matching paths.

– Match if: they have the same length and the label sequences are the same.

• Solution: computation using the direct product graph
– It has been proven that: A random walk on the direct product graph G× is 

equivalent to performing a simultaneous random walks on G and G’.

– Construct direct product graph of G and G‘, Gx=(Vx,Ex) 

– Count walks in this product graph

– It holds that: Walks of length k can be computed by looking at the k-th power of 
the adjacency matrix , i.e., Ak

x

• Ax: the adjacency matrix of Gx

– Remark: parameter 0<  < 1 is required for the convergence

– if convergent random walk kernels are positive definite
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Problems with Random Walks

• Complexity
– Complexity of the complete kernel is: O(n6)

• Tottering
– Walks allow for repetition of nodes

– A walk can visit the same cycle of nodes again and again

– Kernel measures similarity in terms of common walks

– Hence a small structural similarity can cause a huge kernel value

Solutions to tottering:
• Introduce additional labels

 less matching nodes

• disallow direct cycles.
 no real improvement

 Tottering can happen over multiple nodes
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Shortest Path Kernel

Idea: Decompose graphs into sets of shortest paths.
 no tottering

 less components

Method:

• Compute all shortest paths between G and G‘

• Compare the sets of paths based on the convolution kernel

=> sum of pairwise path similarities

• Needs some kernel to compare the paths

30Knowledge Discovery in Databases II:  Variety - Linked data



DATABASE
SYSTEMS
GROUP

Shortest Path Kernel

Computation of all shortest paths:

• Use an all-pair shortest path algorithmn
(Floyd-Warshal Algorithm: O(n3) )

• Result is the distance matrix D:

• Comparision by convolution kernel:

– the set SD(G) of shortest paths describes the graph G

• Complexity is O(n4) 
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Conclusions

• Modelling objects as graphs is very general

• The complexity of graphs limits their usability

• Topological descriptors are a trade-off between performance 
and exact comparisons

• Topological descriptors decompose a graph into simpler 
components

• Decomposition usually loses information
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Frequent Subgraph Mining

The problem: Find  all frequent subgraphs in a database of graphs

Applications:

• Common subgraphs can be used as topological descriptors

• Find typical subnetworks in social networks

• Graph compression: Substitute frequent subgraphs by single nodes => reduces 
the size of the graphs

• Derive rules about social interaction

• Find common motifs in protein interaction networks
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Problem definition 1/2

The problem: 

Given a graph dataset D, find all frequent subgraph g w.r.t. a frequency threshold.

– To reduced the complexity, only frequent connected subgraphs are considered

– A subgraph is connected if there are paths between every pair of vertices.

• Input: 

– A dataset of transactions D.

– Each transaction is a simple graph (undirected, no loops)

– Both nodes and edges have labels.

– A minSupport threshold σ

• Output:

All connected undirected subgraphs 

that occur in at least σ|D| transactions.

36Knowledge Discovery in Databases II:  Variety - Linked data

Support = 100% 

Support = 66% 

Support = 66% 

Input: Graph Transactions Output: Frequent Connected Subgraphs 
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Problem definition 2/2

The problem (definition using the concept of isomorphism): 
Given a graph dataset GS and a minSupport threshold σ, let σ(g,GS) be the 
occurrence frequency of g in GS:

Frequent Subgraph Mining is to find every graph g in GS such that σ(g,GS)≥σ.
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Approaches to Frequent Subgraph Mining

Frequent Subgraph Mining is an extension of Frequent Itemset
Mining (FIM)

• Exploit monotonicity between subgraphs and supergraphs
o A k Itemset I can only be frequent if all k-1 Itemsets in I are frequent

o analogue: Subgraph G containing k nodes can only be frequent if all subgraphs of 
G containing k-1 nodes are frequent

• Generate candidates of size k be combining pairs of frequent 
subgraphs of size k-1.
o analogue: Find all subgraph containing k nodes and extend them by an additional 

node => candidate for frequent subgraphs containing  k+1 nodes

38Knowledge Discovery in Databases II:  Variety - Linked data
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Basic Problems

• Subgraph-Isomorphism yields large problems

– Detecting  occurrences of a candidate is very expensive

– Support computation must consider all isomorphic subgraphs

– Candidates should be generated only once

 All algorithms define a normal form for each isomorphic class

 Transforming a graph into the normal form is expensive

 But, comparing normal forms is cheap

• 2 types of algorithms

– Apriori-based approaches: FSG [KurKar01]

– Pattern growth-based approaches: gSpan [YanHan02]
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Algorithms for Frequent Subgraph Mining: FSG

• FSG (frequent subgraph) [KurKar01]
– Edges correspond to items

Knowledge Discovery in Databases II:  Variety - Linked data 40
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FSG algorithm psedocode

Algorithm fsg(GraphSet D, double σ)

//D: dataset of transactions (graphs)

//σ: minSupport threshold

F1  Set of frequent subgraphs having one edge

F2  Set of frequent subgraphs having two edges

k  3

while(Fk-1!= {})

//Candidate generation

Ck  fsg-gen(Fk-1);

foreach candidate gkCk do

gk.count  0;

foreach graph d  D

if(d.includes(gk)) //Inclusion check

gk.count  gk.count+1;

//Pruning by support count

Fk{gkCk| gk.count≥σ|D|}

k k+1

return F1, F2, ..., Fk;
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FSG basics

• Graph representation
– Uses sparse graph representation to store input transactions, intermediate 

candidates and frequent subgraphs

– Stored using adjacency lists

• Canonical labeling
– In FIM, items are sorted by lexicographical order

– Graphs can be represented in different ways depending on the order of 
their edges or vertices.

– Use canonical labeling

o A canonical label cl(G) is a unique code of a graph G

– Canonical labeling is equivalent to finding isomorphism in graphs

– If two graphs are isomorphic their canonical labels must be identical
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Canonical Labeling for Graphs

43Knowledge Discovery in Databases II:  Variety - Linked data

• Idea: Try all vertex permutations to see which ordering of vertices gives the 

mininum adjacency matrix

– Isomorphic graphs can be considered as permutations of the adjacency lists

• Methodology:
– Narrow down the search through vertex invariants 

o First partition the vertices by their degrees and labels

o Try all possible permutations within each partition

– Serialize the upper triangular matrix

– Select the lexicographically smallest string

1 2 3 4

A A C B

1 0 0 1 0

2 0 0 1 0

3 1 1 0 2

4 0 0 2 0

A

A

C

B
2

1

1

1 2 3 4

A A B C

1 0 0 0 1

2 0 0 0 1

3 0 0 0 2

4 1 1 2 0

000112

 requires only 
permutation within a 
subset of the nodes

 unique identifier for 
each isomorphic class
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Canonical Labeling example
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Graph Adjacency matrix Vertice degree 
partitioning

Vertice label 
partitioning (v0<v1)

Test all possible permutations within each partition

000e1e0e0 000e0e1e0

Choose the smallest
string
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FSG: Candidate generation

• Join two frequent size-k subgraphs to get (k+1) candidates
– Common connected (k-1) subgraph is necessary (called core)

– Apriori doesn’t suffer this problem due to lexicographic ordering of itemset

• Problem
– Unlike FIM where a unique (k+1) itemset is created by joining two k-

itemsets, the join of two subgraphs might led to multiple (k+1)subgraphs

Knowledge Discovery in Databases II:  Variety - Linked data 47



DATABASE
SYSTEMS
GROUP

Candidate generation

Knowledge Discovery in Databases II:  Variety - Linked data 50

Core identification

Join 

Downward property
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Complexity of FSG

Complex parts of the algorithms:

1. Subgraph isomorphism testing (g.includes(s))
– necessary when scanning the database

– necessary during candidate generation: determine common k-1 subgraph

2. Join two graph based on k-1 subgraphs
 results in a set of candidates

 all of the results must be tested for being real candidates

3. Canonical labeling
 Used to efficiently detect subgraph occurences and for candidate testing

51Knowledge Discovery in Databases II:  Variety - Linked data
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Algorithms for Frequent Subgraph Mining: gSpan

• Weakness of Apriori-based approach FSG 

– The generation of size (k+1) subgraph candidates from size k frequent subgraphs is 
too complicated and complex.

– (k-1) core identification, joining, pruning false positives  are expensive due to 
isomorphism 

• gSpan: Graph-Based Substructure Pattern Mining [YanHan02]

– Changes the way to represent a graph (Depth-first Search canonical labeling)

– No candidate generation and false positive pruning

– Combines growing and checking of frequent subgraphs into one procedure

– “Connection” to traditional FIM: edges correspond to items

54Knowledge Discovery in Databases II:  Variety - Linked data
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gSpan overview

• Map each graph into a DFS code (a sequence)

• Build a novel lexicographic ordering among these codes

• Construct a search tree based on this lexicographic order

Depth-first Search (DFS) reminder
– Start at the root (select an arbitrary node as the root in case of graphs) and 

explore as far as possible along each branch before backtracking.
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"Depth-first-tree" by Alexander Drichel - Own work. Licensed under CC 
BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Depth-first-
tree.svg#/media/File:Depth-first-tree.svg
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DFS Tree and Forward/Backward edge sets

• For each graph G, we perform DFS and we construct a DFS tree (GT)

– Mark vertices on the way thery are traversed: vi < vj if vi is traversed before vj

– DFS induces a linear order on vertices 

– v0:root; vn: right-most vertex; rightmost path: the direct path from v0 to vn.

• One graph can have many DFS trees

– E.g., by selecting different starting nodes 

– graphs (b), (c), (d) are isomorphic to graph (a)

• DFS divides edges in two sets 

– Forward edge set (bold line): (vi,vj) where vi<vj

– Backward edge set (dashed line): (vi,vj) where vi>vj
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Right most paths:
(b): (v0,v1,v4) 
(c): (v0,v4) 
(d): (v0,v1,v2, v4) 
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DFS linear order on the edges

• Linear order on the edges 
– Turn a DFS tree into a sequence of edges

– Form the sequence in the following order:
o Start with v0

o to extend one new node, add the forward edge that connect one node in the 
old graph with this new node.

o Add all backward edges that connect this new node to other nodes in the old 
graph

o repeat this procedure. 
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Recall: One graph can have many DFS trees different DFS edge orderings
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DFS lexicographical order

• Idea: Add label information as one of the ordering factors

• Each edge is modeled through a 5-tuple entry

• DFS code is a sequence of 5-tuple entries corresponding to edges.

• Assume that there is an order on the labels 

• This order together with the edge order defines an order for any two 5-tuple 
entries 

• This extends to DFS code using a lexicographic encoding 
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Canonical labeling

• Each graph G may have lots of DFS codes (why?):

• Let the canonical DFS code to be the smallest (based on lexicographic order) 
code that can be constructed from G (denoted min(G))  Canonical Label of G

– i.e., canonical description of subgraphs belonging to one isomorphic class

– In our example, code γ is the smallest

• Theorem: Given two graphs G and H, they are isomorphic if and only if 
min(G)=min(H)

• Thus, mining frequent connected subgraphs is equivalent to mining their 
corresponding minimum DFS codes.
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DFS code’s parent and child

• Definition: DFS code's parent and child 

– α is β's parent and β is child of α

• To construct a valid DFS code, b must be an edge that grows only from the 
vertices of the rightmost path.

• DFS growth

– Backward edges can grow only from the rightmost vertex

– Forward edges from vertices on the rightmost path
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Several potential children with one edge 
growth for graph (a)

Right-Most-Only Extension is 
allowed!
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DFS code tree

• DFS Code Tree:

– each node represents a DFS tree and its children are DFS trees grown one edge

– relations between parents and children complies with parent-child relation 
definition

– siblings are consistent with DFS lexicographic order 

• Given a label set L, a DFS  code tree can be constructed following the above 
definition
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gSpan pseudocode 
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//e.g.

//Grow all nodes in the subtree rooted at this 1-edge graph 

//Shrink each graph in GS by removing edge e, after all descendants of 
e have been searched. 
//Successively the graph set becomes smaller  efficiency
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gSpan pseudocode 

• Generate all potential children of s with one edge growth and 
recursively run the same procedure on each child.
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//Prune duplicate subgraphs and all their descendants

//Recursion
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Frequent Subgraph Mining overview

Frequent subgraph mining is similar to frequent itemset mining

But: 

– Set of isomorphic graphs is larger than the set of itemset permuations 
Isomorphism testing is more complex than comparing Itemsets

– Finding canonical labeling is more difficult

– Set of possible extensions is far larger  candidate generation is more 
complex

• FSG: Apriori-based method with pairwise candidate generation

• gSpan: Pattern-growth approach for general graphs
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Chapter Overview

1. Graphs, Networks and Linked Data

2. Similarity and Distance Measures for Graph Data

3. Frequent Subgraph Mining

4. Ranking Nodes and Centrality

5. Link Prediction

6. Graph Clustering
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Graph Databases and Linked Data

So far: Objects are considered as iid
(independent and identical distributed)

 the meaning of objects depends exclusively on their description

 objects do not influence each other

In the following: Link-Mining

Objects are connected and dependent.

Examples: 
– Publications are evaluated based on citations.

– Webpages are evaluated based on other webpages linking to them.

 objects might depend on any connected object

 databases become large networks (knowledge graphs)
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Node Ranking 

Idea: Select and rank nodes in large networks w.r.t. their relevance 
or interestingness.

Interestingness might depend on :

• influence to the complete network 

• key nodes for network flows

Applications: 

• Ranking web sites and web pages

• Rank researchers in citation networks

• Rank importance of nodes representing crossing or routers in 
transportation networks
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Centrality Measures

Idea: Centrality depends on the “position” of a node to the other nodes in the 
network w.r.t. networks distance (=cost optimal path between two nodes)

Let d(v,t) be the length of the shortest path from v to t (v,t V) in G(V,E):

• Closeness Centrality:

– Based on shorted distance to every other vertex.

• Graph Centrality:

– Based on max. shortest distance 
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Source: 
https://reference.wolfram.com/language/ref/ClosenessCentrality.html
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Centrality Measures

Let st be the number of shortest paths from s to t.

Let st(v) be the number of shortest path from s to t containing v.

• Stress Centrality:

– Based on number of shortest paths passing through each node

• Betweenness Centrality:

– Normalize by the total number of shortest paths between s and t
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Centrality Measures 

Example: Nodes represent routers in a computer network. If the router having 
the highest betweenness centrality goes offline, the most direct connections 
are affected.

Computation: Set of all-pair-shortest paths can be computed in O(n3) time and  
using O(n2) memory by the Floyd-Warshal algorithm.

Theorem: v is on the shortest path between s and t if and only if

d(s,t) = d(s,v)+ d(v,t)

 to compute betweenness centrality it is not necessary to compute all paths

 there are faster solution:

– O(nm) without edge weights

– O(nm+n2log n) in graphs having edge weights

where n = |V| and m = |E| in the graph G(V,E)
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Computing Betweeness Centrality

Basic idea:

• Start a single source all target search from each node s. The result is a tree 
(called Dijkstra tree) containing all shortest paths starting with s. 

• The Dijkstra tree also induces a distance ranking of all nodes to s.

• Visit each node v with descending distance to s and count all nodes t lying 
behind v in the tree (st(v)) and the set of shortest paths from s to t (st)

s

v
to

t0 st0
=2

st0
(v)=1

t1 st1
(v)=1
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Algorithm for unweighted graphs(1)

Variables and expressions:

• S: Stack storing nodes w.r.t to their distance to s

• Q: Priority Queue for the Dijkstra search (ordered by the distance to s)

• P[v]: List storing all predecessors of v

• d[v]: distance of the shortest path from s to v

• [v]: number of shortest paths from s to v

• [v]: Given                          then 

Workflow for each starting node s:

1. Phase: Algorithm computes the Dijkstra tree of s

2. Phase: traverse stack S and count the number of nodes behind each visited node v
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Algorithm for unweighted graphs(2)

CB[v] := 0  vV

for s  V

S:= empty Stack;

P[w] := empty List  wV;

[t] :=0  tV; [s]:=1;

d[t] :=-1 tV; d[s]:0;

Q := empty Queue;

Q.push(0,s);

while Q not empty do

v := Q.pop();

S.push(v);

foreach neighbor w of v do

if d[w] < 0 then

d[w]:=d[v]+1;

Q.push(d[w],w);

end if

if d[w]=d[v]+1 then

(w):=(w)+(v)

P[w].add(v)

end if

end for

end while

[v]:=0; vV;

while S not empty do

w:=S.pop();

for vP[w] do

;

end for

if ws then

CB[w]:=CB[w]+[w];

end if

end while

end for
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Ranking nodes in hyperlinked Text 

PageRank:   (S.Brin/B. Page 1996)

• important component in ranking algorithms of search engines  (in 
combination with other features)

• Data is considered strongly connected, directed network G(V,E).
( e.g., all HTML documents in a search engine) 

• probabilistic surfer performs an infinite random walk.
idea: visiting probability = importance of the page v.
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PageRank
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Computation by „Power Iterations“:  
after  ca. 20-30 iterations result should be stable
Solution for none strongly connected graphs: 1.  Remove nodes without outlink
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adjacency matrix:  E
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Ranking Linked Objects

HITS (Kleinberg 1998): Hyperlink Induced Topic Search

• Consider only objects being relevant for q or being linked to relevant pages 

(in- and outlinks).

 Gq(Vq,Eq) for query q

• There are two types of objects :

Hubs: link to relevant objects (authorities)

Authorities:  relevant objects being linked by hubs.

=> each object has an authority score and a hub score

for each object u, h[u] denotes its hub score and a[u] its authority score.  

a good authority is linked by many
good hubs

a good hub links to many 
good authorities.
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Anwendungen im Web Mining

Computing HITS:

• vector of authority scores over all objects v Vq

• vector of hub scores over all objects v Vq

• Computation by mutual iterations:

Complete algorithm:

1. determine relevant objects (root set).

2. determine all pages linking relevant objects .(extended set)

3. iterate over all hub- and authority scores

4. Order the relevant pages by the authority scores

aEh

hEa T





a

h

(authority score)

(hub score)
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Link Prediction

Input: A graph G(V,E) and 2 nodes v,u  V where (v,u) E.

Output: Predict the existence of link (v,u) if:

• the existence is unknown.

• the link might develop at a future point in time

Examples:

• Links in social networks 

• unknown protein interaction

• Customer product recommendations in bipartite graphs

(Collaborative Filtering)
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Feature-based Link Prediction

86Knowledge Discovery in Databases II:  Variety - Linked data



DATABASE
SYSTEMS
GROUP

Topology-based Link Prediction

Problem: Feature-based approach do not consider network proximity.

Example: 

• Persons having similar interests might not have any contact

• Proteins might dock but do not appear in the same natural surrounding

Solution: Integrate the neighborhood of v and u in G.

 common neighbors  increase the likelihood of a link

 describe a node by its adjacency list  or the subnetwork
being influenced by the node
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Link Prediction and Matrix Factorization

Input: Graph G(V,E) with adjacency matrix A and let Eu E be the set of links with 
unknown existence or strength.

Method:

• Factorizing A allows to find a latent k-dimensional space (k is the rank of A)
(Factorization can be done regardless of missing entries)

• nodes can be expressed in this latent space

• remapping of the nodes to the |V| dimensional space fills up the unknown 
entries Eu .

Procedure:

• Factorize A in the nk Matrix B while minimizing L(B) the :

Computation: Gradient descent on the derivate of L(B).

Remark: Also applicable to bipartite graphs (customer/ product)
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Dense Subgraph Discovery 

• Find „dense“ subgraphs in a network G(V,E).

• Definitions of „dense“:
– cliques (complete subgraphs)

– quasi-cliques (at least x % of the edges must exist)

– relative density of the surrounding: in node in subgraph G‘ has more 
links to other node from G‘ than to nodes G \ G‘.

• …

• Problem: almost all definitions lead to NP-hard search problems 
=> heuristic solutions
=> practical use is limited
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Graph Clustering

• Class of clustering methods that treat the data set as graph

• Object= node; links distance, similarity, reachability distance...

• usually: only consider the k-nearest neighbors or an -range

=> directed and undirected network are considered

Clustering by weighted k-mincut:

Partition a graph G into k disjunctive subgraphs having similar size 
while minimizing the number of removed edges. 

=> Weighted k-mincut is also an NP-hard problem.
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Graph Clustering: Spectral Clustering

• built a symmetric adjacency matrix S:

• Transform S into a graph Laplacian matrix L:

• after eigenvalue decomposition of L:
– Eigenvectors with eigenvalues = 0, represent connected components

– Eigenvectors describe the linear weights to represent a cluster 
representative
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Conclusions Graph Mining

• Graph-Mining includes new data mining tasks
– Ranking nodes

– Link prediction

– Dense subgraph discovery and community detection

– Frequent subgraph mining

• Clustering can be formulated as a graph problem
– Density-based clustering: find all connected components where links 

denote a similarity predicate

– Spectral clustering 

– Weighted k-mincut: Partition a graph into k subgraphs while minimizing the 
weights of the cut edges under size constraints w.r.t. the resulting 
subgraphs.
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