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e Multi-Instance Data

e Aggregation-based Methods

e Distance and Similarity Measures

e Multi-Instance Learning and general Multi-Instance
Classification

e Clustering Multi-Instance Objects
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e ™ | (S ;*_ Lo
s | I R | =

i | -
set of word vectors " Website

Multi-Instance objects describe: T
e multiple components (e.g. CAD data) & @ :
e various appearances (e.g. proteins) .. O ® o

e set-valued objects (e.g. market baskets, teams)

Differences to other structured objects:
1. Allinstances are elements of the same features space (vs. Multi-View)
2. Multi-Instance objects do not have an order (vs. time-series, sequences)
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Examples for Multi-Instance Objects

Proteins

Macro-Molecules

proteins consist of multiple amino acid sequences
each sequences is an instance
a protein is a set of its sequences

varying spatial conformations
each conformation is an instance
the molecule is described by

IMU

a set of all possible conformations %
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CAD-components: set of spatial primitives Olp ﬂ

HTML documents: set of layout blocks
(dom tree structure is dropped)

Video data: videos can be described by
sets of shots (order is dropped)

Formal:

Object o is part of the power set of R: 0 = {r,,..,r, } € 2%

where R is the feature space of instance.
(shortly instance space)

LMU

pe |

il

News

ideo

e -
[N

Sports Video
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Aggregation-based Approaches

LMU

Idea: Reduce the multi-instance object into a single representative

nstance.

e.g. build the centroid

= simple method describing a set by its componentwise means

problems:

e properties of the particular instances are lost
e cardinality of the set is lost

e outliers are not described well
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(O}e] [oXe]
[oX“ o] o PAN O A m}
[oXe)] AN
PAN & PAN
PAN
m} O ..
om0 oA O o
m} [m]
(]
O PAN O
1. case: aggregation on suitable data 2. case: aggregation in unsuitable data

Conclusion: Aggregation depends on the distribution of the
objects.

e |f all instances are drawn from the same distribution
aggregation makes sense.

e If instances might be drawn from different distributions,
aggregation is not suitable.

72

%"
[’ .
Distance Measures and Kernels
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Idea: Many data mining algorithms only need pairwise
comparisons.

= Define distances and kernel-functions on multi-instance objects
There are multiple ways to compare multi-instance objects:
e How many instances should be similar?

e Does there have to be a bijective mapping between the sets ?

=> There are multiple similarity measures which might make sense
in varying application areas.
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Multi-instance comparisons yield an assignment task:

Which instance in object X has to be compared to
which instance in object Y ?

Given two objects X ={x,, x,, x5} and Y={y,, y,, y3}: x [ % [ %

* Each x; can be compared to each y;. v,

* To how manyy; has x; be similar?
* To how many x;has y; be similar?

e Usually: Each instance is assigned to at least one instance in the
other object. (often the closest)

w
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GROUP

Idea: Each instance is covered by the closest instance from the other. The maximum cover
distance describes the distance of the two objects.

minimal distance = most similar instance (smallest radius to cover the instance)
maximal distance over all row /columns (worst case cover)
maximum of row and column maximums achieves symmetrie

b4 Ul

Definition: Hausdorff Distance

Let O,, O, be two Ml-objects and d(x,y) an instance distance measure over the feature
space R, then the Hausdorff distance is defined as follows:

4 tausdon (01, 0,) = max(max(min(d (0,50 )), max(min(d (0,50, )D

0;€0, \ 0;€0, 0;€0, \ 0;€0,
al kS : O‘\‘ N
’ Y, min A
Y min § max
Y, min l
min min min dHausdorf/(Ol’ 02)
max — max
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Idea: Used the closest pair of instances.
Definition: Minimal Hausdorff Distance or Single Link Distance

Let O,, O, be two Ml-objects and let d(x,y) be an instance distance measure in
the underlying feature space R, then the minimal Hausdorff or single link
distance is defined as follows:

d gngietink (01, 0,) = min(min (d (0,0, )j

0,€0,\ 0,;€0,

X, | X | x
X [ X ] © o A
Y, min o A
2 min » min
Y, min
min min min
min — min
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Idea: Use the average distance of closest pairs.
Definition: Sum of Minimum distances (SMD)

Let O,, O, be two Ml-objects and d(x,y) an instance distance measure over the feature
space R, then the SMD distance is defined as follows:

dop(0,0,) = %GOL Z (nliori(d(on 0; )) + |OL Z (min(d(oi, 0; )jj

0,€0,
1| 0;€0; \/ 0;€0, ™'

A A
Xl XZ X3
Y, min
v, min } average o o°
. e
Y, min : 2 o o © o ©°
min min min /@ L
average —> average
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All distance measures so far have the complexity 0(0,|-[0,|-d)
e assuming that d(x,y) is computable in O(d)

e reason: for each instance in O, the distance to each instance in
O, must be compute.

Metric properties:

e Hausdorff distance is a metric:
symmetry, reflexivity, triangular inequality hold.

¢ single link not even reflexive

e SMD is symmetric and reflexive, but the triangular inequality
does not hold.
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Idea: The distance between two sets is described by a cost-minimal bijection.

Definition:
Let O, O, be two Ml-objects and let d(x,y) be an instance distance measure over the
feature space R, then the Minimal Matching Distance is defined as follows:

|0, 0,
dMM(01702):”r€nHl(%) Zd(Ol,zz(k>’Oz,k)+ ZW(Ol,,,U))
i A k=1 =0, |+1

w.l.o.g. let |0,| >|0,|.I1(0,) represents the set of all permutations of the instances in O,
und w(o; ;) is a weighting term penalizing matched instances without a match.

A
Remark:
MMD is metric if w(o, ) is large enough to prevent o o™’
unmatched instances, i.e. w(o,;) has to be larger than any ° o ©
distance to any other instance. ./ .t
=> Not matching any object is always worse than matching it
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Method: Solve a minimal weight perfect matching problem, e.g. with the
Ungarian method (runtime complexity O(n3)).

Algorithm:

1. Compute the bipartite graph between the instances

2. Fill up missing row and columns until the matrix is quadratic
(use w(o;)) as values)

3. Subtract the minimum from each row

Subtract the minimum from each column

5. Find a minimal set of marks for rows and columns until all 0 elements are
covered

6. If the minimal set of marks equals n then permutate the matrix in a way
that the zero elements occupy the main diagonal

7. If the number of marked rows and columns < n
a. Search the minimal value among all unmarked objects
b. Subtract this minimal value from all unmarked elements

c. Addthe minimum value to the elements where two marks (1 row and 1 column
mark) overlap

d. Gotostep5

>

=
e Example: Computing MMD
SRouP LMU

Matrix of pairwise Subtract subtract
distances row min column min Mark all Os
10 12 20 | 21 0 2 10 11 010 0 0 0fo0 0 0
10 12 | 21 24 0] 2 11 13 010 1 2 ‘ 0fo0 1 2
14 17 | 28 30 ‘ 0 3 14 16 ‘ 0 1 4 5 0 1 4 5
16 | 20 30 35 0 4 14 19 0|2 4 8 0] 2 4 8
Add and subtract add and subtract compute result
unmarked m in Mark min
11| of o Tl ol o 211 of o 21| o0
‘ olol of 1 olol ol 1 1o of 1 ‘ 1o V0 1
011 3 4 ‘ 011 3 4 ‘ 00 2 3 010 2 3
012 3 7 01l 2 3 7 011 2 6 011 2 6
10 12 | 20 /ZD
‘ 10 12 21 24
D, ..0,0,)=21+21+17+16 = 75 ey Z A
16 20 | 30 | 35
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Idea: Compare two Ml-objects by adding up pairwise similarities where the
similarity is described by a kernel.

Definition: Convolution Kernel

Let O,,0, be two MI-Objects and let K(x,y) be a kernel function in feature space R.
Then the convolution kernel is defined as follows:

KConvolution (01 ’ 02) = Z K(Ol,i ’ 02,j)

01,;€0,,0, ;€0,

Remarks:
e Basicides is similar to the average-link distance (average value of pairwise
distances)

e Convolution kernels are Mercer kernels and can be used for kernel-based
learners like SVMs, Kernel-PCA, etc.
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Setting: DB= 2" where F is a feature space.
training set (O,c) where Oe DB and ceC.

Challenge:
Which instances {o;,.., 0,} < O are responsible for the membership of O in class c?

classic multi instance learning:
— twoclasses 1 and 0

— object O belongs to class c if there is at least on instance 0, € O
relevant to 1

general multi instance learning:
— arbitrary amount of classes
— instances can be relevant to multiple classes
— class membership might depend on any subset of O

83




D
v
:._' L] Ly oL .

e | G€Neral Multi Instance Classification

GROUP

Problem:

MI objects from the same class need not be completely similar (similar w.r.t to
each instance). => Classes can be described in mutliple different ways

general approach to multi-instance classifiers:

e classes can be defined by ,,concepts” on the instances
(football team 1 goal keeper and 10 regular players)

e each concept describes a ,,class” of instance

e concepts might occur in a class or be completely absent

e the cardinality of the concepts in the class might play a role
(5 goal keeper and 1 regular player is not a football team)
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Classification of Multi-Instance objects with given concepts

Input: Let C be a multi-instance class set, let K be a set of instance concepts K and let DB
be a set of multi-instance objects DB being labelled with elements from C.
Furthermore, let CL(O) = c; € C describe the mapping of object O to the elements of C
and let KL(o;) = K, € K describe the mapping of instance o; to K.

Idea: Two Stage Classification.

* Learn a mapping of instance o, to concepts K|

=> Each multi-instance object can be mapped to a distribution over K

e Learn a classifier mapping concept distribution to multi-instance classes C.
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Classification of multi-instance objects with unknown concepts

Input: Let C be a multi-instance class set and let DB be a set of multi-instance objects DB
being labelled with elements from C.
Furthermore, let CL(O) = ¢; € C describe the mapping of object O to the elements of C.

Problem: The concepts for defining a class are unknown

=> training a classifier to predict instance concepts is not possible

Solution approaches:

e train an instance classifier predicting the likelihood that instance o;is element of any
multi-instance object O having a class c;.

e Aggregate the prediction over all instances in O
(assumption: O was generated by drawing n times with replacement)

Remark:

e methods depends on reliability of the confidence values
e method assumes the independency of the instances (multinomial distribution)

86

D
&

e | @e@neral Multi-Instance Classification

SYSTEMS
GROUP

LMU

Example: 2 classes, 3 ,,unknown” concepts

linear instance classifier

¢ Trainings set for instance classifier
TR, = Jlo, €0, ACL(O) = 4}

0,eDB

¢ instances in concepts being typical for a class should be
classified with a high confidence

e instances in ambiguous concepts should be classified
with smaller confidence values

¢ the classifier often needs rather complex class borders
(small bias but larger likelihood of overfitting)
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Example: Combination of the instance predictions

] | ] ]
Instance-classifier

| |

. c1 0.6 0.05 0.4 0.2
conf. for instance & oa 095 06 o8
. c1 0.6 0.073 0.05 0.013 USszic2
conf. for cmpl. object > 04 0027 YT 558
Pr[C,]- P[O
Confidence of O for class C,: Pr[C, |O]= € (Bayes theorem)
ZPr P[O| C]

ieC

where Pr[W | O, ] HPr[I |1C, ]

pieW
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Setting: There is one relevant concept K,,,. All objects containing at least one instance o0, O
with K(o;)=K,,, belong to class ,relevant”.

Examples:
1- Does a molecule smell like musk? [Dietterich et al. 1998]

Molecules are described as sets of spatial conformations. If the molecule has a spatial
conformation matching the musk receptor, it has a musky smell.

2- Search for lung embolisms

CT scanner generates a set of suspicious areas in the lung. If a least one of them is a lung
embolism the patient needs treatment.
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Classical Multi-Instance Learning

Approach: Classify all single instances
=> if one is relevant, the complete object is relevant as well.
Problem: Labeled instances are only reliable for the non-relevant class.

LMU

Remark: Multi-instance learning corresponds to learning a classifier for the
relevant concept

¢ all instances of objects in the non-relevant class cannot be part of the relevant
concept

e instances of objects from the relevant class can belong to both concepts
e at least one instance for each object has to belong to the relevant concept

non-relevant instance
o—P° o

instances from
relevant
objects @ —

non-relevant
instance from

 arelevant object

relevant

instances
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Approaches to classical multi-instance learning

Classical Multi-Instance Learning

LMU

Find a region in the feature space which contains only relevant instances (no
negative samples) and contains at least one instance from each relevant object.

Solution space is constructed by all sets of instances

containing one instance from each objects.
(assume: k objects having n instances => n solutions)

Each solution can be used to demark the relevant

area of the feature space

It cannot be guaranteed that there is one area without

any non-relevant samples

Irrelevant features, learning bias etc. also influence the quality
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Expectation Maximization Diverse Density classification (EM-DD)

Idea: Describe the relevant concept by an instance h and weights s, for weighting
the influence of the features D={d,,..,d, }.

Predicting the object class is done by the max confidence of any instance in O:

Label(O, | h,5) = max{exp{— S (s,(0,, - ))2}}

1

where (=0 codes ,relevant” and (=1 codes , irrelevant”

The Quality of the classifier for set DB can be described by the
Negativ Logarithmic Diverse Density (NLDD) :

s))

|DB|

NLDD(h,5,DB) =Y (- 1og(]ll. — Label(0,
i=1
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EM-DD training algorithm:
init h //e.g. centroid of a samples of the relevant instances, s;= 0.1
While( NLDD,,,, < NLDD,,,)
FOR ALL O; in DB mit CL(O,) = ,relevant” DO

/ h,5))

W' =arg maXHPr(li h,§,0;) // optimization of weights
heH i // by gradient descent

0, =arg max(Label (OI.

0,,€0;

NLDD,, = NLDD,,,
NLDD, ., = NLDD(h’,D)
h=h’

return h

s )=o)

i=1

Remark: Pr(ll.
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Conclusions:

general Multi-Instance Classification

e only a view dedicated approaches are published

e most approaches are based on distance measures or kernels

Classical Multi-Instance Learning

e Large effort in the research community
— Citation-kNN and Bayes-kNN (nearest neighbor-based approaches)
— Multi-Instance decision trees and rule-based classifiers
— Neural Networks for multi-instance objects
= EM-DD (showed most promising results without any meta-learning)

e General benchmark is the musk use case !!
More practical results showed good results for general Ml-learners
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e  MI-Objects can be clustered based on distance-based methods such as
k-Medoid, DBSCAN, OPTICS, etc.

— selecting a well-suited distance measure is very important

— only applicable to purely distance-based methods (cluster model ?)
(e.g., k-Means cannot be used due to the lack of centroids)

e concept-based multi-instance clustering

use the concept model from classification:
1. instances belong to certain concepts

2. multi-instance objects can be described by distribution over the concepts and their
cardinality

=> clusters can be composed by objects having similar
concept distributions and size
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Idea: Each instance o, € O represents a concept.
Multi-instance (Ml-)cluster are distributions over the set of concepts.

MI-Clusterl contains instances from
conceptl and concept 2.

Konzept1 Konzept2

Konzept3

Description of a Ml-cluster = cluster description of the contributing concepts

MI-Cluster2 contains instances from concept2
and concept 3.
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Example: Video Data

_ Concepts
e Videos are represented as sets of

Shots/Scenes

Politics Weather
) "\ L "‘ﬂ
e Shots belong to a concept (e.g. sports,

weather,..)

e videos are sets of shots (Ml objects)

= MlI-cluster contain video with shots
belonging to the same concepts

1)

Bl )
= Sport-videos contain sports shots News Video

& ——
Sports Video

= News videos contains sports, weather,
politics,...-shots MI-Cluster
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Definition 1: Instance Set
* DB a set of Ml-objects 0 ={i,...,i,}

* the instance set 7,5 of DB:

Definition 2: Instance Model

LMU

I :Uo
DB

An Instance Model IM for the instance set /5 is defined as follows:

* k distributions describing concepts e.g. Gaussian with mean p; and

covariance matrix Zj.

+ a prior distribution on the concepts Pr[ k;].
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Definition 3: Multi-Instance Cluster

LMU

Model

 a set C of clusters over the instance model /M.
» All MI-Cluster ¢ € C are described as follows:

* apriori probability Pr[ c ],

« a cardinality distribution Pr[ Card(o) | c]
« an conditional distribution of concepts Pr[ie k|i e 0 € ¢]
(shortly: Pr[ k| c]) for each concept k in IM.

The total probability of object o is computed as follows:

Pr[o] = Z Pr[c]-Pr[Card(0)|c]- H H Pr[k| cJPith

ceC

ico kelM

the a-posteriori probability of o and cluster c is given as:

Pr[c|o]= Prl[o

| Pr[c]-Pr[Card(0)]c]- H H Pr{k | c]" 1

ico kelM
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Exampe: 2 MI-Cluster Instance Model IM
Cluster 1: A conceptl
50 % apriori probability
expected number if instances: 2 concept2
conceptl |concept2 |concept3
0.2 |11 |0.01 0.79 | 2
concept3
Cluster 2: B
50 % apriori probability
expected number if instances : 5
conceptl |concept2 |concept3
0.1 (1 0.89 |3 0.01
S .
o | AN MI-EM Algorithm LMU

Overview of the algorithm:

1- Compute a mixture model (/M) on the instance set /
(build concepts by instance clustering using EM)

2- Compute an initial model for clustering Ml objects

3- Use an EM based on the multinomial distribution to optimize the

cluster model
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Step(1):
Build /,; and use EM-clustering to derive IM.

Step(2):
e For each Ml-object O in DB build a
“Confidence Summary Vector” CSV(o).

— each dimension is a concept
—the i-th component of CSV (o) is defined as:

CSV (o)=Y Prlk,]-Prli | k,]

i€o

e use k-means to group the CSVs to an initial cluster model

S

s | An MI-EM Algorithm

B LMU
Step 3: MI-EM

E-Step: Compute the Log-Likelihood of the current model M.
EM)= Z log ZPT[C} | o]
oeDB c;eC
M-Step: apply the following updates:

1

update apriori probability: W =Pr[c.]=———— > Prfc.
., = Prlc] Card(DB);B [¢; | o]

Z Pr(c; | o] Card (o)

1
update cardinality distribution: [, =228 _
| Card(DB) MAXLENGTH
2 [Pr[ci 0] Prfu| kﬁj
update concept distribution: P, = Pr[kj,cl.] _ 0eDB o

ZPT[Ci | 0]

oeDB
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Multi-Instance Data Mining

LMU

Conclusions:

aggregation is useful for homogeneous sets

multiple distance and similarity function for Ml objects
distance measures can be plugged into various algorithms
selecting the right distance measure is essential to the success

concept-based mining abstracts sets to concepts and applies data
mining to the concept distribution

concept-based rely on a suitable set of concepts and methods to
assign instances to this concept
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