Aufgabe 6-1 Efficient cosine similarity for parallel systems

The cosine similarity function is commonly defined as:

\[\cos(\varphi) := \frac{x \cdot y}{||x|| \cdot ||y||} \]

The angle \(\varphi \) can be used as a pseudo distance function.

Of particular importance is this distance function for text data, which are usually high-dimensional and sparse. If the data vector has been normalized in a previous step (i.e. \(||v|| = 1 \)), this formula becomes:

\[\cos_{\text{norm}}(\varphi) = x \cdot y = \sum_{i=0}^{n} x_i y_i \]

(a) What is the complexity of this distance function, if vectors \(x \) and \(y \) are both sparse and very high dimensional, particularly compared with the Euclidean distance?

(b) Assuming only \(x \) is sparse, but \(y \) (e.g. a centroid) is dense. How does this affect the computational complexity?

(c) To calculate pairwise similarity in a large database, we transpose the vectors and process them iteratively (e.g. using Hadoop). What is the advantage of this approach?

(d) A similar trick can be applied to Euclidean distances applied to sparse vectors. To achieve this the second binomial theorem can be used: \((a - b)^2 = a^2 - 2 \cdot a \cdot b + b^2 \). Describe how this formula can be applied here.
Aufgabe 6-2 Privacy Preservation in Standard Classifiers

Given the following classifiers: decision trees, nearest neighbor classification, support-vector-machines, and naive bayes.

- Discuss whether pre-trained classifiers can be distributed to third parties without giving access to parts of the training set.
- How could encountered problems be solved?

Aufgabe 6-3 Parallele Association Rules

Discuss the advantages and disadvantages of horizontal and vertical distributions in the parallel generation of association rules.

Aufgabe 6-4 Parallel Naive Bayes Classification with Map Reduce

Describe a program which calculates all required probabilities for a Naive Bayes classifier using MapReduce. Assume that each class can be modeled by a multivariate axis-parallel normal distribution and that the training set D is given as tuples $< ID, object >$ with $object$ having attributes c and v. Let ID be a key for each object, $c \in C$ be the class, and $v \in \mathbb{R}^d$ be a feature vector.

Specify a function for the mapper and a function for the reducer in pseudo-code.