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e So far: focus on batch learning using small datasets

e Batch learning:

— Whole training data is available to the learning algorithm
— Data instances are processed multiple times
— e.g. k-Means clusterer (c.f., slide 4), ID3 classifier (c.f., slide 5)

e Assumption:

Know

— Instances are generated by some stationary probability distribution

ledge Discovery in Databases Il: Data streams

D
&
DATABASE

SYSTEMS
GROUP

Motivation
LMU

But, most interesting applications come from dynamic
environments where data are collected over time
— e.g., customer transactions, call records, customer click data.

Batch learning is not sufficient anymore ...

Algorithms should be able to incorporate new data

— There are algorithms that are incremental by nature, e.g. kNN classifiers,
Naive Bayes classifiers

— But the majority of the algorithms need changes to make incremental
induction, e.g., ID3, k-Means, DBSCAN.
Algorithms should be able to deal with non-stationary data
generation processes
— Incorporate concept drift
— Forget outdated data and adapt to the most recent state of the data
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e (Cluster evolution
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Figure: Data records at three consecutive time stamps, the clustering gradually changes
(from: MONIC - Modeling and Monitoring Cluster Transitions, Spiliopoulou et al, KDD 2006)

e Concept drift
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Fig. 1. An illustration of concept drifting in data streams. In the three consecutive time stamps T,, T, and T, the classification

boundary gradually drifts from b, to b, and finally to b,.
(from: A framework for application-driven classification of data streams, Zhang et al, Journal Neurocomputing 2012)
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e Banks (credit card transactions, loan applications,...)

e Telecommunication (call records, sms, www usage,...)

* Health care systems (customer records in a hospital,...)

* Retail industry (transactions in a supermarket,...)

« WWW (content, interactions, TCP/IP traffic, customer click
data,...)

* Science (experiment results,...)
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Example application: Facebook

facebook

Blog + About Press Releases RSS

More than 50% of our active users log on to Facebook in any given day

Mare than 300 million objects that people interact with {pages, groups, events

Awerage user is connected ta B0 community pages, groups and events

on average, more than 250 million photos are uploaded per day

Cwer 300,000 users helped translate the site through the translations application

on average, people on Facebook install apps mare than 20 million times every day

Ewery month, more than 500 milion people use an app on Facebook or experience

Mare than 7 million apps and websites are integrated with Facebook

COMPANY Statistics
Press Room
Factshest People on Mare than 800 million active users
Statistics Facebook
Timeling fwerage user has 130 friends
Management Team
Founder Bios Activity on
Platform Facebook and community pages)

B-Roll
Press Releases & Announce...

CONTACTS Global Reach More than 70 languages available on the site
Spagker Requests Approxzimately 80% of users are outside of the United States
Inkerview Requests
Facebook Stories

Platform
Facebook Platform on other websites
Mobile

Mare than 350 million ackive users currently access Facebook through their mobile
devices

Mare than 475 mobile operators globally work to deploy and promote Facebook
mobile products
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Example application: Twitter

Ewiktter

by the numbers

The success of Twitter has been nothing short of amazing.
What follows is a brief roundup of some of the latest growth
and engagement metrics that Twitter recently published

Increase in the average number of
tweets per day (TPD) for each month

Fl Quick Twitter Stats

o7 1 IlliON mnter o tweet ot erest _N\NY 'g
+ 3 years, 2 months and 1 day 8
thetime in etwsen thefst bweet ond S
the bllonth tweet kN 280% ) b1
+ 177 million Theaverage e NCTRASE g ageTeD i
for Mareh, 010 for February, 20m ()
e e weas sa milion was qo millon a
« 456 7
hveets prsacond (17) wher Michael fckson ded 4]
omhune 35, 2003 a record o tht ime 5
i Increase in the number of [}
« 6939 mobile users during 2010. [J]
Japan on New Year’s Day. -
+ 572,000
b it e
N 82% a
182
+ 460,000 \ P /
overage number of e accounts per doy duing insanvary, zo10 IMCTEASE 11 janary,zom
Fobruary, ot Twiter had an estimated Twitter hadan estimated
e

Between 2008 and 2011 there was a 5000% increase
in the number of employees at Twitter 24

=
In January, 2008 January, 2009 January, 2010 January, 2om March, zom
Twitter had Bemployees 29 employees 130 emplayees 3s0emplojees 400 employees

@KISSmetrics
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e Experiments at CERN are generating an entire petabyte (1PB=10° GB) of data
every second as particles fired around the Large Hadron Collider (LHC) at
velocities approaching the speed of light are smashed together

e “We don’t store all the data as that would be impractical. Instead, from the
collisions we run, we only keep the few pieces that are of interest, the rare
events that occur, which our filters spot and send on over the network,” he
said.

e This still means CERN is storing 25PB of data every year — the same as 1,000
years' worth of DVD quality video — which can then be analyzed and
interrogated by scientists looking for clues to the structure and make-up of the
universe.
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“Ta mavra pel kal oUSEv ugvel”
(“Ta panta rhei kai ouden menei”)
“Everything flows, nothing stands still”
Heraclitus (535-475 BC)
e Data evolve over time as new data arrive and old data become

obsolete

e We can distinguish between:
— Dynamic data arriving at a low rate
o Incremental methods might work for such cases

— Data streams: possible infinite sequence of elements arriving at a rapid rate
o new methods are required to deal with the amount and complexity of these data

| | | I | | | | | | | | |

S

Time

Knowledge Discovery in Databases Il: Data streams 10




£ | Anexample dataset:

DATABASE °
ssews | Network traffic data stream LMU
GROUP
time duration protocol_type service flag src_bytes dst_bytes class
t 0 tcp http SF 181 5450 normal
t, 0 tcp http SF 239 486 normal
t7g38 0 icmp ecr_i SF 1032 0 smurf
7830 0 icmp ecr_i SF 1032 0 smurf
70531 0 tcp private SO 0 0 neptune
70532 0 tcp private SO 0 0 neptune
ta02310 0 tcp http SF 244 7161 normal
ta90311 0 tcp http SF 258 9517 normal

= The dataset consists of TCP connection records of LAN network traffic managed by Lincoln Labs.

= A connection is a sequence of TCP packets starting and ending at some well defined times, between which data flows to
and from a source IP address to a target IP address under some well defined protocol.

= Connections are described in terms of 42 features like duration, protocol_type, service, flag, src_bytes, dst_bytes etc,.

= Each connection is labeled as either normal, or as an attack, with exactly one specific attack type. There are 4 main
categories of attacks: DOS, R2L, U2R, PROBING and are further classified into attack types, like buffer-overflow, guess-
passwd, neptune etc.

- Most of the connections in this dataset are normal, but occasionally there could be a burst of attacks at certain times.

More on this dataset:

Knowledge Discovery in Databases Il: Data streams 11
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e Data Mining over stream data is even more challenging:
— Huge amounts of data = only a small amount can be stored in memory
— Arrival at a rapid rate = no much time for processing

— The generative distribution of the stream might change over time rather
than being stationary—> adapt and report on changes

e Requirements for stream mining algorithms:
— Use limited computational resources:
o Bounded memory
o Small processing time
— No random access to the data
o Only 1 look at the data (upon their arrival)

Knowledge Discovery in Databases Il: Data streams 12
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e Usually we are not interested in the whole history of the stream but only in the
recent history.

e There are different ageing/weighting mechanisms or window models that
reflect which part of the stream history is important

— Landmark window:
o Nothing is forgotten.
o All points have a weight w=1.

— Sliding window:

S
rd

o Remember only the n more recent entries.
o All points within the window have a weight w=1, for the rest: w=0.
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— Damped window:
o Data are subject to ageing according to a fading function f(t), i.e., each point is
assigned a weight that decreases with time t via f(t).

o A widely used fading function in temporal applications is the exponential fading
function: f(t)=2, A>0.
o The decay rate A determines the importance of historical data
o The higher the value of A, the lower the importance of old data

The effect of A
1 < S - < & - & ——
09 \ —
08 0.1
£ 0,7 \ .
§° 06 N\ 0.25
.:é; 05 +—— Aﬁ =e=0.5
a 0,4 — 1
0,3 e Y
. @ \ e
. A\;
0 , : ———O ——————v
5
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e We focus on:
— Data stream classification
— Data stream clustering

Knowledge Discovery in Databases II: Data streams 15
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Screw
Nails
Paper clips

Training data

o

New object

Learn from the already classified training data, the rules to classify new
objects based on their characteristics.

The result attribute (class variable) is nominal (categorical)

Knowledge Discovery in Databases II: Data stream classification 16
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Model construction

Training
Data

Classifier
(Model)

IF rank = ‘professor’ OR years > 6

THEN tenured = ‘yes’
IF (rank!="professor’) AND (years <

NAME RANK YEARS TENURED 6) THEN tenured = ‘no’
3
7
2
7
6
3

Mke Assistant Prof no
Mary Assistant Prof yes
Bill Professor yes
Jim Associate Prof yes

Dave Assistant Prof no o
Anne Associate Prof no Prediction
| | e S
Predictive attributes Class attribute
Unseen data
[NAVE  [RANK [ YEARS [ TENURED | T
[Jeff  |Professor [ a4 ] ? | Yf@ﬁ
|Patrick  |Assistant Professor| 8 | ? | ?
|Maria_ |Assistant Professor| 2 | ? | ?
Knowledge Discovery in Databases Il: Data stream classification 17
\» Ly L] ° L3
- | Classification over dynamic data | LMU
SYSTEMS
GROUP

e So far, classification as a batch/ static task

— The whole training set is given as input to the algorithm for the generation
of the classification model

— When the performance of the model drops, a new model is generated from
scratch over a new training set

e But, in a dynamic environment data change continuously

— Batch model re-generation is not appropriate/sufficient anymore

e Need for new classification algorithms that
— update existing models by incorporating new data
— deal with non-stationary data generation processes (concept drift)

— subject to:
o Resource constraints (processing time, memory)
o Single scan of the data (one look, no random access)

Knowledge Discovery in Databases II: Data stream classification 18
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e Non-stationary data (evolving distribution)
Evolving data distribution (from the BA of Alina’s Sinelnikova ,
e Conce pt d rlft “Sentiment analysis in the Twitter stream”, LMU 2012.)
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Fig. 1. An illustration of concept drifting in data streams. In the three consecutive time stamps T,, T, and T, the classification
boundary gradually drifts from b, to b, and finally to b,.
(from: A framework for application-driven classification of data streams, Zhang et al, Journal Neurocomputing 2012)
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e The batch classification problem:
— Given a finite training set D={(x,y)}, where y={y,, y,, ..., i}, |D|=n, find a
function y=f(x) that can predict the y value for an unseen instance x
e The data stream classification problem:
— Given an infinite sequence of pairs of the form (x,y) where y={y,, y,, ..., Y},
find a function y=f(x) that can predict the y value for an unseen instance x
e Example applications:
— Fraud detection in credit card transactions
— Churn prediction in a telecommunication company
— Sentiment classification in the Twitter stream
— Topic classification in a news aggregation site, e.g. Google news
Knowledge Discovery in Databases II: Data stream classification 20
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e Decision trees

e Ensemble methods

Knowledge Discovery in Databases Il: Data stream classification
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e Training set: D = {(x,y)}

— predictive attributes: x=<x,, x,, ..

— class attribute: y={y,, y,, ..., i/}
e Goal: find y=f(x)
e Decision tree model

0 Xg>

LMU

— nodes contain tests on the predictive attributes

— Leaves contain predictions on the class attribute

Training set

Day

Outlook Temperature Humidity

Wind PlayTennis

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14

Sunny
Sunny
Overcast

Rain
Rain
Rain
Overcas
Sunny
Sunny
Rain
Sunny
Overcast,

Overcast

Rain

Hot
Hot
Hot
Mild
Cool
Cool
Cool
Mild
Cool
Mild
Mild
Mild
Hot
Mild

High
High
High
High
Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High

Wealk
Strong
Wealk
Weak
Weak
Strong
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Strong

No
No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No

—
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Sunny Overcast Rain

Humidity Wind
| Humidir | Yes | wind_|

High

No

Normal Strong Weak
\ / \
Yes No Yes
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e Basic algorithm (ID3, Quinlan 1986)
— Tree is constructed in a top-down recursive divide-and-conquer manner

— At start, all the training examples are at the root node

Main loop:
1. A+ the “best” decision attribute for next node
2. Assign A as decision attribute for node

3. For each value of A, create new descendant of

nade Attribute selection measures:
4. Sort training examples to leat nodes * Information gain
5. 1f training examples perfectly classitied, Then * G?'r\_ratlo

STOP, Else iterate over new leal nodes * Gini index

(check Lecture 4, KDD 1)
— But, which attribute is the best?

A1=? [29+,35-] A2=7

Goal: select the most useful
attribute for classifying examples.

« useful - the resulting partitioning
is as pure as possible

* pure partition: all its instances

f f

(21+,5-1  [8+,20-] [18+,33-1  [11+,2-] belong to the same class.
Knowledge Discovery in Databases Il: Data stream classification 23
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* UsedinID3

* |t uses entropy, a measure of pureness of the data

* The information gain Gain(S,A) of an attribute A relative to a collection of
examples S measures the gain reduction in S due to splitting on A:

Gain(S, A) = Entropy(S) — z MEnz‘ropy(Sv)

veValues(A)

* Gain measures the expected reduction in entropy due to splitting on A

* The attribute with the higher entropy reduction is chosen

Knowledge Discovery in Databases II: Data stream classification 24
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* Let S be a collection of positive and negative examples for a binary
classification problem, C={+, -}.

1.0 1

LMU

* p,: the percentage of positive examplesin S 1 / \
! \

* p.:the percentage of negative examples in S

05 4+

Entropy(S)

* Entropy measures the impurity of S:

Entropy(S)=-p, log,(p,)— p_log,(p_)

=
0.0 0.5

* Examples: ®

= LetSH9ST  Eunopi(S) = ——log, (—o) —— log, (—-) = 0.940
ntropy(S) g2(14) 12 gz(14)

H in the general case
- LetS: 7471 Entropy(S) =—%logz(é)—%logz(é) =1 (k—classificatiog problem)
Ent SH=>» —p.1 ,
— LetS:[14+,0-] 14 14 0 0 ntropy(S) Zl: pilog,(p,)
Entropy(S) = —al()gz(a) —al()gz(ﬁ) =0 =

* Entropy =0, when all members belong to the same class

* Entropy =1, when there is an equal number of positive and negative examples

Knowledge Discovery in Databases Il: Data stream classification
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¢ Which attribute to choose next?

5:[9+.5-] 5 [9+.5-]
E=0.940 E=0.940
Humidity Wind

High Normal Wealk Strong

[3+.4-] [6+.1-] [6+.2-] [3+.3-]
E=0.985 E=0.592 E=0.811 E=1.00
Gain (8, Humidity ) Gain (5, Wind )
940 - (7/14).985 - (7/14).592

040 - (8/14).811 - (6/14)1.0
048

151
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Idea: In order to pick the best split attribute for a node, it may be
sufficient to consider only a small subset of the training examples
that pass through that node.
— No need to look at the whole dataset (which is infinite in case of streams)
— E.g., use the first few examples to choose the split at the root

Problem: How many instances are necessary?
— Hoeffding bound!
Hoeffding tree variations

— Very Fast DTs (VFDT), Domingos and Hulten, KDD 2000.
— VFDTc, Gamma et al, KDD 2003

Knowledge Discovery in Databases Il: Data stream classification
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Consider a real-valued random variable r whose range is R

— e.g., for a probability the range is one,

— for an information gain the range is log,(c), where c is the number of classes
Suppose we have n independent observations of r and we compute its meanr

The Hoeffding bound states that with probability 1-6 the true mean of the
variable p, will not differ by more than € from the estimated mean after n
independent observations, i.e., P(u, >r-€) = 1-5, where:

R*In(1/ )
2n

This bound holds true regardless of the distribution generating the values, and
depends only on the range of values, number of observations and desired
confidence.

— A disadvantage of being so general is that it is more conservative than a
distribution-dependent bound

Knowledge Discovery in Databases II: Data stream classification
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e Let G() be the heuristic measure for choosing the split attribute at a node
e After seeing ninstances at this node, let
— X, : be the attribute with the highest observed G()
— X, : be the attribute with the second-highest observed G()
e AG=G(X,) - G(X,) > 0 the difference between the 2 best attributes
e AG is the random variable being estimated by the Hoeffding bound
e Given a desired §, the Hoeffding bound guarantees that with probability 1-6,

X, is the correct choice for this node, if n instances have been seen so far in this
node and AG > €.

— Inthis case, the sample size is enough to decide on X,
e Otherwise, i.e., if AG < g, the sample size is not enough for a stable decision.

— With R and 6 fixed, the only variable left to change € is n
e We need to extend the sample by seeing more instances, until € becomes smaller than AG

Knowledge Discovery in Databases Il: Data stream classification 29
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m Input: § desired probability level.
m Output: 7 A decision Tree

m Init: 7 — Empty Leaf (Root)

m While (TRUE)

m Read next Example

m Propagate Example through the Tree from the Root till a
leaf Those needed by the heuristic

_ . luation function G
m Update Sufficient Statistics at leaf /_ evaluation function G

m If leaf(#examples)mod N,,;,=0

m Evaluate the merit of each attribute
Let A; the best attribute and A; the second b instance is very expensive.
Let e = /R?In(1/6)/(2n) - Evaluate G() only after N,;,
If G(A1) — G(Az) > ¢ instances have been observed
Install a splitting test based on A; since the last evaluation.

Expand the tree with two descendant leaves

The evaluation of G() after each

Knowledge Discovery in Databases II: Data stream classification 30
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e Hoeffding tree

— Leaf nodes are transformed into decision nodes by splitting on an attribute
— Hoeffding trees exploit the fact that a small sample can often be enough to

choose an optimal splitting attribute
o Hoeffding bound

e Adaptive size Hoeffding tree (ASHT)

— The tree has a maximum size (# of splitting nodes)

LMU

— After one node splits, if the number of split nodes of the ASHT tree is higher
than the maximum value, then it deletes some nodes to reduce its size

Knowledge Discovery in Databases Il: Data stream classification
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e Decision trees

LMU

e Ensemble methods

Knowledge Discovery in Databases II: Data stream classification
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* l|dea:
— Instead of a single model, use a combination of models to increase
accuracy

— Combine a series of T learned models, M,, M,, ..., M;, with the aim of
creating an improved model M*

— To predict the class of previously unseen records, aggregate the predictions

of the ensemble
New data
sample
¥
PR
Combine
Vil &5
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¢ |dea: Use a divide-and-conquer manner to build models from continuous
data streams

Ensemble E

'

C

Y

-

O0O00O0|00 0O ©

Data stream
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e Bagging using ASHTs of different sizes

AAA N

— Smaller trees adapt more quickly to changes

— Larger trees perform better during periods with no or little change

— The max allowed size for the nth ASHT tree is twice the max allowed
size for the (n-1)t tree.

— Each tree has a weight proportional to the inverse of the square of its
error

— The goal is to increase bagging performance by tree diversity

Knowledge Discovery in Databases Il: Data stream classification 35
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* The quality of a classifier is evaluated over a test set, different from the training set
* For each instance in the test set, we know its true class label
* Compare the predicted class (by some classifier) with the true class of the test instances
* Terminology
— Positive tuples: tuples of the main class of interest
— Negative tuples: all other tuples
* A useful tool for analyzing how well a classifier performs is the confusion matrix
* For an m-class problem, the matrix is of size m x m
* An example of a matrix for a 2-class problem:
Predicted class
— & C, totals
C wn
28 C, TP (true positive) | FN (false negative) P
2 ©
(o FP(false positive) | TN (true negative) N
Totals P’ N’
Knowledge Discovery in Databases II: Data stream classification 36




>
- | (batch) Classifier evaluation measures
LMU
GROUP
o, . (=1 [+ totals
L4 ACCU ra Cy/ Recogn Itlon rate: (o TP (true positive) FN (false negative) P
— % of test set instances correctly classified G| FPfabepositve) | T (true negative N
Total P N
TP+TN
accuracy(M) =
P+N
classes buy_computer = yes buy_computer = no total recognition(%)
buy_computer = yes 6954 46 7000
buy_computer = no 412 2588 3000
total 7366 2634 10000 95.42

e Error rate/ Missclassification rate: error_rate(M)=1-accuracy(M)

FP+FN
P+N

accuracy(M ) =

e More effective when the class distribution is relatively balanced
— Check Lecture 4, KDD | for more evaluation measures also if classes are

imbalanced!
Knowledge Discovery in Databases Il: Data stream classification 37
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* Holdout method
— Given data is randomly partitioned into two independent sets
o Training set (~2/3) for model construction, Test set (~1/3) for evaluation

* Cross-validation (k-fold cross validation, k = 10 usually)
— Randomly partition the data into k mutually exclusive subsets D, ..
each approximately equal size

— Training and testing is performed k times
o At the i-th iteration, use D, as test set and others as training set

, D,

— Accuracy is the avg accuracy over all iterations
e Bootstrap: Samples the given training data uniformly with

replacement
— i.e., each time a tuple is selected, it is equally likely to be selected again and

re-added to the training set

e Check Lecture 4, KDD | for more evaluation methods, their pros and cons!

Knowledge Discovery in Databases II: Data stream classification 38
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e Holdout evaluation
— 2 separate datasets for training (~70% - 80% of the dataset) and testing
(~20%-30% of the dataset)

— Train model on training set

— Test model on test set
o Static test set!!!

e Prequential evaluation (Interleaved test-then-train)

— One dataset for training and testing
— Models are first tested then trained in each instance

o Test set is dynamic!!!

Knowledge Discovery in Databases Il: Data stream classification 39
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e Accuracy

e Kappa measure
— normalizes the accuracy of a classifier p, by that of a chance predictor p,

0%-20% bad
— PO—Pc 21%-40% fair
1—pc
41%60% moderate
61%-80% substantial
81%-100% (almost) perfect

e Both measures are computed based on the most recent samples
through some
— sliding window
— fading function

Knowledge Discovery in Databases II: Data stream classification 40
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e One of the core tasks in DM
— Used as either a standalone tool or as a preprocessing tool
e The (batch) clustering problem:

— Given a set of measurements, observations, etc., the goal is to group the
data into groups of similar data (clusters)

e The data stream clustering problem:

— Maintain a continuously consistent good clustering of the sequence
observed so far, using a small amount of memory and time.

e This implies:
— Incremental clustering

— Maintaining cluster structures that evolve over time
— Working with summaries instead of raw data

Knowledge Discovery in Databases Il: Data streams 41
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e Traditional clustering methods require access upon the whole
dataset

— Online maintenance of clustering

e The underlying population distribution might change: drifts/ shifts
of concepts

— One clustering model might not be adequate to capture the evolution

e The role of outliers and clusters are often exchanged in a stream
— Clear and fast identification of outliers
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] q
¥ | A taxonomy of stream clustering approaches

DATABASE .
~erews | (& representative methods) LMU
Static clustering Dynamic/Stream clustering
* Leader
Partitioning * k-Means * Simple single pass k-Means
methods * k-Medoids * STREAM k-Means
* CluStream

* DenStream

Density-based * DBSCAN « incDBSCAN *

methods * OPTICS « incOPTICS *
SR « STING « DStream
methods

(*) These methods require access to the raw data (this access might be limited though)
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e Goal: Construct a partition of a set of objects into k clusters
— e.g. k-Means, k-Medoids

e Two types of methods:

— Adaptive methods:
e Leader (Spath 1980)
e Simple single pass k-Means (Farnstrom et al, 2000)
e STREAM k-Means (O’Callaghan et al, 2002)

— Online summarization - offline clustering methods:

e CluStream (Aggarwal et al, 2003)
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Leader

(Spath 1980) LMU

The simplest single-pass partitioning algorithm
Whenever a new instance p arrives from the stream

— Find its closest cluster (leader), ¢

— Assign p to ¢, if their distance is below the threshold dy;,.,

— Otherwise, create a new cluster (leader) with p

1-pass and fast algorithm
No prior information on the number of clusters

Unstable algorithm
It depends on the order of the examples
It depends on a correct guess of d, .,
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STREAM k-Means
(0’callaghan et al, 2002) I_MU

An extension of k-Means for streams
— The iterative process of static k-Means cannot be applied to streams
— Use a buffer that fits in memory and apply k-Means locally in the buffer

Stream is processed in chunks X,, X,..., each fitting in memory

— For each chunk X;
o Apply k-Means locally on X; (retain only the k centers)
o X’ € i*k weighted centers obtained from chunks X; ... X,

o Each center is treated as a point, weighted with the number of points it compresses

o Apply k-Means on X’ output the k centers
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e The stream clustering process is separated into:

— anonline micro-cluster component, that summarizes the stream locally as

new data arrive over time
o Micro-clusters are stored in disk at snapshots in time that follow a pyramidal

time frame.

— an offline macro-cluster component, that clusters these summaries into

global clusters
o Clustering is performed upon summaries instead of raw data
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® Assume that the data stream consists of a set of multi-dimensional
records X,,...X, ..., arriving at T,,..., T ,...: X; = (x2,...,x0)
e The micro-cluster summary for a set of d-dimensional points (X;, X, ...,
X,) arriving at time points T, T,, ..., T, is defined as:
CFT = (CF2, CF1*, CF2t, CF1t, n)
W \ l l V V4
2V X7 2V X 2N T7 || 2T
e Easy calculation of basic measures to characterize a cluster:
N2
= Center: Crl = Radius: |F2 _[CFl
n n n
e Important properties of micro-clusters:
— Incrementality: CFT(C, U p) = CFT(C,) + p
- Additivity:  CFT(C, U C,) = CFT(C,) + CFT(C,)
— Subtractivity: CFT(C, - C,) = CFT(C,) - CFT(C,), C,2C,
48
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GROUP

e A fixed number of g micro-clusters is maintained over time
e |nitialize: apply g-Means over initPoints, built a summary for each cluster

* Online micro-cluster maintenance as a new point p arrives from the stream
— Find the closest micro-cluster clu for the new point p

o If p is within the max-boundary of clu, p is absorbed by clu
o o0.w., a new cluster is created with p

— The number of micro-clusters should not exceed q

o Delete most obsolete micro-cluster or merge the two closest ones
e Periodic storage of micro-clusters snapshots into disk
— At different levels of granularity depending upon their recency
e Offline macro-clustering
— Input: A user defined time horizon h and number of macro-clusters k to be detected
— Locate the valid micro-clusters during h
— Apply k-Means upon these micro-clusters = k macro-clusters
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e Initialization
— Done using an offline process in the beginning
— Wait for the first InitNumber points to arrive

— Apply a standard k-Means algorithm to create g clusters
o For each discovered cluster, assign it a unique ID and create its micro-cluster summary.

e Comments on the choice of g

— much larger than the natural number of clusters
— much smaller than the total number of points arrived
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e A fixed number of g micro-clusters is maintained over time

e Whenever a new point p arrives from the stream
— Compute distance between p and each of the g maintained micro-cluster centroids
— clu € the closest micro-cluster to p
— Find the max boundary of clu
o Itis defined as a factor of t of clu radius
— If p falls within the maximum boundary of clu
o pisabsorbed by clu
o Update clu statistics (incrementality property)

— Else, create a new micro-cluster with p, assign it a new cluster ID, initialize its
statistics

o To keep the total number of micro-clusters fixed (i.e., g):
Delete the most obsolete micro-cluster or
If its safe (based on how far in the past, the micro-cluster received new points)
Merge the two closest ones (Additivity property)

*  When two micro-clusters are merged, a list of ids is created. This way, we can identify the component
micro-clusters that comprise a micro-cluster.
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e Micro-clusters snapshots are stored at particular moments
e If current time is t_ and user wishes to find clusters based on a
history of length h
— Then we use the subtractive property of micro-clusters at snapshots t_ and
tc-h
— In order to find the macro-clusters in a history or time horizon of length h
e How many snapshots should be stored?
— It will be too expensive to store snapshots at every time stamp
— They are stored in a pyramidal time frame

e Itis an effective trade-off between the storage requirements and
the ability to recall summary statistics from different time
horizons.
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e The offline step is applied on demand upon the g maintained micro-clusters instead of

the raw data
e User input: time horizon h, # macro-clusters k to be detected

¢ Find the active micro-clusters during h:

— We exploit the subtractivity property to find the active micro-clusters during h:
o Suppose current time is t.. Let S(t,) be the set of micro-clusters at t..

o Find the stored snapshot which occurs just before time t-h. We can always find such a snapshot h’. Let

S(t~h’) be the set of micro-clusters.

o For each micro-cluster in the current set S(t.), we find the list of ids. For each of the list of ids, find the

corresponding micro-clusters in S(t~h’).
o Subtract the CF vectors for the corresponding micro-clusters in S(t—~h’)

o This ensures that the micro-clusters created before the user-specified horizon do not dominate the

result of clustering process

e Apply k-Means over the active micro-clusters in h to derive the k macro-clusters
— Initialization: seeds are not picked up randomly, rather sampled with probability proportional

to the number of points in a given micro-cluster
— Distance is the centroid distance

— New seed for a given partition is the weighted centroid of the micro-clusters in that partition
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+ CluStream clusters large evolving data stream
+ Views the stream as a changing process over time, rather than clustering the
whole stream at a time
+ Can characterize clusters over different time horizons in changing environment
+ Provides flexibility to an analyst in a real-time and changing environment
— Fixed number of micro-clusters maintained over time
— Sensitive to outliers/ noise
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e Clusters as regions of high density surrounded by regions of low density (noise)

— Density is measured locally, in the e-neighborhood of each point
e e.g. DBSCAN, OPTICS
e Very appealing for streams
— No assumption on the number of clusters
— Discovering clusters of arbitrary shapes
— Ability to handle outliers and noise
e But, they miss a clustering model (or it is to complicated)
— Clusters are represented by all their points
e Solution: Describe clusters as set of summaries

— DenStream (Cao et al, 2006)
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e The online-offline rationale is followed:
— Online summarization as new data arrive over time
e Core, potential core and outlier micro—clusters
— Offline clustering over the summaries to derive the final clusters
¢ A modified version of DBSCAN over the summaries
e Data are subject to ageing according to the exponential ageing
function (damped window model)
- f(t)=2™, A>0
— Athe decay rate

The effect of A
_—

-0 =01 x =05 -1

— higher A, less important the historical

Point weight

data comparing to more recent data

Time
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e The micro-cluster summary at time t for a set of d-
dimensional points (p,, p,, ..., p,) arriving at time points T, T,,

ey TSt
MC = (CF!, CF, w)
N T ,
> ft-T)p, S f-T)p ' f-T)

e Easy computation of basic measures:

i . cr* (cF'Y
= Center: c:CF = Radius: r=\/ ” —[TJ

w
A micro-cluster summary c, can be maintained incrementally

— Ifanew point p is added to c: ¢, = (CF?+p?, CFl+p, w+1)

— If no point is added to c, for time interval &t:
ocC =‘(2'}‘5t*CF2 2-A8t* CF1 z-Aét*W)
p ’ 7
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c-core-micro-cluster
e Core (or dense) micro-clusters
— (W > u) & (r < 8) core-micro-cluster
€ the radjus threshold
u: the weight threshold
e But, in an evolving stream, the role of clusters and outliers often
interchange:
— Should provide opportunity for the gradual growth of new clusters
— Should promptly get rid of the outliers p-core-micro-cluster
e Potential core micro-clusters
- (w2PB*u)&(r<g),0<B<1
e Qutlier micro-clusters
— (w<PB*u)&(r<eg),0<B<1 .
( B u) ( )' B o-core-micro-cluster
58
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e Two lists of p-micro-clusters and o-micro-clusters are maintained over time
e Initialize: apply DBSCAN over initPoints = p-micro-clusters
* Online step as a new point p arrives from the stream
— Try to assign it to its closest p-micro-cluster
— If this is not possible, try to assign it to its closest o-micro-cluster
o Check if this o-micro-cluster can be upgraded
— If both are not possible, create a new o-micro-cluster with p

e Periodic micro-cluster maintenance based on data ageing
e Offline macro-clustering

— On demand, upon user request apply a modified version of DBSCAN over p-micro-
clusters to derive the final clusters
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Two lists of p-micro-clusters and o-micro-clusters are maintained over time

* When a new point d arrives
— Find its closest p-micro-cluster pclu
o If the updated radius of pclu <€, merge d to pclu
— o.w. find its closest o-micro-cluster oclu
o If the updated radius of oclu < €, merge d to oclu
o Check if oclu can be upgraded to a p-micro-cluster (if now w > B*p)

— 0.Ww., create a new o-micro-cluster with d

* Periodic p- and o-micro-clusters update due to ageing
— Delete a p-micro-cluster when w < *u

— Delete an o-micro-cluster when w <¢ (expected weight based on its creation time)
o The longer an o-micro-cluster exists, the higher its weight is expected to be

— The number of p- and o-micro-clusters is bounded
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DenStream:
offline step

* Upon request, apply a variant of DBSCAN over the set
of online maintained p-micro-clusters
— Each p-micro-cluster c, is treated as a virtual point located at
the center of ¢, with weight w.
* Core-micro-clusters (redefined)
* Directly density reachable (redefined)
— ¢, is directly density reachable from c, if:
* ¢, isac-micro-cluster and
» dist(c,c,) < 2¢ (i.e. they are tangent or intersecting)

* Density reachable (redefined)

— A p-micro-cluster c, is density reachable from a c-micro-cluster ¢, if there is a chain of c-micro-
clusters c,;=C;, CPy, .., Cpy=C

o
* Density connected (redefined)
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DenStream clusters large evolving data stream
Discover clusters of arbitrary shapes, following the density-based paradigm
No assumption on the number of clusters

+ + 4+ o+

Noise/ outlier handling

— The choice of the parameters g, B,
— Constant parameters over time, what about clusters with different density
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e A grid structure is used to capture the density of the dataset.
— Acluster is a set of connected dense cells
— e.g. STING

e Appealing features
— No assumption on the number of clusters
— Discovering clusters of arbitrary shapes
— Ability to handle outliers

* In case of streams
— The grid cells “constitute” the summary structure
— Update the grid structure as the stream proceeds
— DStream (Chen & Tu, 2007)
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e The online-offline rationale is followed:
— Online mapping of the new data into the grid
— Offline computation of grid density and clustering of dense cells
i 1
[j l:‘ll . -.. ‘ﬁ I
Data Stream I . g -’éﬁ ':;-‘1'5;, i I
L O R A I '—>
1 T i :
sl I e A [ ey
| =T |
I Density Grid l Clustering results
Online ]n'u-ces:lng Dﬂ]ine-prn-:ﬂqing
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e Data ageing (damped window model):
e D(x,t) =A%t t_is the arrival time for point x, t is the current timepoint
e Ain (0,1) is the decay factor

e The density of a grid cell g at time t:  Plo:0)= 3 D)

e F{g.t)

e The characteristic vector of a grid cell g is defined as:
(tg, t.., D, label, status)
|

|
N _ N \ the class label of {sporadic, normal}
Last update time last time g was rgmoved Last density update the grid
from grid_list

e The grid density can be updated incrementally
D(g,tn) = A" "D(g,t;) + 1 t,: the new record arrival time; t;: the last record arrival
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e The density of a grid is constantly changing over time.
e Dense grid cells

e ® o
Cwm o ©°
D(g.t) = Ni—» Dy O, >1 ... ®
e Transitional grid cells
(¢
Digt)< —CL =D 0<ci<t °
PSR Na—xn — 7 Psas o
e Sparse grid cells
Ni—m < P00 S gty o ©
. .

N: #cells in the grid
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12.
13.
14.
15.
16.
17.

DStream:
the algorithm

procedure D-Stream
te = 0;
initialize an empty hash table gridlist;
while data stream is active do
read record = = (z1, 22, -+ ,24);

LMU

determine the density grid g that contains x; Grid update

if(g not in grid_list) insert g to grid_list;

update the characteristic vector of g;

if t. == gap then
call initial_clustering(grid_list);
end if

Initialization

if t. mod gap == 0 then
detect and remove sporadic grids
call adjust_clustering(grid_list);
end if
te =t +1;
end while

18. end_procedure

from grid_list;

Clustering
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+ DStream clusters large evolving data stream
+ It can discover clusters of arbitrary shapes
+ No assumption on the number of clusters
+ Distinguishes noise and outliers
+ The grid provides a level of abstraction over the data
— The choice of the grid parameters
— Fixed grid parameters
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