Knowledge Discovery in Databases Il
Winter Term 2014/2015

Chapter 5: Linked Data

Lectures : PD Dr Matthias Schubert
Tutorials: Markus Mauder, Sebastian Hollizeck
Script © 2012 Eirini Ntoutsi, Matthias Schubert, Arthur Zimek

http://www.dbs.ifi.Imu.de/cms/Knowledge Discovery in Databases Il (KDD Il)

1. Graphs, Networks and Linked Data

2. Similiarity and Distance Measures for Graph Data
3. Frequent Subgraph Mining

4. Ranking Nodes and Centrality

5. Link Prediciton

6. Graph Clustering

=
N . .
An introduction to graphs

DATABASE
GROUP

e Definition: A graph is a tuple G=(V,E) where V is a set of vertices and E c VXV
a set of edges.

o ©

e Usually: vertices = objects, edges =relationships between objects

e Agraphis representable as a quadratic matrix where each objects
corresponds to a row and a column (Adjacency Matrix)

e Comparing graphs is expensive because there are

%'
N . .
e | AN iNtroduction to graphs

GROUP

* node degree: The degree of a node v;in G=(V,E) denoted as d(v;) is number of adjacent
edges: d,(v,)= {V,‘(V,-,V_,-) € E}‘

¢ adjacency matrix : The adjacency matrix of a graph G=(V,E) is defined as:

[4], ={1 i v)£

0 else

Walk: A walk w=(v,,v,,..,v,) is a sequence of nodes v; € V where (v.,, v)e Efor1<i<k.

Path: w is a path if v2zv; with i#).
(=>no node is allowed to appear twice.)

Cycle: Let w=(v,,..,v,), v;= v, and for all 1 <i,j < kit hold that v#v; then w is called cycle.

Walk Path Cycle

D
&
DATABASE

SYSTEMS
GROUP

An introduction to graphs

Directed or undirected graphs:

undirected graph: (v,,v) # (v,v,) , adjacency matrix is not symmetric

labeled graphs: Let F,, and F, be Feature Spaces.

node labels: for every node v €V thereis a label |, e F,.

edge labels: for each edge e € E there is a edge label |, e F;.

Remarks:

Labels can be arbitrary types of information
In most cases, labels are symbols from a given alphabet

LMU

D
&
DATABASE

SYSTEMS
GROUP

Examples

Molecule structures

Protein interaction networks
Social Networks

WWW and other social media
Spatial Networks

LMU

=
- .
wmemse | COMparing Graphs

SYSTEMS LMU

GROUP

Input: 2 Graphs G and G'.
Output: Mapping s:(VXE)x(V*XE) — IR computing the similarity of G and G".
Approaches:
Isomorphism: 2 Graphs are equal if there exists a bijection between nodes
inducing a bijection of edges.
=> Similarity decreases with the non-isomorphic parts

Edit-Distance: Similarity is computing by counting the minimal amount of
operations transforming one graph into the other.

Topological Descriptors: Two Graphs are similar if the have similar values w.r.t.
topological properties, e.g. number of edges, nodes, node degrees, label
distributions,...

=
il Graph Isomorphism
LMU

SYSTEMS
GROUP

Graph-Isomorphism:
Let G=(V,E) and G'=(V*,E’) be two graphs. G and G’ are isomorph (G = G') if there exists a
bijection f: V—>V*where (v,v’) eE < (f(v),f(v’)) € E‘ fo all node pairs v,v'e V.

Subgraph: Let G =(V,E) be a graph then G'=(V*E’) is a subgraph of G,
if V‘cVand E‘c (V' <V’ E).
Subgraph-lsomorphism: Let G=(V,E) and G'=(V*,E’) be graphs. Then, G’is subgraph
isomorphic to G if there is a subgraph G“ of G being isomorphicto G’ (G"= G).

Maximal Common Subgraph : Let G=(V,E) and G'=(V‘,E’) be 2 Graphs. A graph S is maximal
common subgraph mcs(G,G’) if S is a subgraph of G and G and there is no other
common subgraph S having more nodes.

Minimal Common Super graph: Let G=(V,E) and G'=(V‘,E’) be 2 Graphs. A graph Sis a
minimal common super graph MCS(G,G’) if G and G“are subgraphs of S and there is
no other graph containing G and G’ having less nodes.

=
Similarity based on Graph Isomorphism

DATABASE
GROUP

mcs: Max Common Subgraph, MCS: Minimal Common Super Graph

Distance Measure 1: Relative size of the minimal common subgraphs
|mcs(G, G
G

d (G,G") =1
i€) max||G

>

e Distance Measure 2: Difference of the size of MCS(G,G’) and mcs(G,G’)
d,(G,G") =|MCS(G,G")|~|mes(G,G)

e Depends on the definition of the size:
e.g. number of nodes => distance might be 0 for different graphs

e MCS and mcs require to solve the subgraph isomorphism problem (NP-hard).

=
- .
amense | ECit Distances for Graphs

GROUP

Idea: Distance = minimal costs to transform G to G*.

o differences are removed by performing graph operations: Delete, Add, relabel
nodes and edges

e Costs for each operation might vary depending on the labels
e Metric properties rely on the employed costs
e Graph Matching Distance between G and G’ is defined as:

d(G,G") = mSin{c(S)‘S sequence of operation transforming G into G'}
where ¢(S) is the sum of edit costs.

Problem:
e Problem still has to solve graph- and subgraph isomorphism problems
=> computation is very expensive

10

=
> -
amense | EAit Distances for Graphs

SYSTEMS
GROUP

Performance:
e in general cases the complexity cannot be descreased
e for special cases faster methods are possible
e.g. tree
=> unique serialisations are generall possible (order of subtrees)
=> Edit-distance for strings is in O(n?)
=> Problem: Insertion costs have to selected to fit the change of topology

®
d@i@ © m [AB[AIBATC]] m [ABIAIBIALIC]
na [A[B[A[B]I[C]]

LMU

f Deletion of A in a leaf node

11

D
&
- .
| Conclusions

SYSTEMS
GROUP

e Mathematically sound approach

e graphs can be compared on all of their properties

e Isomorphism-based methods depend on the definition of |G|

e Edit-Distance is a generalization of isomorphism-based methods

LMU

e computational complexity is very high (Subgraph Isomorphism is NP hard)

e |imiting the problem to certain types of topologies can reduce the complexity

12

=
- . .
amese | TOPOlOgical Descriptors and Graph Kernels

GROUP

Idea: Since isomorphism-based approaches are too expensive
=> compare topological graph properties

graph properties:
e Graph Summarization: Determine distribution of the edge costs, label
frequencies, node degrees

e Consider graphs as sets of nodes and edges
=> 2 Views: Multi-Instance Object of nodes, Multi-Instance object of edges

label distribution: (3 @,3@)
node degrees: (0 (0), 1 (1), 0(2), 5(3))
@
edge set
. ~
* O
node set
@ @

13

=
- . .
Topological Deskriptors

DATABASE
GROUP

But: Graph Topology is still insufficiently represented
= Topological Descriptors
e.g. properties of ways, paths, subgraphes,..

= Topological descriptors decompose a graph into sets of simpler topological
objects.

Example: Wiener Index
Let G=(V,E) be a graph. Then, the Wiener Index W(G) is defined as:
w(G)=> Zd(vl.,vj) where d(v,v)) is the cost of the shortest path

v,eGv,;eG

between v;and v;in G.

Remark: IF G = G' = W(G) = W(G).
However, W(G) = W(G’) does not imply G = G’

14

D
&

SYSTEMS

Similarity Measures based on Topological

~sres | Descriptors LMU

GROUP

Idea: Use topological descriptors and graph decompositions to define graph

App

similarity measures.

roaches:
Derive feature spaces based on topological descriptors

Integrate topological decomposition into similarity measures

15

D
&

s | R-Convolution Kernels

SYSTEMS
GROUP

LMU

Generalization of convolution kernels for sets

General framework for kernel functions for complex objects

Allows the proving the kernel properties

Let 0 € O be a composed object, D(o) = (x,, .. x,) (=decomposition of 0),
where each component x; is in the feature space F;.

R: F,x..xF_—{True, False} describes whether (x,, .. x,) is
a valid decomposition of o.

R1(o):={x|R(o,(x1,..,xn)=True} is the set of all valid decompositions

e The R-convolution kernel of kernel function K,,..K, where K:X;xX; =>IR is

defined as:

K(x,x)=K,-....K,(x,x")= Z ll[Ki(xl.,xl.')

xeR7(x),x'eR7(x') i=l

Remark:

All pairs of valid object decompositions are compared and summed up.

For all elements of the objects the comparison between the corresponding parts are
multiplied

16

%l
\v .
s | R-Convolution Kernel

SYSTEMS
GROUP

LMU

Simple Example: Comparing Graphs as Multi-Instance Objects
Two Labeled Graphs G=(V,E) and G’=(V*E‘) where L: V— IRC.
Decomposition of G: D(G)=V (set of nodes)

Kernel K: (x,y)linear kernel of the node labels L(v).

K(G,G')= Zﬁ<L(v),L(v’)> = > (L), L))

vel i=1 velV
Vvel' Vvel'

Remark:

Multi-Instance Objects can be considered as graphs without edges.

17

]
&
N . . .
e | R-COnvolution Kernel and Topological Descriptors

SYSTEMS
GROUP

LMU

e Let S(G) be the set of all subgraphs of G.
e All Subgraph Kernel fpr G and G*

KSubgmph (G9 G,) = Z Z Kisomorphism (g’ g,)

geS(G) g'eS(G)

where
1 falls g=g'
Koo (&> €)=
isomorphism (g g) {O sonst
Remark:

e compares all subgraphs for isomorphism
e NP-hard kernel due to subgraph-isomorphism

18

%'
\§¢
Product Graphs and Way-Based Kernels

DATABASE
GROUP

Idea: Find common ways G and G to define graph similarity.
Product graphs simplify the search for common subgraphs.
Product Graph:

G,=GxG’for G=(V,E,L) and G=(V‘,E‘,L’) is defined as:
V=0)iv, €V AV eV ALY, = L(V))|

X

E = {((vi,v;),(vk,vl'))e VxV':(vi,vk)e E/\(v"l.,v,')e E'/\L(vi,vk):L(v;.,v')}

W e

19

%"
N
e | RAandom Walk Kernel

GROUP

Idea: Count the number of common ways in both graphs.
(each way is given by its label sequence)
e Computation:
Enumerate all ways in both graphs and count.
e Problem: Ways might infinitely extendable

e Solution: computation using the product graph

cicor-$[5ee] -],

i,j=1l_n=0 i,j=1

— Remark: parameter O< A < 1 is required for the convergence of the row
— if convergent random walk kernels are positive definite
— listhe one matrix were x;; = 1 and x;; = 0 i #j

20

%'
N
e | RANndom Walk Kernel

SYSTEMS
GROUP

time complexity:
e letn=max(|V|,|V‘|) for 2 graphs G and G’
e computation of the product graph:

— compare all pairs of edges: n? potential edges
— time complexity: O(n?#)

e Inversion of the adjacency matrix is cubic:
— Invert a n?x n? Matrix : O(n®)

e Complexity of the complete kernel is : O(n®)

e Later on it was shown that random walk kernels can be
computed in O(n3) [Vishwanathan et al. 2006])

LMU

21

%"
- .
e | Problems with Random Walks

SYSTEMS
GROUP

,Tottering”

e Walk-Kernel allow to visit the same nodes again and again
e multiple visits => evenm long walks can be very local

e the graph of the graph is insufficiently described

Solutions:
¢ Introduce additional labels
= less matching nodes

e disallow direct cycles.
= no real improvement
= Tottering can happend over multiple nodes

LMU

22

%'
N
e | Shortest Path Kernel

SRouP LMU

Idea: Decompose graphs into the set of shortest paths.

= no Tottering

= less components

Method:

e compute all shortest paths between G and G’

e Compare the sets of paths based on the convolution kernel

=> sum of pairwise path similarities
e Needs some kernel to compare the paths
23

S
umense | ONOrtest Path Kernel
SYSTEMS I_Mu

GROUP

Computation of all shortest paths:

e Use an all-pair shortest path algorithmn
(Floyd-Warshal Algorithmus: O(n3))

e Result is the distance matrix D:

d,, if v reachablefromv;,
M ShortestPath (G)lj —
o else
e the set SD(G) of shortest paths describes the graph G
e Comparision by convolution kernel:
KshortestPath (G’ G’) = Z Z k(Sl ’ SZ)

5,€SD(G) s,eSD(G")

e Complexity is O(n?)

24

D
&
DATABASE

SYSTEMS
GROUP

Kernels and Distances
LMU

Something algorithms require distance measures:

1. Each kernel (scalar product) induces a metric:
D(G,G") =JK(G,G)+K(G,G")~2-K(G,G")
2. Multiple distance measures are based on the same ideas:
Example: employ SMD, Hausdorff or MMD on sets of shortest paths.
25
D
=

DATABASE
SYSTEMS
GROUP

Conclusions
LMU

Modelling objects as graphs is very general

The complexity of graphs limits their usability

topological descriptors are a trade-off between performance and exact
comparisons

Topological descriptors decompose a graph into simpler components
Decomposition usually loses information

26

D
&
DATABASE

SYSTEMS
GROUP

Frequent Subgraph Mining

LMU

Idea: Find all frequent subgraphs in a database of graphs

Applications:

Common subgraphs can be used as topological descriptors
Find typical subnetworks (cliques) in social networks

Graph compression: Substitute frequent subgraphs by single
nodes => reduces the size of the graphs

Derive rules about social interaction
find common motifs in protein interaction networks

27

D
&
DATABASE

SYSTEMS
GROUP

Approaches to Frequent Subgraph Mining

LMU

e Frequent Subgraph Mining is similar to Itemset mining

— Exploit monotonicity between subgraphs and super graphs
=> k Iltemset / can only be frequent if all k-1 Itemsets in / are frequent

analogue: Subgraph G containing k nodes can only be frequent if all
subgraphs of G containing k-1 nodes are frequent

— Generate candidates of size k be combining pairs of frequent subgraphs of
size k-1.

e Direct extension of frequent patterns

— Find all subgraph containing k nodes and extend them by an additional
node => candiate for frequent subgraphs containing k+1 nodes

28

@'
N .
s | BasiC Problems

GROUP

Subgraph-lsomorphism yields large problems

e Detecting occurrences of a candidate is very expensive

e Support Computation must consider all isomorphic subgraphs
e Candidates should only be generated once

= All algorithms define a normal form for each isomorphic clas
= Transforming a graph into the normal form is expensive
—> comparing normal forms is cheap

=
smesse | Algorithms for Frequent Subgraph Mining

GROUP

FSG [Kuramochi, Karypis 2001]
for labeled and undirected graphs.
Idea: Apply apriori algorithm to subgraph mining.
e graphs are given as adjacency lists
e |somorphic graphs can be considered as 1
permutations of the adjacency lists

Z
. . L2 ({3114
= Canoncial Labelling NN
unique ordering to induce a normal form 1 [[o[[[o [][]0
for each isomorphic class 2 Jlojjjo|ft]jjo
3 (LT)ffol]2
4 1(0]](01{2]]{O

%l
N . .
amense | Canonical Labeling]

SYSTEMS

oclolw|w)

000112

@ﬁ@#
.

e order the columns w.r.t. node degree

N[O |—= =0 |Ww

AW | =

alw|o|=
(ol=]elelpl~]

[o»—oo>t\>]

[»—-ooo>t\>]

(=loleoleole]~])

(ofv]elelw][+)
. B

-

e generate all permutation for nodes having the same degree
e serialize the upper triangular matrix

e select the lexicographically smallest string

= unique identifier for each isomorphic class

= requires only permutation within a subset of the nodes

= subgraph occurences and candidate testing can be based on the canonical
labeling

=
> .| FSG Algorithmus(1)

DATABASE

GROUP

Vector<GraphSet> fsg(GraphSet D, double d)
GraphSet F1 = Set of frequent subgraphs having one edge
GraphSet F2 = Set of frequent subgraphs having two edges
int k=3
Vector<GraphSet> frequentSubgraphs;
frequentSubgraphs.add(F1)
frequentSubgraphs.add(F2)
while(frequentSubgraphs.getLastElement()!= {})
Graphmenge Ck= fsg-gen(frequentSubgraphs.getLastElement());
foreach Graph c € Ck
int anzahl_c_in_D =0;
foreach Graphd € D
if(d.includes(c))
anzahl_c_in_D +4;
if(anzahl_c_in_D<6*|D|)
ck.remove(c);
frequentSubgraphs.add(Ck);
return frequentSubgraphs;

=
FSG Algorithmus(2) (Candidate generation)

DATABASE

GROUP

GraphSet fsg-gen(F¥)
GraphSet Ck+1={};
foreach Graph fi1k e F*
foreach Graph f2k e F*
if(f1k.canonicallLabel <= f2k.canonicallLabel)
foreach Edge e € f1k
Graph f1k-1=f1k.remove(e);
if(f1lk-1.isconnected && f2k.includes(f1k-1))
GraphSet Tk+1 =join(f1k, f2k)
forech Graph tk+1 € Tk+1
boolean all_tk_frequent = true;
foreach Edge ed etk+1
Graph tk = tk+1.remove(ed);
if(tk.isConnected && tk ¢ FK)
all_tk_frequent = false;
break;
if(all_tk_frequent)
Ck+1.add(tk+1);
return Ck+1

33

=
\» Complexity of FSG
LMU

SYSTEMS
GROUP

Complex parts of the algorithms:
1. Subgraph Isomorphism Testing (g.includes(s))

— necessary when scanning the database
— necessary during candidate generation:
determine common k-1 subgraph

2. Join two graph based on k-1 subgraphs

= results in a set of candidates
= all of the results must be tested for being real candidates

34

v
vi A ey

Join e
e3 ‘61i ‘62+ E ‘62 — ey .

v eé
ga, gb ga
v1 V2 V2 (%1 v2
Vo 0 0 0 . . Vo 0
Join Y0 0
+ —_— vo 0
v
V0 0 Vo 0 V0 0 0 B
5 5 VO 0 2
91 92 6 1 6 U1
g1 9o g3
vy v V1, U1 Vi, U1 U1 V1, U]
Join
e e —+ e
vo € vy €y vo € v € oy € v v 'v1
4 4
A (5 91 92
1 v1 vi w2, U1
I e e i | | | | e
vo € v € vy v € v € oy € v v 'u1

3 3

D
v
»
ez | @SPAN
oy LMU

Idea:

e candidate generation extend a single frequent subgraph by one edge
e desribe subgraphs by a depth first traversal (mininal DFS code)

e generate unique candidates by ,right-most-only growth”

Aim:
e Avoid the generation of duplicate candidates
e Avoid isomorphism testing

Concepts:
e DFS lexivographical order
e minimal DFS code (canonical description of general subgraphs)

37

S
| Pattern Growth

GROUP

Naive Algorithms:

S : set of frequent graphs;

g : frequent subgraph,

DB: database

MinSup: minimal support for a subgraph in order to be frequent
S:={}

GrowPatterns(g,DB, S)

Function GrowPatterns(g,DB,S)
if g € S then return;
else S.insert(g)
EdgeSet E = findAdjacentEdges(DB,g MinSup); // find all edges in DB for extending g
for each frequent e € E DO // only consider edges having mor edges than MinSup
g’ = extend(g,e)
GrowPatterns(g‘,DB,S)
end for
end function

Remark:
Finding all extensions is rather expensive and requires an isomorphism test forg € S
Classen os isomorphic subgraphs should be found only once in findAdjacentEdges

38

w

wnense | DFS Codes

SYSTEMS

GROUP

LMU

canonical description of subgraphs belonging to one isomorphic class
sequence of edges along a depth first traversal
(Depth First Search Tree)

vl vl
vl vl
yal
v2 v2 V2 v2
l
v3 v4 v3 v4 v3 v4 v3 v4

Graph g DFS tree

Forward Edges: extend tree by one node

backward edges: connect already visited nodes

a DFS tree implies an order of the visited edges G (DFS-Code)

Forward edges are ordered after visiting the start node

Backward edges are odered corresponding to the order of the target nodes

39

w

ammse | DFS-Lexikographical Order

GROUP

a graph can be described as set of all DFS trees
the DFS tree is uniquely described by the DFS-Code (sequence of edges)

Description of an edge: (AN (U),z) :> (0,1,A, u, B)

h;

vOu

Example: DFS code

vl 1,2,AkA
! k 2,3,Ak,B forward nodes
V12 3,1,B.LA backward nodes
2,1ALC

v4
v3

DFS lexicographical order: compare multiple DFS codes

Lexicographical comparison between the codes

edge comparison: start index, target index, start label, edge label, target label.

Mininal DFS-Code (Min DFS-Code) w.r.t. DFS lexicographical order is unique for
all graphs in the isomorphic class
=> 2 graphs G,G" have the same min. DFS code <> G is isomorphic to G*

40

%'
- . -
ot | Right-Most-Only Extension

GROUP

Idea: Avoid multiple generation of the same candidate

e Right-Most-Only Extension: only extension along the right most path are
allowed.

e DFS-Tree:
— Backward-Extension
connect nodes on the most right path
— Forward Extension
extend the graph beginning on the most right path

vl vl vl vl
Tk VAT U Tk A
v2 v2 v2 V2
1 1 1
v4 v4 v4 va
v3 v3 v3 v3

Backward- Forward-
Extension Extensions

41

D
e
»
et | @GSPAN

GROUP

Pattern Growth Algorithmus with right-most-only Extensions

GSpan

S :Set of frequent graphs;

s : a DFS Code

min_dfs(s): Mininmal DFS-Code of S.

DB: Graph database

MinSup: minimal support for frrequent Subgraph
S:={}

GSpan(s,DB, S)

Function GrowPatterns(g,DB,S)
if s # min_dfs(s) then return;
else S.insert(s)
C:={}
EdgeSet E = findRightMostExtensions(DB,s, MinSup); // find all valid extensions of the minimal DFS tree
C = extend(s,E);
C.sortInLexDFSOrder;
for each frequent s € C DO

GSpan(s,DB,S)

end for

end function

42

%l
- . .
smense | FrEquent Subgraph Mining

GROUP

Frequent subgraph mining is similar to frequent itemset mining
But:

— set of isomorphic graphs is larger than the set of itemset permuations =
Isomorphism testing is more complex than comparing Iltemsets

— Finding canonical labeling is more difficult

— set of possible extension is far larger = candidate generation is more
complex

e FSG: Apriori-based method with pairwise candidate geneation
e GSpan: Pattern-growth approach for general graphs

43

