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The (data) variety aspect

e So far, data is given by a set of feature vectors.

e |n general though, data is structured and has links.
Graph data (social nets, authorship graphs, protein-interaction networks...)

Tree structures (XML documents, sensor networks,...)
Sequences and trajectories

Team compositions

Websites composed of webpages, composed of ...
Combinations of color, form, texture features for images

Core questions:

e Can we combine different views on the same data object to get better results?

Is the structure important for the description of the data?

How can we apply data mining algorithms to structured data?

Does structured data yield additional data mining tasks?
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e Multi-view data:
— Data is described by different feature sets or “views”.
— E.g., an image can be described by its visual information and its textual tags

e Multi-instance data:
— Each object is described as a set of objects from the same domain.
— E.g., ateam described by its players.
— E.g., an image is described by a set of local feature descriptors
e Linked data or Graph data:
— Objects may reference to other objects.
— E.g., social graph data

Further cases not being discussed in the lecture:

* Sequential data: multi-instance data having a strict order

 Temporal data: Describes the same object over a time-period (time series, trajectories)
 Tree-structured data: acyclic graph data, describing hierarchies
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Types of structured data objects
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e Multi-view data:
— Data is given by multiple object descriptions (records, objects in
programming).
e Multi-instance data:
— Each object is described as a set of objects from the same domain ( arrays,
lists, sets in programming).
e Linked data or Graph data:
— Objects may reference to other objects (graph structured data, network
data, ...).
Further cases not being discussed in the lecture:
* Sequential data: multi-instance data having a strict order

 Temporal data: Describes the same object over a time-period
(time series data, trajectories)

* Tree-structured data: acyclic graph data, describing hierarchies
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In general, there are three ways to handle data variety:

1. Transform data into a simpler format
— Useful information about the structure is preserved in special features

— Transformation from more complex to simpler descriptions
(e.g. Multi-instance to vector, Graph to Multi-instance, ..)

2. Employ distance/ similarity measures for structured data

— Having a distance/similarity function allows for the use of many data
mining algorithms.

— Comparing complex descriptions is usually more complex.
3. Employ specialized data mining algorithms

—  Especially in cases where the task is not standard (e.g., centrality in
graphs)
—  Often solutions involve a workflow of several data mining tasks
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e Ensemble learning and Multi-view object descriptions

e Multi-instance Data Mining

e Mining graph-structured objects

e Graph and link mining
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In general: Having more than one view on the same set of objects
can be exploited to learn better results.

—> Ensemble theory: Learn better models by combining multiple
base-learners.

= Multi-View data mining: In most cases, specialized applications of
Ensemble learning

—> Well established in application domains such as bioinformatics
and multi-media retrieval.
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e |nput:
— A dataset containing instances X from a data space D.
— A et of classes C={c}
— Each element x € X belong to class ¢, € C.

e Thereis a function f: D — C, describing the connection between x
and class c;.

e The task of classification is to determine f.

e |n general, learning algorithms compute an approximation of f
which does not hold completely. They learn a hypothesis.

e A classifier is an hypothesis about the true function f
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e The “true” function fis unknown.
e There is a labeled set of tuples (x, ¢;) € f €D xC (training set)

e Alearning algorithm now determines the hypothesis h; as classifier
from the hypothesis space H € D x C which fits best to the training
set.

Of

h,

H

e Caution: the “true” f does not need to be contained in H.
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e A classifier (a learned hypothesis h) can be applied to all xeD to
predict the c=f(x)

e The accuracy is the relative frequency of correct predictions.

Acc(h) = P(h(x)=f(x))

e Correspondingly, the classification error is the complement:
Err(h) = P(h(x)#f(x))=1-Acc(h)
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Introduction to Ensemble Learning
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e Core idea of ensemble learning: Asking multiple “experts”
(classifiers) can avoid mistakes.

e From a mathematical point of view: building the average over

multiple functions can smooth the decision surface.

%, a0f s
qh3 6%5 .hl H
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e Asimple decision rule for two classes C={-1,1}:

— Generate a set of hypotheses {h,,...,h,} and corresponding weights{w,,...,w,}.
— An ensemble-classifier h is defined by the following decision function:

ﬁ(x):; wh(X)+...+wh >0->1

wh(x)+...+wh <0—-1

e often w,=...=w,=1 (unweighted combination).
e Weights can by used to express the reliability of the classifiers

e More complex decision rules might be used, especially when
having more than two classes

— there is a large variety of ensemble-methods
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e Let an ensemble of k=25 binary classifiers, each with an error rate e=0.35.
e Let majority voting defines the ensemble’s decision

e Whatis the ensemble error?
— If the base classifiers are identical, e=0.35

— If they are independent, i.e., their errors are uncorrelated, the ensemble makes a
wrong prediction if more than half of the base learners make a wrong prediction.

e The error rate of an ensemble learner is given by the frequency of the cases
where at least half of the base classifiers are wrong:

Err(h)= I%{fje'(le)“

— it depends on the error-rate of its base-classifiers e and their amount k.

(Assumption here: Err(h,)=...=Err(h,)=¢)

A 25 25 ) )
e |nourexample: Err(h)=2(ije'(l—e)zs':0.06

i=13
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Dependency of the ensemble error rate on the number of base-
learners (assuming a constant error rate of e=0.3)
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Introduction to Ensemble Learning
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e Error rate of an ensemble of 25 binary classifiers, for varying error
rates (e) of the base-classifiers :

Ensemble classifier error

1
0.9

0.7
0.6
0.5
04

0.2

- —\ Identical base learners

Independent base
learners

Il There is no improvement with
identical base-learners

I11If e>0.5, the ensemble performs

0.2 0.4 0.6
Base classifier error

0.8

worse than the base learner!

(from: Tan, Steinbach, Kumar: Introduction to Data Mining)
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e Requirement for an improvement: The errors of each classifier are

independent.
k

Err(h)= > k e'(1-e)"

2N

e if the base classifiers are too similar, they are making the same
mistakes => no improvement
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Introduction to Ensemble Learning

Conclusion:

LMU

Required conditions for an improved accuracy:
1. Base classifiers are sufficiently “accurate”.

2. Base classifiers are “diverse”.

Accuracy: better than random predictions
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Diversity: no correlations or, at least no strong correlations
between the predictions of the base-learners

s it possible to optimize both simultaneously?
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4. Mining Multi-View Data



e There three fundamental reasons that allow us to construct very
good ensembles:
— Statistical Variance

— Computational Variance
— Representation
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e Statistical Variance:

— The number of potential hypotheses is to big to determine the best one
based on a limited sample set.

H

— Combining multiple hypotheses reduces the risk to make a large mistake
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Aspects of Diversity

e Computation Variance:

Knowledge Discovery in Databases Il: Multi-view data and Ensemble learning
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— Some learning algorithm cannot guarantee, to find the hypothesis fitting
best to the training data due to the complexity of the learning algorithm

— Even for cases where exist enough data (the statistical problem is absent)
— For example, it is common to use heuristics computing local optima in case

computation is too expensive.
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— Combination of multiple hypotheses (by running the local search by many
different starting points) reduces the risk to take the wrong local optima of

an error function.
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e Representation :

LMU

— The space of representable hypotheses might not contain a good

approximation of the “true” function f.

h,

— Combining multiple hypotheses can expand the space of representable

hypotheses.
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e Fuzzy target functions:

— The training samples do not allow clear conclusions about the target
function (e.g., training samples might be contradictive).

H

— Combining multiple hypotheses reduces the risk to approximate a wrong
hypothesis.
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e Variance, Bias, Noise of a learner: Il
— Example:
M
e Lt
(from: Tan, Steinbach, Kumar: Introduction to Data Mining) "Yariance' "Noise”
4 o
"Bias’

— Variance, Bias and Noise represent different types of errors
err = Bias, +Variance, + Noise,

— Variance;: depends on the employed force f
— Noise,: the target is not stationary
— Bias,: depends on the angle of the canon
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e Aclassifier’s error can be analyzed w.r.t. variance, bias, noise:
— Error due to bias:

e The amount by which the expected model prediction differs from the true value, over the
training data.

Introduced at model selection: Represents the assumptions on the design choices of the
classifier (e.g. linear separable, independent attributes,..).

¢ High bias = underfit

“Bias-free learning is futile”: A core part of learning is to abstract the observations within
a model 2learners are based on this model

— Error due to variance:
e |t shows how sensitive the algorithm is to the training data

e Variance is high if different training sets raise different classifiers.
¢ High variance = overfit

— Error due to noise:

e The class for some of the training objects is not clearly defined or ambiguous.
e E.g., instances with same values different class labels
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e |deally, we want to choose a model that captures the regularities in the training
data, but also generalized well to unseen data.

e Example from Andrew Ng, Machine Learning course, lecture 42
— https://www.youtube.com/watch?v=4d3_VJgWaV0

Lre Sire Site
. 4 fl:_p A, 4 ”;‘ I H‘.,-' By + 01+ 0,0° + 0y i “_Ji
High bias “Just right” High variance
(underfit) (overfit)
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e Decision Trees of different complexities:

x1<-1.24

X2 <1.94

(a) Decision tree T,

x1<-1.24
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(from: Tan, Steinbach, Kumar: Introduction to Data Mining)
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e Decision Trees as an example for bias:
— T, and T, were trained on the same data

Knowledge Discovery in Databases Il: Multi-view data and Ensemble learning

Example of bias 2/2

LMU

— T, was generated from T, by pruning it to the maximal height of two
— T, uses stricter assumptions about class separation (strong bias)
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e The relative contribution of bias and variance to the complete error depends on
the classifier type, e.g., DTs vs 1NN.

30

20+

10

—20r

a0

(a) Decision boundary for decision tree. (b) Decision boundary for I-nearest
neighbor,

Figure 5.34. Bias of decision tree and 1-nearest neighbor classifiers.

(from: Tan, Steinbach, Kumar: Introduction to Data Mining)
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e Example:

— decision boundary for each classifier by averaging the models induced from
100 training sets, each containing 100 objects

— dashed : true class border being used by the data generator

The difference between the true border and the avg one reflects
the bias of the classifier

— 1-NN classifier has overall smaller distance to the class border
=» less bias

But, the 1-NN classifier is more sensitive to the composition of the
training set

— the 100 1-NN classifiers display a larger variability in their decision
boundaries

=» larger variance
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2. Diversity in Ensemble Learning

4. Mining Multi-View Data



Original
Training data

Step 1:
Create Multiple
Data Sets

Step 2:
Build Multiple
Classifiers

Step 3:
Combine
Classifiers

Figure 5.31. A logical view of the ensemble learning method.

(from: Tan, Steinbach, Kumar: Introduction to Data Mining)
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e How can we a achieve diversity of base learners?

Methods for Ensemble Construction

Vary the training sets

e Methods: Bagging and Boosting
Manipulate the input features

e Learn on varying subspaces

e Use multi-view data
Manipulate the class labels

LMU

e various methods for mapping multi-class to 2-class problems

Manipulate the training algorithms
e introduce randomness
e employ varying initial models

Knowledge Discovery in Databases Il: Multi-view data and Ensemble learning
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e |dea: create multiple training sets by resampling the original data
— Approaches: bagging, boosting

e An important property of a learning algorithm is stability

— The more stable a learner is, the less different are the classifiers on
different training sets for the same classification task.

— Unstable learners may strongly change even under small modifications of
the training sample.

=>»they are more suitable for ensemble learning

— Examples of unstable learners:
e Decision trees
e Neural networks
e Rule-based learners
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Varying the training set: Bagging [Breiman96]
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e Bootstrap: sampling with replacement

— Each bootstrap sample D, has the same size (n objects) as the original
dataset

— Some instances might appear >1 times, others might be omitted

— On average, D, contains 63% of the original training data

— Each instance has a prob 1/n of being chosen and 1-1/n of not being chosen.
— After making n draws each instance is not contained once with likelihood of

1 n
n
’ ( ljn -1
e forlargen’s l-—| e =0.368

n

— therefore, the method is also called “0.632 bootstrap”
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e Bagging (Bootstrap Aggregating): build varying training sets by multiple
bootstraps over the original dataset

Original Data 1 2 3 4 3) 6 7 8 9 0
Bagging (Round 1) 7 8 10 2 5 10 10 3) 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 3) 10 3) 5 9 6 3 7

e Bagging aggregates these bootstraps and trains a classifier on each of them
— Using unstable methods results in multiple varying classifiers

e The final classifier is combined by a simple majority vote

Knowledge Discovery in Databases Il: Multi-view data and Ensemble learning



e Traini X 0.1 02) 03| 04| 05] 06) 0O7] 08| 08
raining set - 1 1 1 X 1 Kl X 1 1
e Without bagging (singleton model): accuracy ~ 70%
e 10 bagging rounds and their models
e Decision stump models (1-level binary DTs)
Bagging Round 1:
x |01 [ 0202 03] 04 040506 09|00 | x<=03Buasy=t
¥ 1 1 1 1 =1 -1 -1 -1 1 1 A>»035 mms ym-1
Bagging Round 2:
x |01 [02 [ 03[ 04050800 1 [ 1 | 1 | x<e0B5mmsy=t
Yy | 1V v [ v A a1 1 [ 177 [ 1| x>085emyst
Bagging Round 3:
x 10110203 /04]04]05]07/07]08]/00]|x<=035my=i
Yy | v [ v [ v [ al a4 a4 1| 1] x>035=y=-1 BaggngRound?7:
= | 01|04 04 06 0T 08 09 |09 |09 | 1
Bagging Round 4: AEEEEEEEEE NN
x JorJo1 o204 04 05 05 0708 [00] xe=03mmnys=t
y | v v vl alafalalal 1|1 ]x08my= Bagging Aound 8:
x |01 |02 05] 05 05 0707|0809 1
Bagging Round 5: y [ v v Tl T
x Jor o102 05 0606 06 1 | 1 [ 1 |xenm0Bmmsyant
¥ 1 1 1 A | «1 | - - 1 1 1 | x>035smy=-1 Bagging Round & B B
| x 0103/ 04/04/06/07 /0708 1 | 1
Bagging Round &: AEEEEEIEIEEEIEEEEREEK
x 020405 060707 [07 08 ][08 [ 1 |xe=0Smmyn-t
¥ 1 ] o ] A 1 ] 1 1 1 |2>075e=ay=1 Bagging Round 10:
= |01 01 0101 |03 03 08 08 09 |08
(720 I O T T T T T O O A
(from: Tan, Steinbach, Kumar: Introduction to Data Mining) Figure 5.35. Example of bagging.

X <m (.75 mus = -1
X305 mm>ym |

% em 075 mmsy = -1
x>0 T5masym1

Xem 075 e ym -
X>0T5sm>ym1

X <n 0.05 sa» y = -1
X>005mm>ymi
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e We classify the original data using the ensemble members

e The ensemble perfectly classify all the results

Round x=0.1 | x=0.2 | x=0.3| x=0.4 | x=0.5| x=0.6 | x=0.7 | x=0.8 | x=0.9 | x=1.0
1 1 1 1 -1 -1 -1 -1 -1 -1 -1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 -1 -1 -1 -1 -1 -1 -1
4 1 1 1 -1 -1 -1 -1 -1 -1 -1
5 1 1 1 -1 -1 -1 -1 -1 -1 -1
6 -1 -1 -1 -1 -1 -1 -1 1 1 1
7 -1 -1 -1 -1 -1 -1 -1 1 1 1
8 -1 -1 -1 -1 -1 -1 -1 1 1 1
9 -1 -1 -1 -1 -1 -1 -1 1 1 1
10 1 1 1 1 1 1 1 1 1 1
Sum 2 2 2 -6 -6 -6 -6 2 2 2
Sign 1 1 1 -1 -1 -1 -1 1 1 1
True Class 1 1 1 -1 -1 -1 -1 1 1 1

Fiaure 5.36. Example of combinina classifiers constructed usina the baaaina aoproach.
(from: Tan, Steinbach, Kumar: Introduction to Data Mining)
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e |t enhances the representation of the target function

— In our example: from decision stumps in the base learners to 2-depth DTS
in the ensemble.

e Less susceptible to model overfitting when applied to noisy data
— It doesn’t focus on any particular instance in the training set
— All instances have equal probabilities of being selected

e Bagging reduces the variance of the base learners by averaging

— |If the base learner is unstable, bagging helps to reduce the error associated
with random fluctuations of the training data

e Bagging has little effect on bias

— If the base learner is stable, the error in the ensemble is primary caused by
bias in the base learners.

Knowledge Discovery in Databases Il: Multi-view data and Ensemble learning
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Varying the training set: boosting

e Boosting:

LMU

— While bagging draws from a uniform distribution, boosting employs a

weighted distribution.

— Instances which are hard to classify are weighted higher in the next round

— How weighting is used:

e higher weights increase the likelihood of selection in the next bootstrap =
difficult examples appear more often in the next bootstrap

e Can be used by the base learner to learn a model that is biased towards higher-

weight instances

Original Data 1 2 3 4 5 6 / 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 @ 10 | 6 3
Boosting (Round 2) 5 (4 9 @ 2 5 7 @ 2
Boosting (Round 3) @ @ 8 @ 5 @ 6 @

— The ensemble is an aggregation of the base classifiers obtained from each

boosting round.

Knowledge Discovery in Databases Il: Multi-view data and Ensemble learning
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e Given a training set D of m instances (X;, y,), -, (X, ¥,.))

e |[nitially, all instances have the same weight: 1/m
e A weak learner is trained and its error is computed

e The weights are updated based on the weak learner’s errors
— If a tuple is misclassified, its weight is increased, o.w. it is decreased

e The new weights are used in the next round

e The final decision is a linear combination of the weak learners
decisions; the decision of each weak learner is weighted by its
error.

Knowledge Discovery in Databases Il: Multi-view data and Ensemble learning



Given: (1, y1)s--, (Tm, Y ) Where ;€ X,y €V = {1, 41}
Initialize D, (i) = 1/m.
Fort=1,...,T:

Train weak learner using distribution [J;.
Get weak hypothesis fi, : X' — {—1, +1} with error

e = Prip, [l (x:) # uil . Error of classifier M,
e Choose a; = £ln (1 ;E‘)_ the weight of classifier M,
e Update:
D) = 2O e ithE)=u
e T g e if by (25) # w Weights update
D (i) exp(—oyy; by (2;))
Z
where 7, is a normalization factor (chosen so that ), ; will be a distribution).
Output the final hypothesis:

) = sign (3 @),



Final classifier

Round 3

i
o+

Source: http://videolectures.net/mlssO5us_schapire_b/
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e Focus on more difficult examples

e Can be quite susceptible to overfitting
— since it focuses on training examples that are wrongly classified

e Comparing to bagging: boosting tends to achieve greater
accuracy, but it also risks overfitting the model to misclassified

data.
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e Manipulate the input features: Learn on varying subspaces or combine
features

Typical example: Random Forests, an ensemble of decision trees

Step1:
Original D Randomize} Create random
Training data vectors

A 1l =
Loz (o] SIHED
I I

o

Y

vector to l
build multiple T
decision trees & M‘ M
Step 3:
Combine

decision trees

Figure 5.40. Random forests.

(from: Tan, Steinbach, Kumar: Introduction to Data Mining)
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e |ntuition: Randomization helps to reduce the correlation among
decision trees so that the generalization error of the ensemble

can be improved.
e How to generate random trees?

— random selection of features for each base-learner

—  (if the feature space is small), increase the feature space by constructing
combinations of input features
— for each node use one of the F best splits instead of the best split

* |t combines classifiers being trained on different views/ feature
sets (Multi-View Data Mining)

Knowledge Discovery in Databases Il: Multi-view data and Ensemble learning
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e Suitable when the number of classes is sufficiently large

e |dea: Map the multi-class problem to a set of two-class problems

— Partition the class labels into two sets, A +A,.
e instances belonging to A, = class 0
e Instances belonging to A, = class 1

— Use the re-labeled instances to train a base classifier. ST

— By repeating the whole process, an ensemble is built e
Image from: Fiirnkranz 2002

— For prediction, for each classifiers C, in the ensemble

o If C, predicts O, all class labels in A, receive a vote. If it predicts 1, then the vote
goes to the class labels in A,.

e The class with the highest votes is the predicted class.

e General methods:
— one-versus-rest, all-pairs, error correcting output codes
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e one-versus-rest (also known as: one-versus-all, one-per-class):

For k classes, k classifiers are trained. Each distinguishes one class from the
combination.n of all other classes

+
X + +
X +
X X . +
X +
X . +
~ + +
o ~ +
o] ~ +
b
~ o © N e
- o 5%, o ~ -
- = 0% o
_ - o ° » ° - - Image from: Fiirnkranz 2002
— 0 -
— o O -
~ -~ o
- 4 4
# #
# #
# #
# #
# #
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e all-pairs (also known as: all-versus-all, one-versus-one, round robin,
pairwise):
— For each pair of classes (y;, y,), a classifier is trained distinguishing between
Yir Y

* Only instances fromy;,, y; are employed, rest ignored

— k(k-1)/2 binary classifiers

Bild aus: Fiirnkranz 2002
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smanse | EFTOr correcting output coding (ECOC)

GROUP

e Inspired by information theory for sending messages across noisy channels
e |dea: Encode each class using binary classifiers

e How the codes are created?

— The class set C is randomly split into two disjunctive A+B subsets.

e Dataset relabeling: instances belonging to class set A are labeled with 0, all other objects
belonging to the class set B are labelled with 1.

e Aclassifier h, is built

— Process is repeat L times = L classifiers

— Eachclass ¢;in Cis encoded by an L-bit codeword
e Bitlis1if and only if ¢, belongs to class set B

e How the codes are used during prediction for a new instance x?
— each h, classifies x = codeword for x

— the class with a codeword whose Hamming distance is closest to the codework of x, is the
predicted one.

e Hamming distance: # positions that the corresponding symbols are different
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e Example: C={c,c,c;C,}

class code word

C, 1|1 1 1 1] 1 1

¢, [0|lo|lo]o]|1]1]1

¢ [o0|lo|1]1]0]o0]1
¢, |o]l1lof1]of[1]oO

e 7-bit codewords => 7 binary classifiers are trained

e Each bitin the codeword is derived by the corresponding binary
classifier

e If atestinstance is encoded/classified as (0,1,1,1,1,1,1), for which
class would the ensemble decide?
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wmease | MIOre on ECOC

GROUP

e the name “Error Correcting Output Codes” reflects the idea that
training multiple classifiers introduces redundant class borders

e the “code words” are binary codes which reflect the assignment
of the classes for each classifier

e To build a high quality ensemble each of the class borders has to
be sufficiently represented:

— Row Separation: Each pair of code words should display a large Hamming
distance (=large amount of mismatching bits).

— Column Separation: the binary classifiers should be uncorrelated.
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wmease | MIOre on ECOC

GROUP

class code word

C, 1|1 1 1 1] 1 1

e Alarge Hamming distance between the rows allows a unique class
prediction of the ensemble.

e How large is the Hamming distance between the result
(0,1,1,1,1,1,1) and the codes for the classes c,, ¢,, c; and ¢,?
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Manipulate the learning algorithm

DATABASE
GROUP

e Manipulating the learning algorithm by randomization:

— Start with varying initial models (e.g., different starting weights for back-
propagation in neural networks)

— Randomized splits in decision trees
— It depends on the type of the classifier used

Knowledge Discovery in Databases Il: Multi-view data and Ensemble learning



w

ames: | ENS€Mble learning overview

GROUP

e A well-established method for obtaining highly accurate classifiers
by combining less accurate base-learners.

e Ensemble = set of base learners + a voting strategy

e |mportant aspects for ensemble generation: accuracy and
diversity of the base learners.

e Efficiency: easy to parallelize, each base learner is generated
independently.

e Bagging and boosting approaches

e Ensemble learning for data streams: both base learners and their
voting weights should be tuned over time.
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1. Introduction and Basic Principles of Ensemble Learning

2. Diversity in Ensemble Learning

3. Methods for Ensemble Construction
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Multi-View Data Mining BRI

DATABASE oot
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GROUP A

Pty oo MDYQVSSPTYIDYDTSE
PCINVKQIAARLLPPLYS
LVFIFGFVGNMLVILINC

c~— ——
——

rider, horse, equestrian,

g iy hill, forest,
T ERCL >\_/<
\—//
Protein
BINDS TO MIP-1-ALPHA,
MIP-1-BETA AND RANTES
AND SUBSEQUENTLY... \_/

\_/

Reasons for the existence of multiple views:
e varying aspect of the same object

e varying measuring techniques

e varying feature transformations

— Multi-View Data
= 0 € Rjx.xR_, whereR, isthe feature space of view i.
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Challenges:

Problem setting 1/2

LMU

all necessary information should be available to the data mining algorithm

=> employ all available information

e too many unnecessary features might have a negative influence on mining

Nai
1.
2.
3.

=> use only the necessary features (compare to feature selection)

ve approach:

Build a joint feature space.

Use feature reduction or feature selection

Employ the data mining algorithm to lower dimensional representation.

@q

concatenation

—

rider, horse, equestrian, hill,
est,

forest,
@ @ @ @@

feature
selection

qw
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e Approaches (discussed in this lecture)

— Multi-view classifiers

— Co-training
— Incorporate the multi-view aspect in the distance/similarity function
— Multi-view clustering
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DATABASE MUIti'VieW CIaSSiﬁerS

SYSTEMS LMU i A
GROUP all

Input: 0 € R, x..x R, where R; is the feature space of view /.

Multi-view classifiers:

1. Train a classifier for each view

2. Classify a new object in each view

3. Combine the results to a global class prediction

/ text description \

BINDS TO MIP-1-ALPHA,
MIP-1-BETA AND
RANTES
AND SUBSEQUENTLY Cl assifier
MDYQVSSPTYIDYDTSEP
CINVKQIAARLLPPLYSLV q
FIFGFVGNMLVILINCKR O /a0
K ...... classifier /
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Classifier combination

LMU

How to combine class predictions for an unknown instance x in the

light of varying prediction qualities?

1.

Each classifier Cl returns a confidence value ¢, for each class
A=> the confidence vector cf(x) : ZCL(X)ZI

AeC

Classify x by combining confidence vectors c'(x) of the different
Views

pred (X ) = argmax k@ (C,i))

AeC €R

where @e{min,max,z ,H }‘
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Input: 2 views for bitmap images: color histograms(R;) and texture vectors (R,).
classes = {“contains water“=A, “no water“=B}
Bayes classifiers K, (for R,) and K, (for R,)

Classification of a new image b:
K,(b)=c1 =(0.45, 0.55); K,(b) = c2=(0.6, 0.4)

color histogram K1 N
TR o global prediction
; = e texture vector f
e combination by maximum: Calobal = (0.6, 0.55) and argmax(c,p,) = A
e combination by mininum: Colobal = (045, 0.4) and argmax(c,p,) = A

e combination by average (sum):
Colobal = (0.45+0.6,0.55+0.4) * % = (0.525, 0.475) and argmax(Cyqp,) = A
e combination by product:

Clobal = (0.45%0.6,0.55%0.4)=(0.27, 0.22) and argmax(Cgopa) = A
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Co-Training [BluMit98]

LMU

Semi-supervised learning paradigm that exploits two mutually
independent and sufficient views.

Input: 2 views and only a limited amount of labeled instances.
— The instance space: X = )(1 X )(2
- Eachexample: X =(X,X,)

How to deal with lack of labels?
ldea: Use unlabeled data for training = co-training

Why does this approach require multi-view data to succeed?
Why a single view is not adequate?
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Generating samples using a single view

Naive approach:

Train a classifier CL on all labeled objects

LMU

Classify k unlabeled objects and add them to the training set

Train a new classifier on the extended set

Problem:

new data is labeled by the classifier CL
CL is trained on the original samples

CL is based on the same distribution
the new labels do not add any diversity
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Generating samples using a single view: an
example

e blue =labelled objects (class triangle)
e vyellow = labelled objects (class circle)

LMU

e red =labelled objects by CL,
O o A O o A
A
O\ O o\ @ =
o A o A
A
o ®
e} A A 0) A A
O - A O
A © A
o o
O c© 9 A o © © A

Training on original data

@) oA
A
o O
OO A A
o A A
@) A
o A
o
o © °| a

Training on newly labeled data

Conclusion:

optimal solution

e the red objects only confirm the given assumptions of the classifier

to add new diversity an additional source of information is required
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e |dea: Employ at least two classifiers for labeling objects being used
to train classifiers for other views.

Labeled Data Labeled Diata
Feature 1 Feature 2

Source:
http://homes.cs.washington.edu/~santosh/presentations/coTraining_miscRead_web.pdf
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amese | 1€ CO-Training Algorithm

SYSTEMS
GROUP

Input: 2 sets of multi-view data
TR =labeled training set
U = set of unlabeled samples
Co-Training Algorithm
For k times do
For each R, do
train CL, for view i.
draw a sample from U.
generate new labels using CL..
add newly labeled objects to TR

LMU
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e blue =labelled objects (class triangle)
e vyellow = labelled objects (class circle)
e red =labelled objects by CL,
Objects being labeled by Cl, in R,

O o A O olA
A
o\ O A o o A
° A o A
O A A @) A O © A A
o) - A A o) A
A © A
O O O
@) o 9 A 0O © ©O A
original classifier classifier based on new labels optimal classifier

=> classification can be improved by using classifiers being trained on other views
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GROUP

e |ntegrate multiple views on the object comparison level.

e |dea: Keep the separated feature spaces and combine the
derived similarity values over all views.

e Example: weighted linear combination

— 0 € R;x.xR,, whereR, is the feature space of view i.
— d,{0,,0,): local metric or kernel in R;

Dcombi (01902): Zwi 'di(olsoz)

RiER
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Learning weights for each view

LMU

Formulate the weighting problem as a linear classification task:

.
.
.
Me
.
.

use classes {“similar”,“dissimilar”} for pairs of objects (x,y)
(if x.c =y.c then (x,y).c = similar else dissimilar)

The normal vector of the separating hyperplane represents the weights

Feature space: distance vectors v; = d(x,y) for all views R; 1<i<n

Training set: set of all pairs of vectors in the training set ( O(n?)

thod:

Determine the distance vectors for all object pairs

Train a linear classifier

Determine the normal vector of the separating hyperplane as weights (MMH).

weight vector

similar object pairs

dissimilar object pairs

70



D
e
» [ ] [ ] [ ] [ ] [ ] [ ] [ ]
e | COmbining similarity and distance functions
SYSTEMS I—Mu
GROUP
Remarks:

e Caution: linear classifiers must result in positive normal vectors!

e |tis possible to use the learned classifier directly as a
combination function. In this case, the class probability for the
class dissimilar is used as distance measures

e Combining distance values using more complex combination
functions requires that the mathematical properties which are
required for the data mining algorithm still to hold.

(symmetry, triangular inequality, positive definiteness)
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Clustering multi-view data

Requirements for clustering multi-view data :

employ all views.
use specific similarity/distance measures
employ index and data structures for the employed data types

the effort should only increase linearly with the number of views

LMU
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Idea: An object is in a dense region if there are k neighbors sufficiently similar over all
views. (similarity can be reliably observed from each view)

used for : sparse data

Vs

Union Core-Object:
Given: &, &,.., &, € IR*, MinPts € N. o € O is an union core object if

UN. @)

R, (0)€0

> MinPts where N;‘ (0) denotes the local €-neighborhood in view i .

Direct union reachabibility:
Object p € O is direct union reachable by g € Ow.rt. ¢, &,,.., &,and MinPts if q is a union

core object and p is a member of at least one local neighborhood, i.e.:

3 ie{l,...,m}: R/ (p) e Ngi (q)
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Cluster expansion using the union method

o %S @

©)

.x1 ......................... N ‘ad(z

MinPts =3
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GROUP

Vs

Idea: An object is in a dense region if the g-neighborhoods in all views are dense.

Used for: dense views and unreliable similarity functions.

-

Intersection core object:
Given: &, &,.., &, € IR*, MinPts € N. o € O is an intersection core object if

(N} @)

R;(0)eo

> MinPts where N;‘ (0) denotes the local &-neighborhood in view i .

Direct intersection reachable:
Object p € O is direct intersection reachable by g € O w.rt. &, ¢&,,.., &, and MinPts

if g is an intersection core objectand V i¢e {1,..., m}: R(p)e N (q)
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Cluster expansion using the intersection method

O

O O
O © O
O O
0 o
O
O O OO ©
R, R,
MinPts = 3
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Cluster in single views.

Voice Chat

% _Shopin
i Gourme%
G Food = =
T —

[Beta-What is this?)

Example images for cluster IC 5
(color histograms)

e

Example images for cluster IC 5
(segment trees)

Cluster IC5 based on the intersection method.
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truly similar objects: +
dissimilar objects: -

Similarity in different views
LMU

precision sphere

recall sphere

optimally precision sphere = recall sphere
(one view is enough)

the intersection methods tries to remove false positive from the recall
sphere.

the union method tries to add false negatives to the precision sphere
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