Ludwig-Maximilians-Universität München
Institut für Informatik
PD Dr. Mathhias Schubert
Markus Mauder

Knowledge Discovery in Databases II

WS 2014/2015

Übungsblatt 8: Ensembles

Aufgabe 8-1 Bias, Variance, and Noise

Ensembles are influenced by bias, variance, and noise. But individual classifiers encounter these effects as well. Discuss their differences using the following examples:
(a) Arrows shot from a longbow miss the target by a larger margin than arrows shot by a modern olympic recurve bow.
(b) The shooter observes that he misses the mark horizontally when there is wind.
(c) Shooting over a distance of 30 meters leads to smaller deviation than shooting over a distance of 50 meters.

Aufgabe 8-2 Bias, Variance und Noise II

Discuss which consequences on bias, variance, and noise the following changes to an experiment have:
(a) Using a larger training set.
(b) Using additional, helpful attributes (features)
(c) Using fewer attributes (features)
(d) Using polynomial kernels and derived features
(e) Fewer regularisations
(f) Stronger regularisations
(g) More precise definition and validation of labels

Aufgabe 8-3 Combining similarity measures

Given two kernels k_{1} and k_{2}, combined into a common kernel $k_{\text {com }}$:

$$
\begin{equation*}
k_{\text {com }}=\alpha k_{1}+(1-\alpha) k_{2} \tag{1}
\end{equation*}
$$

with $\alpha \in[0 ; 1]$.
$k_{\text {com }}$ is applied to two classification tasks, using two separate values of α for each experiment. The figure below shows the classification accuracy on the first dataset $(R 1)$ and the second dataset ($R 2$):

Abbildung 1: Classification accuracy vs. α

Answer the following questions using Figure 1:
(a) For which dataset is using a combined kernel beneficial?
(b) When do k_{1} and k_{2} work better individually than combined?

Aufgabe 8-4 Error Correcting Output Codes

(a) Describe the classification strategy one-versus-rest for a 4-class-problem using the notation used to specify ECOCs.
(b) Describe an ECOC strategy for a minimum number of base-classifiers. Specify a complete ECOC strategy which specifies codes for each non-trivial partitioning of the classes in a two-element set of classes.
What influences row separation?

