

Graph Databases and Linked Data

So far: Objects are considered as iid (independent and identical distributed)

- ⇒ the meaning of objects depends exclusively on the description
- ⇒ objects do not influence each other

In the following: Link-Mining

Objects are connected and dependent.

Examples: Publications are measures based on citations.

- ⇒ objects might depend on any connected object
- ⇒ databases become large networks (knowledge graphs)

44

Node Ranking

Idea: Select and rank nodes w.r.t. their relevance or interestingness in large networks.

Interestingness might depend on :

- influence to the complete networks
- · key nodes for network flows

Applications:

- Ranking web sites and web pages
- Rank researchers in citation networks
- Rank importance of nodes representing crossing or routers in transportation networks

Centrality Measures

Idea: Centrality depends on the position of a node to the other nodes w.r.t. networks distance (=cost optimal path between two nodes)

Let d(v,t) be the length of the shortest path from v to t $(v,t \in V)$ in G(V,E):

• Closeness Centrality:
$$C_C(v) = \frac{1}{\sum_{v} d(v, t)}$$

• Closeness Centrality:
$$C_C(v) = \frac{1}{\sum_{t \in V} d(v, t)}$$

• Graph Centrality: $C_G(v) = \frac{1}{\max_{t \in V} (d(v, t))}$

Let σ_{st} be the number of shortest paths from s to t and let $\sigma_{st}(v)$ be the number of shortest path from s to t containing v.

• Stress Centrality:
$$C_S(v) = \sum_{s \neq v \neq t \in V} \sigma_{st}(v)$$

• Betweenness Centrality:
$$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

46

Centrality Measures

Example: Let nodes represent routers in a computer network.

If the router having the highest betweenness centrality goes offline the most direct connections are affected.

Computation: Set of all-pair-shortest paths can be computed in $O(n^3)$ time and using O(n2) memory by the Floyd-Warshal algorithm.

theorem: v is on the shortest path between s and t if and only if

$$d(s,t) = d(s,v) + d(v,t)$$

$$\Rightarrow \sigma_{st}(v) = \begin{cases} 0 & \text{if } d(s,t) < d(s,v) + d(v,t) \\ \sigma_{sv} \cdot \sigma_{vt} & \text{else} \end{cases}$$

- ⇒ to compute the betweenness centrality it is not necessary to compute all paths
- \Rightarrow there are faster solution:
 - O(nm) without edge weights
 - O(nm+n²log n) in graphs having edge weights where n = |V| and m = |E| in the graph G(V, E)

Computing Betweeness Centrality

Basic idea:

- Start a single source all target search from each node s. The result is a tree (called Dijkstra tree) containing all shortest paths starting with s.
- The Dijkstra tree also induces a distance ranking of all nodes to s.
- Visit each node v with descending distance to s and count all nodes t lying behind v in the tree ($\sigma_{st}(v)$) and the set of shortest paths from s to t (σ_{st})

48

Algorithm for unweighted graphs(1)

Variables and expressions:

- S: Stack storing nodes w.r.t to their distance to s
- Q: Priority Queue for the Dijkstra search (ordered by the distance to s)
- P[v]: List storing all predecessors of v
- d[v]: distance of the shortest path from s to v
- $\sigma[v]$: number of shortest paths from s to v

•
$$\delta[v]$$
: Given $\delta_{st}[v] = \frac{\sigma_{st}[v]}{\sigma_{st}}$ then $\delta[v] = \delta_{s\bullet}(v) = \sum_{t \in V} \delta_{st}[v] = \sum_{wv \in P[w]} \frac{\sigma_{sv}}{\sigma_{sw}} \cdot (1 + \delta_{s\bullet}(w))$

Workflow for each starting node s:

- 1. Phase: Algorithm computes the Dijkstra tree of s
- 2. Phase: traverse stack S and count the number of nodes behind each visited node v

Algorithmus für ungewichtet Graphen(2)


```
CB[v] := 0 \forall v \in V
for s \in V
 S:= empty Stack;
 P[w] := empty List \forall w \in V;
 \sigma[t] := 0 \quad \forall t \in V; \quad \sigma[s] := 1;
 d[t] :=-1 \forall t \in V; d[s]:0;
 Q := empty Queue;
 Q.push(0,s);
 while Q not empty do
    v := Q.pop();
    S.push(v);
    foreach neighbor w of v do
       if d[w] < 0 then
          d[w] := d[v] + 1;
          Q.push (d[w], w);
       end if
```

```
if d[w]=d[v]+1 then
           \sigma(w) := \sigma(w) + \sigma(v)
           P[w].add(v)
         end if
     end for
  end while
  \delta[v] := 0; v \in V;
  while S not empty do
     w:=S.pop();
     for v \in P[w] do \delta[v] := \delta[v] + \frac{\sigma[v]}{\sigma[w]} \cdot (1 + \delta[w])
     end for
     if w≠s then
          CB[w] := CB[w] + \delta[w];
     end if
  end while
end for
```

50

Ranking nodes in hyperlinked Text

PageRank: (S.Brin/B. Page 1996)

- important component in ranking algorithms of search engines (in combination with other features)
- Data is considered a strongly connected, directed network G(V,E).
 (e.g. all HTML documents in a search engine)
- probabilistic surfer performs an infinite random walk.
 idea: visiting probability = importance of the page v.

Anwendungen im Web Mining

Computing the PageRank

start distribution: p0(u) = 1 / |V|

 $E = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

adjacency matrix: E

transition prob.:
$$L[u,v] = \frac{E[u,v]}{\sum_{\beta} E[u,\beta]}$$
 $L = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

$$L = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

probability of page v at time i : $p_i[v] = \sum_{u \in V} L[u, v] p_{i-1}(u)$

distribution vector over all pages: $\vec{p}_i = \vec{L}^T \vec{p}_{i-1}$

Computation by "Power Iterations": $\vec{p}_i \leftarrow \vec{L}^T \vec{p}_{i-1}$ after ca. 20-30 iterations result should be stable

Solution for none strongly connected graphs: 1. Remove nodes without outlink

2. Allow jumps during traversal

52

Ranking Linked Objects

HITS (Kleinberg 1998): Hyperlink Induced Topic Search

- Consider only objects being relevant for q or being linked to relevant pages (in- and outlinks).
 - $\Rightarrow G_{\alpha}(V_{\alpha}, E_{\alpha})$ for query q
- there are two types of objects:

Hubs: link to relevant objects (authorities)

Authorities: relevant objects being linked by hubs.

=> each object has an authority score and a hub score for each object u, h[u] denotes its hub score and a[u] its authority score.

a good authority is linked by many good hubs

a good hubs links to many good authorities.

Anwendungen im Web Mining

Computing HITS:

- \vec{a} vector of authority scores over all objects $v \in V_q$
- \vec{h} vector of hub scores over all objects $v \in V_q$

• Computation by mutual iterations: $\vec{a} = E^T \vec{h}$ (authority score)

 $\vec{h} = E\vec{a}$ (hub score)

Complete algorithm:

- 1. determine relevant objects (root set).
- 2. determine all pages linking relevant objects .(extended set)
- 3. iterate over all hub- and authority scores
- 4. Order the relevant pages by the authority scores

54

Link Prediction

Input: A graph G(V,E) and 2 nodes $v,u \in V$ where $(v,u) \notin E$.

Output: Predict the existence of link (v,u) if:

- the existence is unknown.
- the link might develop at a future point in time

Examples:

- Links in social networks
- unknown protein interaction
- Customer product recommendations in bipartite graphs (Collaborative Filtering)

Feature-based Link Prediction

Idea: Use the features of pairs of objects to describe their relationship.

Example:

- Common interests in social networks
- Co-authors do research in the same area
- proteins have complementary active regions
- ⇒ Links do develop by accident, there are reasons which might be found in the feature values
- ⇒ Link Prediction: Learn a classifier that maps pairs of feature descriptions to link probabilities
- ⇒ Formal: Let u,v ∈ V and let F(v),F(u) be their feature descriptions. Then, Link Prediction is the task to learn a function P: (F(v),F(u))-> L. (L is either discrete {link, no link} or real-valued [0,..max Strength])

56

Topology-Based Linke Prediction

Problem: Feature-based approach do not consider network proximity.

Example:

- Persons having similar interests might not have any contact
- Proteins might dock but do not appear in the same natural surrounding

Solution: Integrate the neighborhood of v and u in G.

- ⇒ common neighbors increase the likelihood of a link
- ⇒ describe a node by its adjacency list or the subnetwork being influenced by the node

Link Prediction and Matrix Factorisation

Input: Graph G(V,E) with adjacency matrix A and let $E_u \subseteq E$ be the set of links with unknown existence or strength.

Method:

- Factorizing A allows to find a latent k-dimensional space (k is the rank of A)
 (Factorization can be done regardless of missing entries)
- nodes can be expressed in this latent space
- remapping of the nodes to the |V| dimensional space fills up the unknown entries $E_{\rm u}$.

Vorgehen:

• Factorize A in the n×k Matrix B while minimizing L(B) the : $A' = BB^T$

$$L(B) = \sum_{a_{i,j} \in A \setminus U} \left| a_{i,j} - a'_{i,j} \right|^2 = \sum_{a_{i,j} \in A \setminus U} \left| a_{i,j} - \left\langle b_{i,*}, b_{*,j} \right\rangle \right|^2$$

Computation: Gradient descent on the derivate of L(B).

Remark: Also applicable to bipartite graphs (customer/ product)

58

Dense Subgraph Discovery

- Find "dense" subgraphs in a network G(V,E).
- Definitions of "dense":
 - cliques (complete subgraphs)
 - quasi-cliques (at least x % of the edges must exist)
 - relative density of the surrounding: in node in subgraph G' has more links to other node from G' than to nodes G \ G'.
- •
- Problem: almost all definitions lead to NP-hard search problems
 - => heuristic solutions
 - => practical use is limited

Graph Clustering

- class of clustering methods that treat the data set as graph
- Object= node; links distance, similarity, reachability distance...
- usually: only consider the k-nearest neighbors or an $\epsilon\text{-range}$

=> directed and undirected network are considered

Clustering by weighted k-mincut: Partition a graph G into k disjunctive subgraphs having similar size while minimizing the number of removed edges.

=> Weighted k-mincut is also an NP-hard problem.

60

Graph Clustering: Spectral Clustering

- built a symmetric adjacency matrix S: $S_{i,j} = sim(x_{i,x_{j}})$
- Transform S into a graph Laplacian matrix L:

$$L = I - D^{-\frac{1}{2}} S D^{-\frac{1}{2}} \qquad D_{i,j} = \begin{cases} \sum_{k} sim(x_{i,}, x_{k}) & \text{if } i = j \\ 0 & \text{else} \end{cases}$$

- after eigenvalue decomposition of L:
 - Eigenvectors with eigenvalues = 0, represent connected components
 - Eigenvectors describe the linear weights to represent a cluster representative |DR|

$$r_k = \sum_{i=1}^{|DB|} EV_i \cdot o_i$$

Conclusions Graph Mining

- Graph-Mining includes new data mining tasks
 - Ranking nodes
 - Link prediction
 - Dense subgraph discovery and community detection
 - Frequent Subgraph Mining
- Clustering can be formulated as a graph problem
 - Density-based clustering: find all connected components where links denote a similarity predicate
 - Spectral clustering
 - weighted k-mincut: Partition a graph into k subgraphs while minimizing the weights of the cut edges under size constraints w.r.t. the result subgraphs.

62

Literature

- Borgwardt K., Kriegel H.-P.: "Shortest-path kernels on graphs". In Proc. Intl. Conf. Data Mining (ICDM 2005), 2005
- Borgwardt K.: "Graph Kernels", Dissertation im Fach Informatik, Ludwig-Maximilians-Universität München, 2007
- Bunke, H.: "Recent developments in graph matching". In ICPR, pages 2117–2124. 2000
- Gärtner, T., Flach, P., and Wrobel: "On graph kernels: Hardness results and efficient alternatives." Proc. Annual Conf. Computational Learning Theory, pages 129–143, 2003
- Wiener, H.: "Structural determination of paraffin boiling points". J. Am. Chem. Soc., 69(1):17–20, 1947

- Yan X., Han J.: "gSpan: Graph-based substructure pattern mining", In ICDM, 2002.
- Kuramochi M., Karypis G.: "Frequent Subgraph Discovery", In ICDM, 2001
- Brin S., Page L.: "The anatomy of a large-scale hypertextual Web search engine", Computer Networks and ISDN Systems, Vol 30, Nr.1-7, S.107-117,1998
- Kleinberg J. M.: "Authoritative sources in a hyperlinked environment", Journal of the ACM, Vol. 46, Nr. 5, S. 604-632, 1999
- Brandes U.: "A faster Algorithm for Betweenness Centrality", Journal of Mathematical Sociology, 25(2):163-177, 2001

64