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e Definition: A graph is a tuple G=(V,E) where V is a set of vertices and E c VXV
a set of edges.

o ©

e Usually: vertices = objects, edges =relationships between objects

e Agraphis representable as a quadratic matrix where each objects
corresponds to a row and a column (Adjacency Matrix)

e Comparing graphs is expensive because there are
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* node degree: The degree of a node v;in G=(V,E) denoted as d(v;) is number of adjacent
edges: d,(v,)= {V,‘(V,-,V_,-) € E}‘

¢ adjacency matrix : The adjacency matrix of a graph G=(V,E) is defined as:

[4], ={1 i v )£

0 else

Walk: A walk w=(v,,v,,..,v,) is a sequence of nodes v; € V where (v.,, v)e Efor1<i<k.

Path: w is a path if v2zv; with i#).
(=>no node is allowed to appear twice.)

Cycle: Let w=(v,,..,v,), v;= v, and for all 1 <i,j < kit hold that v#v; then w is called cycle.

Walk Path Cycle




D
&
DATABASE

SYSTEMS
GROUP

An introduction to graphs

Directed or undirected graphs:

undirected graph: (v,,v) # (v,v,) , adjacency matrix is not symmetric

labeled graphs: Let F,, and F, be Feature Spaces.

node labels: for every node v €V thereis a label |, e F,.

edge labels: for each edge e € E there is a edge label |, e F;.

Remarks:

Labels can be arbitrary types of information
In most cases, labels are symbols from a given alphabet

LMU
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Examples

Molecule structures

Protein interaction networks
Social Networks

WWW and other social media
Spatial Networks

LMU
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Input: 2 Graphs G and G'.
Output: Mapping s:(VXE)x(V*XE) — IR computing the similarity of G and G".
Approaches:
Isomorphism: 2 Graphs are equal if there exists a bijection between nodes
inducing a bijection of edges.
=> Similarity decreases with the non-isomorphic parts

Edit-Distance: Similarity is computing by counting the minimal amount of
operations transforming one graph into the other.

Topological Descriptors: Two Graphs are similar if the have similar values w.r.t.
topological properties, e.g. number of edges, nodes, node degrees, label
distributions,...
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Graph-Isomorphism:
Let G=(V,E) and G'=(V*,E’) be two graphs. G and G’ are isomorph (G = G') if there exists a
bijection f: V—>V*where (v,v’) eE < (f(v),f(v’)) € E‘ fo all node pairs v,v'e V.

Subgraph: Let G =(V,E) be a graph then G'=(V*E’) is a subgraph of G,
if V‘cVand E‘c (V' <V’ E).
Subgraph-lsomorphism: Let G=(V,E) and G'=(V*,E’) be graphs. Then, G’is subgraph
isomorphic to G if there is a subgraph G“ of G being isomorphicto G’ (G"= G).

Maximal Common Subgraph : Let G=(V,E) and G'=(V‘,E’) be 2 Graphs. A graph S is maximal
common subgraph mcs(G,G’) if S is a subgraph of G and G and there is no other
common subgraph S having more nodes.

Minimal Common Super graph: Let G=(V,E) and G'=(V‘,E’) be 2 Graphs. A graph Sis a
minimal common super graph MCS(G,G’) if G and G“are subgraphs of S and there is
no other graph containing G and G’ having less nodes.




=
Similarity based on Graph Isomorphism

DATABASE
GROUP

mcs: Max Common Subgraph, MCS: Minimal Common Super Graph

Distance Measure 1: Relative size of the minimal common subgraphs
|mcs(G, G
G

d (G,G") =1
i€ ) max||G

>

e Distance Measure 2: Difference of the size of MCS(G,G’) and mcs(G,G’)
d,(G,G") =|MCS(G,G")|~|mes(G,G)

e Depends on the definition of the size:
e.g. number of nodes => distance might be 0 for different graphs

e MCS and mcs require to solve the subgraph isomorphism problem (NP-hard).
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Idea: Distance = minimal costs to transform G to G*.

o differences are removed by performing graph operations: Delete, Add, relabel
nodes and edges

e Costs for each operation might vary depending on the labels
e Metric properties rely on the employed costs
e Graph Matching Distance between G and G’ is defined as:

d(G,G") = mSin{c(S )‘S sequence of operation transforming G into G'}
where ¢(S) is the sum of edit costs.

Problem:
e Problem still has to solve graph- and subgraph isomorphism problems
=> computation is very expensive

10
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Performance:
e in general cases the complexity cannot be descreased
e for special cases faster methods are possible
e.g. tree
=> unique serialisations are generall possible (order of subtrees)
=> Edit-distance for strings is in O(n?)
=> Problem: Insertion costs have to selected to fit the change of topology

®
d@i@ © m [AB[AIBATC]] m [ABIAIBIALIC]
na [A[B[A[B]I[C]]
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f Deletion of A in a leaf node
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e Mathematically sound approach

e graphs can be compared on all of their properties

e Isomorphism-based methods depend on the definition of |G|

e Edit-Distance is a generalization of isomorphism-based methods

LMU

e computational complexity is very high (Subgraph Isomorphism is NP hard)

e |imiting the problem to certain types of topologies can reduce the complexity

12
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Idea: Since isomorphism-based approaches are too expensive
=> compare topological graph properties

graph properties:
e Graph Summarization: Determine distribution of the edge costs, label
frequencies, node degrees

e Consider graphs as sets of nodes and edges
=> 2 Views: Multi-Instance Object of nodes, Multi-Instance object of edges

label distribution: (3 @,3@ )
node degrees: (0 (0), 1 (1), 0(2), 5(3))
@
edge set
. ~
* O
node set
@ @
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But: Graph Topology is still insufficiently represented
= Topological Descriptors
e.g. properties of ways, paths, subgraphes,..

= Topological descriptors decompose a graph into sets of simpler topological
objects.

Example: Wiener Index
Let G=(V,E) be a graph. Then, the Wiener Index W(G) is defined as:
w(G)=> Zd(vl.,vj) where d(v,v)) is the cost of the shortest path

v,eGv,;eG

between v;and v;in G.

Remark: IF G = G' = W(G) = W(G).
However, W(G) = W(G’) does not imply G = G’

14
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Idea: Use topological descriptors and graph decompositions to define graph

App

similarity measures.

roaches:
Derive feature spaces based on topological descriptors

Integrate topological decomposition into similarity measures
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Generalization of convolution kernels for sets

General framework for kernel functions for complex objects

Allows the proving the kernel properties

Let 0 € O be a composed object, D(o) = (x,, .. x,) (=decomposition of 0 ),
where each component x; is in the feature space F;.

R: F,x..xF_—{True, False} describes whether (x,, .. x,) is
a valid decomposition of o.

R1(o):={x|R(o,(x1,..,xn)=True} is the set of all valid decompositions

e The R-convolution kernel of kernel function K,,..K, where K:X;xX; =>IR is

defined as:

K(x,x)=K,-....K,(x,x")= Z ll[Ki(xl.,xl.')

xeR7(x),x'eR7(x') i=l

Remark:

All pairs of valid object decompositions are compared and summed up.

For all elements of the objects the comparison between the corresponding parts are
multiplied

16
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Simple Example: Comparing Graphs as Multi-Instance Objects
Two Labeled Graphs G=(V,E) and G’=(V*E‘) where L: V— IRC.
Decomposition of G: D(G)=V (set of nodes)

Kernel K: (x,y)linear kernel of the node labels L(v).

K(G,G')= Zﬁ<L(v),L(v’)> = > (L), L))

vel  i=1 velV
Vvel' Vvel'

Remark:

Multi-Instance Objects can be considered as graphs without edges.

17

]
&
N . . .
e | R-COnvolution Kernel and Topological Descriptors

SYSTEMS
GROUP

LMU

e Let S(G) be the set of all subgraphs of G.
e All Subgraph Kernel fpr G and G*

KSubgmph (G9 G,) = Z Z Kisomorphism (g’ g,)

geS(G) g'eS(G)

where
1 falls g=g'
Koo (&> €)=
isomorphism (g g ) {O sonst
Remark:

e compares all subgraphs for isomorphism
e NP-hard kernel due to subgraph-isomorphism

18
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Idea: Find common ways G and G to define graph similarity.
Product graphs simplify the search for common subgraphs.
Product Graph:

G,=GxG’for G=(V,E,L) and G=(V‘,E‘,L’) is defined as:
V=0 )iv, €V AV eV ALY, = L(V))|

X

E = {((vi,v;),(vk,vl'))e VxV':(vi,vk)e E/\(v"l.,v,')e E'/\L(vi,vk):L(v;.,v')}

W e
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Idea: Count the number of common ways in both graphs.
(each way is given by its label sequence)
e Computation:
Enumerate all ways in both graphs and count.
e Problem: Ways might infinitely extendable

e Solution: computation using the product graph

cicor-$[5ee] -],

i,j=1l_n=0 i,j=1

— Remark: parameter O< A < 1 is required for the convergence of the row
— if convergent random walk kernels are positive definite
— listhe one matrix were x;; = 1 and x;; = 0 i #j

20
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time complexity:
e letn=max(|V|,|V‘|) for 2 graphs G and G’
e computation of the product graph:

— compare all pairs of edges: n? potential edges
— time complexity: O(n?#)

e Inversion of the adjacency matrix is cubic:
— Invert a n?x n? Matrix : O(n®)

e Complexity of the complete kernel is : O(n®)

e Later on it was shown that random walk kernels can be
computed in O(n3) [Vishwanathan et al. 2006] )

LMU
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,Tottering”

e Walk-Kernel allow to visit the same nodes again and again
e multiple visits => evenm long walks can be very local

e the graph of the graph is insufficiently described

Solutions:
¢ Introduce additional labels
= less matching nodes

e disallow direct cycles.
= no real improvement
= Tottering can happend over multiple nodes

LMU
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Idea: Decompose graphs into the set of shortest paths.

= no Tottering

= less components

Method:

e compute all shortest paths between G and G’

e Compare the sets of paths based on the convolution kernel

=> sum of pairwise path similarities
e Needs some kernel to compare the paths
23
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Computation of all shortest paths:

e Use an all-pair shortest path algorithmn
(Floyd-Warshal Algorithmus: O(n3) )

e Result is the distance matrix D:

d,, if v reachablefromv;,
M ShortestPath (G)lj —
o else
e the set SD(G) of shortest paths describes the graph G
e Comparision by convolution kernel:
KshortestPath (G’ G’) = Z Z k(Sl ’ SZ)

5,€SD(G) s,eSD(G")

e Complexity is O(n?)

24
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Kernels and Distances
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Something algorithms require distance measures:

1. Each kernel (scalar product) induces a metric:
D(G,G") =JK(G,G)+K(G,G")~2-K(G,G")
2. Multiple distance measures are based on the same ideas:
Example: employ SMD, Hausdorff or MMD on sets of shortest paths.
25
D
=

DATABASE
SYSTEMS
GROUP

Conclusions
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Modelling objects as graphs is very general

The complexity of graphs limits their usability

topological descriptors are a trade-off between performance and exact
comparisons

Topological descriptors decompose a graph into simpler components
Decomposition usually loses information

26
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Frequent Subgraph Mining
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Idea: Find all frequent subgraphs in a database of graphs

Applications:

Common subgraphs can be used as topological descriptors
Find typical subnetworks (cliques) in social networks

Graph compression: Substitute frequent subgraphs by single
nodes => reduces the size of the graphs

Derive rules about social interaction
find common motifs in protein interaction networks
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Approaches to Frequent Subgraph Mining
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e Frequent Subgraph Mining is similar to Itemset mining

— Exploit monotonicity between subgraphs and super graphs
=> k Iltemset / can only be frequent if all k-1 Itemsets in / are frequent

analogue: Subgraph G containing k nodes can only be frequent if all
subgraphs of G containing k-1 nodes are frequent

— Generate candidates of size k be combining pairs of frequent subgraphs of
size k-1.

e Direct extension of frequent patterns

— Find all subgraph containing k nodes and extend them by an additional
node => candiate for frequent subgraphs containing k+1 nodes

28
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Subgraph-lsomorphism yields large problems

e Detecting occurrences of a candidate is very expensive

e Support Computation must consider all isomorphic subgraphs
e Candidates should only be generated once

= All algorithms define a normal form for each isomorphic clas
= Transforming a graph into the normal form is expensive
—> comparing normal forms is cheap
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FSG [Kuramochi, Karypis 2001]
for labeled and undirected graphs.
Idea: Apply apriori algorithm to subgraph mining.
e graphs are given as adjacency lists
e |somorphic graphs can be considered as 1
permutations of the adjacency lists

Z
. . L2 ({3114
= Canoncial Labelling NN
unique ordering to induce a normal form 1 [[o[[[o [ ][]0
for each isomorphic class 2 Jlojjjo|ft]jjo
3 (LT )ffol]2
4 1(0]](01{2]]{O
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e order the columns w.r.t. node degree

N[O |—= =0 |Ww

AW | =

alw|o|=
(ol=]elelpl~]

[o»—oo>t\>]

[»—-ooo>t\>]

(=loleoleole]~])

(ofv]elelw][+)
. B

-

e generate all permutation for nodes having the same degree
e serialize the upper triangular matrix

e select the lexicographically smallest string

= unique identifier for each isomorphic class

= requires only permutation within a subset of the nodes

= subgraph occurences and candidate testing can be based on the canonical
labeling
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Vector<GraphSet> fsg(GraphSet D, double d)
GraphSet F1 = Set of frequent subgraphs having one edge
GraphSet F2 = Set of frequent subgraphs having two edges
int k=3
Vector<GraphSet> frequentSubgraphs;
frequentSubgraphs.add(F1)
frequentSubgraphs.add(F2)
while(frequentSubgraphs.getLastElement()!= {})
Graphmenge Ck= fsg-gen(frequentSubgraphs.getLastElement());
foreach Graph c € Ck
int anzahl_c_in_D =0;
foreach Graphd € D
if(d.includes(c))
anzahl_c_in_D +4;
if(anzahl_c_in_D<6*|D|)
ck.remove(c);
frequentSubgraphs.add(Ck);
return frequentSubgraphs;
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GraphSet fsg-gen(F¥)
GraphSet Ck+1={};
foreach Graph fi1k e F*
foreach Graph f2k e F*
if(f1k.canonicallLabel <= f2k.canonicallLabel)
foreach Edge e € f1k
Graph f1k-1=f1k.remove(e);
if(f1lk-1.isconnected && f2k.includes(f1k-1))
GraphSet Tk+1 =join(f1k, f2k)
forech Graph tk+1 € Tk+1
boolean all_tk_frequent = true;
foreach Edge ed etk+1
Graph tk = tk+1.remove(ed);
if(tk.isConnected && tk ¢ FK)
all_tk_frequent = false;
break;
if(all_tk_frequent)
Ck+1.add(tk+1);
return Ck+1
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Complex parts of the algorithms:
1. Subgraph Isomorphism Testing (g.includes(s))

— necessary when scanning the database
— necessary during candidate generation:
determine common k-1 subgraph

2. Join two graph based on k-1 subgraphs

= results in a set of candidates
= all of the results must be tested for being real candidates

34
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Idea:

e candidate generation extend a single frequent subgraph by one edge
e desribe subgraphs by a depth first traversal (mininal DFS code)

e generate unique candidates by ,right-most-only growth”

Aim:
e Avoid the generation of duplicate candidates
e Avoid isomorphism testing

Concepts:
e DFS lexivographical order
e minimal DFS code (canonical description of general subgraphs)
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Naive Algorithms:

S : set of frequent graphs;

g : frequent subgraph,

DB: database

MinSup: minimal support for a subgraph in order to be frequent
S:={}

GrowPatterns(g,DB, S)

Function GrowPatterns(g,DB,S)
if g € S then return;
else S.insert(g)
EdgeSet E = findAdjacentEdges(DB,g MinSup); // find all edges in DB for extending g
for each frequent e € E DO // only consider edges having mor edges than MinSup
g’ = extend(g,e)
GrowPatterns(g‘,DB,S)
end for
end function

Remark:
Finding all extensions is rather expensive and requires an isomorphism test forg € S
Classen os isomorphic subgraphs should be found only once in findAdjacentEdges

38




w

wnense | DFS Codes

SYSTEMS

GROUP

LMU

canonical description of subgraphs belonging to one isomorphic class
sequence of edges along a depth first traversal
(Depth First Search Tree)

vl vl
vl vl
yal
v2 v2 V2 v2
l
v3 v4 v3 v4 v3 v4 v3 v4

Graph g DFS tree

Forward Edges: extend tree by one node

backward edges: connect already visited nodes

a DFS tree implies an order of the visited edges G ( DFS-Code)

Forward edges are ordered after visiting the start node

Backward edges are odered corresponding to the order of the target nodes
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a graph can be described as set of all DFS trees
the DFS tree is uniquely described by the DFS-Code (sequence of edges)

Description of an edge: (AN (U),z ) :> (0,1,A, u, B)

h;

vOu

Example: DFS code

vl 1,2,AkA
! k 2,3,Ak,B forward nodes
V12 3,1,B.LA backward nodes
2,1ALC

v4
v3

DFS lexicographical order: compare multiple DFS codes

Lexicographical comparison between the codes

edge comparison: start index, target index, start label, edge label, target label.

Mininal DFS-Code (Min DFS-Code) w.r.t. DFS lexicographical order is unique for
all graphs in the isomorphic class
=> 2 graphs G,G" have the same min. DFS code <> G is isomorphic to G*

40
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Idea: Avoid multiple generation of the same candidate

e Right-Most-Only Extension: only extension along the right most path are
allowed.

e DFS-Tree:
— Backward-Extension
connect nodes on the most right path
— Forward Extension
extend the graph beginning on the most right path

vl vl vl vl
Tk VAT U Tk A
v2 v2 v2 V2
1 1 1
v4 v4 v4 va
v3 v3 v3 v3

Backward- Forward-
Extension Extensions
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Pattern Growth Algorithmus with right-most-only Extensions

GSpan

S :Set of frequent graphs;

s : a DFS Code

min_dfs(s): Mininmal DFS-Code of S.

DB: Graph database

MinSup: minimal support for frrequent Subgraph
S:={}

GSpan(s,DB, S)

Function GrowPatterns(g,DB,S)
if s # min_dfs(s) then return;
else S.insert(s)
C:={}
EdgeSet E = findRightMostExtensions(DB,s, MinSup); // find all valid extensions of the minimal DFS tree
C = extend(s,E);
C.sortInLexDFSOrder;
for each frequent s € C DO

GSpan(s,DB,S)

end for

end function
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Frequent subgraph mining is similar to frequent itemset mining
But:

— set of isomorphic graphs is larger than the set of itemset permuations =
Isomorphism testing is more complex than comparing Iltemsets

— Finding canonical labeling is more difficult

— set of possible extension is far larger = candidate generation is more
complex

e FSG: Apriori-based method with pairwise candidate geneation
e GSpan: Pattern-growth approach for general graphs
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