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So far: Objects are considered as iid
(independent and identical distributed)

= the meaning of objects depends exclusively on the description
= objects do not influence each other

In the following: Link-Mining

Objects are connected and dependent.

Examples: Publications are measures based on citations.
= objects might depend on any connected object

— databases become large networks (knowledge graphs)
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Idea: Select and rank nodes w.r.t. their relevance or interestingness
in large networks.

Interestingness might depend on :
e influence to the complete networks
e key nodes for network flows

Applications:
e Ranking web sites and web pages
e Rank researchers in citation networks

e Rank importance of nodes representing crossing or routers in
transportation networks
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Idea: Centrality depends on the position of a node to the other nodes w.r.t.
networks distance (=cost optimal path between two nodes)

Let d(v,t) be the length of the shortest path fromvtot (v,t €V)in G(V,E):

)_ 1
> d()

teV
1

" max(d(v,1)

e Closeness Centrality: Cc(V
e Graph Centrality:  C,(v)

Let 5, be the number of shortest paths from s to t and
let o,(v) be the number of shortest path from s to t containing v.

e Stress Centrality: ()= Yo,
s#EvEtel
ity: o (v
e Betweenness Centrality: =Y (V)

s#EVELEV O-S[

46

=
- .
smemse | CeNtrality Measures

GROUP

Example: Let nodes represent routers in a computer network.
If the router having the highest betweenness centrality goes offline the most
direct connections are affected.

Computation: Set of all-pair-shortest paths can be computed in O(n3) time and
using O(n?) memory by the Floyd-Warshal algorithm.
theorem: v is on the shortest path between s and t if and only if
d(s,t) =d(s,v)+ d(v,t)
0 if d(s,t)<d(s,v)+d(v,1)
=0, (v):{
o, 0, else
= to compute the betweenness centrality it is not necessary to compute all
paths
= there are faster solution:
— 0O(nm) without edge weights
— O(nm+n?log n) in graphs having edge weights
where n = [V[ and m = [E[ in the graph G(V,E)

47




%l
N+ . .
smmse | COMpUting Betweeness Centrality

GROUP

Basic idea:

e Start a single source all target search from each node s. The result is a tree
(called Dijkstra tree) containing all shortest paths starting with s.

e The Dijkstra tree also induces a distance ranking of all nodes to s.

e Visit each node v with descending distance to s and count all nodes t lying
behind v in the tree (c(v)) and the set of shortest paths fromsto t ()
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Variables and expressions:
e S:Stack storing nodes w.r.t to their distance to s

Q: Priority Queue for the Dijkstra search (ordered by the distance to s)
e P[v]: List storing all predecessors of v

e d[v]: distance of the shortest path fromstov

e o[v]: number of shortest paths fromstov

. 6[V]:Givenéyt[v]=a(';’—[v] then S[v]=0,.(v)=) 6, [vI= D] Zo(148,,(w))

st teV wiveP[w] GSW

Workflow for each starting node s:
1. Phase: Algorithm computes the Dijkstra tree of s
2. Phase: traverse stack S and count the number of nodes behind each visited node v
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CB[v] :=

Algorithmus fiir ungewichtet Graphen(2)

LMU

0V vev
for s € V

S:= empty Stack;

Plw] := empty List V weV;
o[t] :=0 VteV; o[s]:=1;
drtl

:=-1 VteVv; d[s]:0
Q empty Queue;
Q.push (0, s);
while Q not empty do
v = Q.pop();
S.push (v) ;
foreach neighbor w of v do
if d[w] < O then
dlw]:=d[v]+1;
Q.push(dlw],w);
end if

G (W) :=0 (W) +0 (V)
Plw] .add(v)
end if
end for
end while
O[v]:=0; veV;
while S not empty do
w:=5.pop();
for veP[w] do

end for
if w#s then

CB[w]:=CB[w]+d[w];
end if
end while

end for

if d[w]=d[v]+1l then

S[v]=o[v]+ obvl, (1+[w]}
olw]
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PageRank: (S.Brin/B. Page 1996)

Ranking nodes in hyperlinked Text

LMU

important component in ranking algorithms of search engines (in
combination with other features)

Data is considered a strongly connected, directed network G(V,E).
(e.g. all HTML documents in a search engine)

probabilistic surfer performs an infinite random walk.
idea: visiting probability = importance of the page v.
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Computing the PageRank 0 11 A
start distribution: pO(u)=1/|V | =100 *_@8
010
adjacency matrix: E L1 C
0 = —
E 2 2
transition prob.:  L[u,v]= ﬂ L=l1 0 0
., Elu. Bl 0 1 o
probability of page vattimeii: p:lvl= ZL[U»V]PH (1)
uelV

distribution vector over all pages: p. = LTpl._1

Computation by ,Power Iterations”: p, <~ L' p._,

after ca. 20-30 iterations result should be stable

Solution for none strongly connected graphs: 1. Remove nodes without outlink
2. Allow jumps during traversal
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HITS (Kleinberg 1998): Hyperlink Induced Topic Search
® Consider only objects being relevant for g or being linked to relevant pages
(in- and outlinks).
= G,(V,E,) forqueryq
e there are two types of objects :
Hubs: link to relevant objects (authorities)
Authorities: relevant objects being linked by hubs.
=> each object has an authority score and a hub score
for each object u, h[u] denotes its hub score and a[u] its authority score.

= 8

a good authority is linked by many a good hubs links to many
good hubs good authorities.

000
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Computing HITS:

-

d a vector of authority scores over all objects v €V,
o h vector of hub scores over all objects v €V,

e Computation by mutual iterations: a=E"h (authority score)

h=Ea (hub score)
Complete algorithm:

determine relevant objects (root set).

N o=

determine all pages linking relevant objects .(extended set)

w

iterate over all hub- and authority scores

B

Order the relevant pages by the authority scores
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Input: A graph G(V,E) and 2 nodes v,u € V where (v,u) ¢E.
Output: Predict the existence of link (v,u) if:

e the existence is unknown.

e the link might develop at a future point in time

Examples:

e Links in social networks

e unknown protein interaction

e Customer product recommendations in bipartite graphs
(Collaborative Filtering)

55




%ﬂl
J’ . . .
e | FEature-based Link Prediction

GROUP

Idea: Use the features of pairs of objects to describe their relationship.
Example:

e Common interests in social networks

e Co-authors do research in the same area

e proteins have complementary active regions

= Links do develop by accident, there are reasons which might be found in the
feature values

= Link Prediction: Learn a classifier that maps pairs of feature descriptions to link
probabilities

= Formal: Let u,v € V and let F(v),F(u) be their feature descriptions. Then, Link
Prediction is the task to learn a function P: (F(v),F(u))-> L.

(L is either discrete {link, no link} or real-valued [0,..max_Strength])
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Problem: Feature-based approach do not consider network proximity.
Example:

e Persons having similar interests might not have any contact

e Proteins might dock but do not appear in the same natural surrounding

Solution: Integrate the neighborhood of vand u in G.
= common neighbors increase the likelihood of a link

= describe a node by its adjacency list or the subnetwork
being influenced by the node
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Input: Graph G(V,E) with adjacency matrix A and let E,c E be the set of links with
unknown existence or strength.

Method:

e Factorizing A allows to find a latent k-dimensional space (k is the rank of A)
(Factorization can be done regardless of missing entries)

e nodes can be expressed in this latent space

* remapping of the nodes to the |V| dimensional space fills up the unknown
entries k.

Vorgehen:

2
’

e Factorize A in the nxk Matrix B while minimizing L(B) the: 4'— BRT
a . —a

L(B)= Z i i,jzz Z ai,f_<bi>*’b*»f>

a; ;€ A\U a; ;€ A\U

Computation: Gradient descent on the derivate of L(B).
Remark: Also applicable to bipartite graphs (customer/ product)
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e Find ,dense” subgraphs in a network G(V,E).

e Definitions of ,dense”:
— cliques (complete subgraphs)
— quasi-cliques (at least x % of the edges must exist)

— relative density of the surrounding: in node in subgraph G* has more
links to other node from G‘ than to nodes G \ G'.

e Problem: almost all definitions lead to NP-hard search problems
=> heuristic solutions
=> practical use is limited
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e class of clustering methods that treat the data set as graph

e Object=node; links distance, similarity, reachability distance...

e usually: only consider the k-nearest neighbors or an g-range
=> directed and undirected network are considered

Clustering by weighted k-mincut: Partition a graph G into k
disjunctive subgraphs having similar size while minimizing the
number of removed edges.

=> Weighted k-mincut is also an NP-hard problem.
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e built a symmetric adjacency matrixS: S, ; = sim(x, x,)

e Transform S into a graph Laplacian matrix L:

D sim(x,x,) if Q=
- k

0 else

1

1
L=1-D?SD? D

ij
e after eigenvalue decomposition of L:

— Eigenvectors with eigenvalues = 0, represent connected components

— Eigenvectors describe the linear weights to represent a cluster
representative |DB|
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Conclusions Graph Mining

LMU

e Graph-Mining includes new data mining tasks

— Ranking nodes

— Link prediction

— Dense subgraph discovery and community detection
— Frequent Subgraph Mining

e Clustering can be formulated as a graph problem

— Density-based clustering: find all connected components where links
denote a similarity predicate

— Spectral clustering

— weighted k-mincut: Partition a graph into k subgraphs while minimizing the
weights of the cut edges under size constraints w.r.t. the result subgraphs.
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