Aufgabe 4-1 Density-based Projected-Clustering (PreDeCon)

The algorithm PreDeCon is closely related to 4C. Instead of the expensive PCA, it uses variance analysis and a weighted Euclidean distance function: For the points in a candidate’s ϵ-neighborhood, each dimension whose variance is below δ is weighted more heavily (κ).

Consider the 2D data set shown below. Assume the width of the grid to be 1 unit, use the Euclidean distance function to determine a point’s ϵ-neighborhood.

Calculate, if p_3 and p_6 are core points. Assume the following parameter values: $\text{minPts} = 3, \epsilon = 1, \delta = 0.25, \lambda = 1, \kappa = 100$
Aufgabe 4-2 CASH: Hough-Transform

Consider the data set "cashDaten.txt", from the lecture website.

(To visualize the data space, use the following gnuplot command:
\[
\text{plot } [0:10][0:10] \text{ "cashDaten.txt" title ""}
\]

Determine the parameter space associated with this data space, i.e. for each point a parameter function of the following form:

\[
f_p(\alpha_1, \ldots, \alpha_{d-1}) = \sum_{i=1}^{d} p_i \cdot \left(\prod_{j=1}^{i-1} \sin(\alpha_j) \right) \cdot \cos(\alpha_i)
\]

(Note: \(\alpha_d = 0\)).

Visualize the parameter functions. Where are dense regions located?