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So

far: Data is given by a set of vectors (data matrix).

In general: Data is structured and has links.

(compare with general data models: UML, Entity-Relationship..)

Core questions in this chapter:

Is the structure important for the meaning of data?
How can we apply data mining algorithms to structured data?

Can we combine different views on the same data object to get
better results?

Does structured data yield additional data mining tasks?
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e Multi-View Data: Data is given by multiple object descriptions.
(records, objects in programming)

e Multi-Instance Data: Each object is described as a set of objects
from the same domain ( arrays, lists, sets in programming)

e Linked Data or Graph data: Objects may reference to other
objects. (graph structured data, network data, ..)

Further cases not being discussed in the lecture:
* Sequential Data: multi-instance data having a strict order

* Temporal Data: Describes the same object over a time-period
(time series data )

* Tree-Structured Data: acyclic graph data, described hierarchies
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There are generally three ways to handle data variety:

1. Transform data into a simpler format
1. Useful information about the structure is preserved in special features
2. Transformation from more complex to simpler descriptions
(e.g. Multi-Instance to vector, Graph to Multi-Instance, ..)
2. Employ distance and similarity measures for structured data
1. Having a distance/similarity function allows for the use of many data
mining algorithms.
2. Comparing complex descriptions is usually more complex.
3. Employ specialized data mining algorithms
1. Especially in cases where the task is not standard (e.g. centrality in graphs)
2. Often solutions involve a workflow of several data mining tasks
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Ensemble learning and Multi-View Object Descriptions

Multi-Instance Data Mining

Mining Graph-Structured objects

Graph and Link Mining
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In general: Having more than one view on the same set of objects
can be exploited to learn better results.

= Ensemble theory: Learn better models by combining multiple
basic learners.

= Multi-View data mining: In most cases, specialized applications of
Ensemble learning

= Well established in application domains such as bio informatics
and multi-media retrieval.
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1. Introduction and Basic Principles of Ensemble Learning
2. Diversity in Ensemble Learning
3. Methods for Ensemble Construction
4. Mining Multi-View Data
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Given: A data set containing elements X from data space D. Each

element x belong to class c; € C (set of all classes).

There is a function f: D — C, describing the connection of x and

class c;.
The task of classification is to determine f.

In general, learning algorithms compute an approximation of f
which does not hold completely. They learn a hypotheses.
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e The “true” function fis unknown.
e Thereis a sample set of tupels (x, ¢) € f €D xC (training set)

e Alearning algorithms now determines the hypothese h; as
classifier from the hypotheses space H D x C which fits best to
the training set.

e (Caution: the “true” f does not need to be contained in H.
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e A classifier (a learned hypotheses h) can be applied to all xeD to
predict the c,=f(x)

e The accuracy is the relative frequency of correct predictions.
Acc(h) = P(h(x)=f(x))
e Correspondingly the classification error is the complement:
Err(h) = P(h(x)#f(x))=1-Acc(h)
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e |dea: Asking multiple , experts” (classifiers) can avoid mistakes.

e From a mathematical point of view: building the average over
multiple functions can smooth the decision surface.
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e A simple decision rule for two classes C={-1,1}:

— Generate a set of hypotheses {h,,...,h,} and corresponding weights{w,,...,w,}.
— An Ensemble-Classifier h is defined by the following decision function:

. wh(x)+...+wh >20—>1
h(x) =
wh((x)+...+wh <0— -1
e often w,=...=w,=1 (unweighted combination).

e Weights can by used to express the reliability of the classifiers

e More complex decision rules might be used, especially when
having more than two classes

—> there is a large variety of Ensemble-Methods

11
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wh(x)+...4+wh =201

h(x) =

wh(x)+...+wh <0— -1

e The error rate of an Ensemble learner depends error-rate of its
base classifiers and there amount :

The Ensemble error w.r.t. to the above is given by the frequency
of the cases where at least half of the base classifier are wrong:
k

Err(h)="Y k e'(l1-e)
l

%

e (Assumption here: Err(h,)=...=Err(h,)=e)
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Dependency of the complete error rate on the number of basis
learners (assuming a constant error rate of 0,3):

o
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Ensemble Error Rate
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0.0

0 5 10 15 20 25

Number of Ensemble Members
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e Error rate of an Ensemble having 25 basis learners for varying error
rates of the base classifiers :
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(from: Tan, Steinbach, Kumar: Introduction to Data Mining)
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e Requirement for an improvement: The errors of each classifier are

independent.
k

Err(h)y=" k e'(1-e)”

2N

e if the base classifiers are too similar, they are making the same
mistakes => no improvement

15
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Conclusion:

Required conditions for an improved accuracy:
1. Base classifiers are sufficiently “accurate”.
2. Base classifiers are “diverse”.

Accuracy: better than random predictions

Diversity: no or at least no strong correlations between the
predictions

Is it possible to optimize both simultaneaously?
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Introduction and Basic Principles of Ensemble Learning

Diversity in Ensemble Learning

Methods for Ensemble Construction

Mining Multi-View Data
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e There are several reasons for diverse classifiers:

— Statistical Variance

— Computational Variance

— Representation

18

amense | ASPEcts of Diversity
oy LMU

e Statistical Variance:

— The of potential hypotheses is to big too determine the best one based on

a limited sample set.

— Combining multiple hypotheses reduces the risk to make a large mistake

19
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e Computation Variance:
— Some learning algorithm cannot guarantee, to find the hypotheses fitting
best to the training data due to the complexity of the learning algorithm

— For example, it is common to the use heuristics computing local minima in
case computation is too expensive.

'14 .......................
h @ n;
1 Of .
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— Combination multiple hypotheses reduces the risk to take the wrong local
minimum of an error function.
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e Representation :

— The space of representable hypotheses might not contain a good
approximation of the “true” function f.

H

— Combining multiple hypotheses can extend the space of representable
hypotheses.

21
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e Fuzzy target functions:

— The training samples do not allow distinct conclusion about the target
function (e.g. training samples might be contradictive).

H

— Combining multiple hypotheses reduces the risk to

approximate a wrong hypotheses
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e Variance, Bias, Noise of a learner: Target;t

— Example:
i
% 4\\\\
— —
(from: Tan, Steinbach, Kumar: Introduction to Data Mining) "“YVariance' "Moise”’
4 p-
"Bias”

— Variance, Bias and Noiset represent different types of error
err = Bias, +Variance, + Noise,

— Variance: depends on the employ power f

— Noise: lack of definition of the target

— Bias: depends on the end bracket (angle of the canon)

23
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e Variance, Bias, Noise of a classifier:
— Variance:

Depends on the variation in the training data or the parameters of of the
classifier

— Noise:

class for some of the training objects is not clearly defined or ambiguous
— Bias:

Represents the assumptions on the data of the used classifier

(e.g. linear separable, independent attributes, distributions,..).

“Bias-free learning is futile.”

A core part of learning is to abstract the observation within a model

=> |learners are based on this model
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Figure 5.33. Two decision trees with different complexities induced from the same training data.

(from: Tan, Steinbach, Kumar: Introduction to Data Mining)
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e Decision Trees as an example for Bias:

— T,and T, were trained on the same data

— T, was generated from T, by pruning it to the maximal height of two

— T, uses stricter assumptions about class separation (stronge bias)

26
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e the relative contribution of bias and variance to the complete

el

201

error depends on the classifier.
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(a) Decision boundary for decision tree, {b) Decision boundary for Il-nearest

neighbor.

Figure 5.34. Bias of decision tree and 1-nearest neighbor classifiers.

(from: Tan, Steinbach, Kumar: Introduction to Data Mining)
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e Example:

average class borders over 100 classifiers being trained on 100 different
training sets containing 1000 objects

dashed : true class border being used by the data generator
1-NN classifier has overall smaller distance to the class border
=> less bias
the 100 1-NN classifiers display a larger variability
=» larger variance

28

D
&
DATABASE

SYSTEMS
GROUP

1.

Ensembles and Multi-View Data
LMU

Introduction and Basic Principles of Ensemble Learning

Diversity in Ensemble Learning

Methods for Ensemble Construction

Mining Multi-View Data
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e How can we a achieve diversity of base learners?
— Vary the training sets
e Methods: Bagging and Boosting
— Manipulate the Input Features
e Learn on varying subspaces
e Use multi-view data
— Manipulate the class labels
e various methods for mapping general to two class problems
— Manipulate the training algorithms
e introduce randomness
e employ varying initial models

30

=
umemse | VArying the training set

GROUP

e animportant property of a learning algorithm is stability

e The more stable a learner is, the less different are the classifiers
on different training sets for the same classification task.

e Unstable learners may strongly change even under small
modificatons of the training sample.

— Instable learners are more suitable for ensemble learner where
diversity is generated by varying the training set

—> Examples for instable learners:
— Decision Trees
— Neuronal Network
— rule-based learners
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e Bootstraping:
sample a training set by drawing n samples with replacement.
— training set has the same size (n objects) as the original data set
— the training set contains in average 63% of the objects in the data set
(some of them more than one time and ca. 37% are not contained):
e a particular sample is drawn with the likelihood 1/n and is not drawn
with the likelihood 1-1/n

e after making n draws each data object is not contained once with
likelihood of (1_1]”

n

e forlargen’s 1y
(1——} ~e ' ~0.368

n
— therefore, the method is also called “0.632 bootstrap”

(The methods is sometimes used like cross validation for train and test.)
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e Bagging (Bootstrap Aggregating):
build varying training sets by multiple bootstraps

e Bagging aggregates these bootstraps and trains a classifiers on
each of them

e Using unstable methods results in multiple varying classifiers
e the final classifier is combined by a simple majority vote

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7
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e While the 0.632 bootstrap draws from a uniform distribution, boosting employs
a weighted distribution.

e Data objects which are hard to classify are weighted higher

e Use of the weighting:
— higher weights increase the likelihood that the object is drawn in the next bootstrap
=» difficult examples appear more often in the next bootstrap are predominantly

used
Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 | (4)| 10 6 3
Boosting (Round 2) 5 9 | (4)]| 2 5 o~ 7 | (4)]| 2
Boosting (Round 3) @ 8 | M | (GY| 5 (3] 6 | T | (3

4 - A4 4
— Some learning algorithms can directly employ instance weights
=» increases the bias of the learned hypotheses
34
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e Manipulate the input features:
— Learn on varying subspaces or combine features
e example: Random Forests

set of decision trees where the training set where diversity is created
via:

a) random selection of features for each split

b) for each node new features are randomly constructed by
combining input features

c) for each node use one of the F best splits

— Combine classifier being trained on different views
(Multi-View Data Mining)
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* in many cases a multi-class problem has to be mapped to a set of
two-class problems

-
P
-

* Image from: Fiirnkranz 2002
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e Train multiple classifiers for two classes an combine the results to
a multiclass decision

e this is equivalent to generating diversity by manipulating the class
labels
e general methods:
— onhe-versus-rest
— all-pairs
— error correcting output codes

37




=
N . .
Manipulating the Class Labels

DATABASE
GROUP

e one-versus-rest (also known as: one-versus-all, one-per-class):

For n classes, n classifiers are trained. Each distinguishes one class
from the combination of all other classses

x + + *
. X x « .~ . +
X X [ +
\\ + + +
o © \\ ++
- o -
- o 5% ° \"' -
-~ = 0% o
- ~ o ° 5 °° Image from: Fiirnkranz 2002
~ o o
~ - o
- #
# # #
# #
# 4 #
# 4 "
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e all-pairs (also known as: all-versus-all, one-versus-one, round robin,
pairwise):

For each pair of classes a classifier is trained predicting one of both
classes.

Bild aus: Fiirnkranz 2002
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Manipulating the Class Labels

e Error Correcting Output Codes (ECOC):

Class set Cis randomly split into two disjunctive A+B subsets.

LMU

Data objects belonging to class set A are with -1, all other objects belonging

to the class set B are labelled with 1.
Train k classifiers for the these two class problems
If classifier i predicts A, all classes in A receive a vote

The class c € C receiving the most votes is selected as class prediction of the

ensemble
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Manipulating the Class Labels

e Example: C={c,c,c5c,}, 7-bit codes

class code word

(o 1|1 1 1 | 1] 1 1

¢, |0]ojolo|1]|1]1

s [o0|lo|l1]1]0o]o0]1

¢, |O0]1]o|1]o]1]o0

LMU

e for each bit in the code word a classifier is trained, 7 classifiers are
trained

e Assume the classifiers predict (0,1,1,1,1,1,1) —
For which class would the ensemble decide?

41
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e the name “Error Correcting Output Codes” reflects the idea that
training multiple classifiers introduces redundant class borders

the “code words” are a binary code which reflect the assignment
of the classes for each classifier

e To build a high quality ensemble each of the class borders has to
be sufficiently represented:

— Row Separation: Each pair of code words should display a large Hamming
distance (=large amount of mismatching bits).

— Column Separation: the binary classifiers should be uncorrelated.

42
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class code word
C, 1 1 1 1 1 1 1

e Alarge Hamming distance between the rows allows a unique class
prediction of the ensemble.

e How large is the Hamming distance between the result
(0,1,1,1,1,1,1) and the codes for the classes c,, ¢,, ¢; and c,?
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e Manipulating the learning algorithm by randomization:

— Start with varying initial models (e.g. starting weight for back propagation in

neural networks)

— Randomized splits in decision trees (compare. random forests)

44
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Diversity in Ensemble Learning

Methods for Ensemble Construction

Mining Multi-View Data
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LVFIFGFVGNMLVILINC

rider, horse, equestrian,
hill, forest,

. v
Proteine
BINDS TO MIP-1-ALPHA,
MIP-1-BETA AND RANTES
AND SUBSEQUENTLY... v
p/

reason for the existence of multiple views:
e varying feature transformations
® varying measuring techniques instance 2

e varying aspect of the same object @
=> Multiview Data

instance 1
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Basic problems: (compare feature selection)
e all necessary information should be available ot the data mining algorithm
=> employ all available information

e too much unnecessary features might have a negative influence on the
result => Use only the necessary features (compare feature selection)

Basic approach:

1. construct a joined features space.

2. Use feature reduction of feature selection

3. employ the data mining algorithm to lower dimensional representation.

q Data Mining

feature
selection

concatenation

47
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Integrate multiple views on the object comparison level.

Idea: Keep the separated feature spaces and combine the derived
similarity values over all views.

Example: weighted linear combination
d(0,,0,): local metric or kernel in R;

Dkombz 01’02 ZW d 01902)

R, eR
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Formulate the weighting problem as linear classification task:

e use classes {,similar”,“dissimilar”} for pairs of objects
(if x.c =y.c then (x,y).c = similar else dissimilar)

e normal vector of the separating hyperplane represents the weights

e training set: set of all pairs of vectors in the training set ( O(n?)

» Feature space: distance vectors having v; = di(x,y) for all views R, 1<i<n
Method:

e Determine the distance vectors for all object pairs

e Train a linear classifier

e determine the normal vector of the separating hyperplane as weights (MMH).

d(xy)
. A dissimilar object pairs
weight vector

similar object pairs ~ -|/0°°

> dy(xy)
49
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Combining Similarity and distance functions

Remarks:
e (Caution: linear classifiers must result in positive normal vectors!

LMU

e |tis possible to use the learned classifier directly as combination
function. In this case the class probability for the class dissimilar

is used as distance measures

e Combining distance values using more complex combination
functions requires that mathematical properties which are
required of the data mining algorithm still holds.

(symmetry, triangular inequality, positive definiteness )

50
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Input: 0 e R;x..xR,,,

Multi-View Classifiers

where R; is the feature space of view i.

Combination multiple classifiers (classifier combination):

1.
2.
3.

Train classifier for each view
Classify a new objects in each view
combine the results to a global class prediction

4

text description

BINDS TO MIP-1-ALPHA,
MIP-1-BETA AND
RANTES

AND SUBSEQUENTLY

sequence

MDYQVSSPTYIDYDTSEP
CINVKQIAARLLPPLYSLV
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# que
class1f1er

S

LMU
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How to combine class predictions in the light

of varying prediction qualities?

1. Each classifier returns a confidence value c, for each class A.
For the vector confidence values c"(x) : ZCZ (X):l

AeC

2. Classification by combining confidence values c'(x)
pred (X ) = argmax k@R (c:1 ))

AeC

mit @e{min,max,z ,H }

52

=
amese | COMbining multiple Classifiers

GROUP

Example:
Input: 2 views for bitmap images: color histograms(R1) and texture vectors (R2).
classes = {,,contains water“=A, , no water“=B}
Bayes classifiers K1 (for R1) and K2 (for R2)
Different ways of combination:
classification of image b:
K1(b)=c1 =(0.45, 0.55); K2(b) = c2 = (0.6, 0.4)
combination by average (sum):
Ciobal = (1.05,0.95) * % = (0.525, 0.475) and argmax(Cgop,) = A
combination by product:
Calobal = (0-27,0.22) and argmax(Cyopa) = A
combination by maximum:
Clobal = (0.6, 0.55) and argmax(cypy) = A
combination by mininum:
C (0.45,0.4) and argmax(Cgopy) = A

L7
K1p
wcomhmaﬁon
(|
- texture vector K2p

global =

global prediction

53




e )
v
> .| Co-Training

DATABASE
GROUP

Multiple views can be used to extend the set of labeled objects.

Input: 2 views on a object set where only a limited amount of
instances is labeled.

Idea: Use a classifier to add additional labeled training samples.

Why does this approach require multi-view data to succeed?

54
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Experiment:

e Train a classifier CL on all labeled objects
e classify k unlabeled objects and add them to the training set
e Train a new classifier on the extended set

Problem:

e new data is labeled by the classifier CL
e Clistrained on the original samples

e CLis based on the same distribution

e the new labels do not add any diversity

55
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Examples:

e blue =labelled objects (class triangle)
e vyellow = labelled objects (class circle)
e red =labelled objects by CL,

O o A O o A O oA
A A A
O\ © CIANE o O
o A o A o A
o °® e}
o A A e} A A o A A
o ° o) o
A © A © A
o) o o)
e} © © A e) o © A o o © A
Training on original data Training on newly labeled data optimal solution
Conclusion:

e the red objects only confirm the given assumptions of the classifier
e to add new diversity an additional source information is required
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Idea: Employ at least two classifiers being used to label objects
being used to train classifiers for other views.

example:

e blue =labelled objects (class triangle) Objects being labeled by Cl, in R,
e vyellow = labelled objects (class circle)
e red =labelled objects by CL1

© o A O olA
A
O\ O o O A
o A o A
O A O
o A A A o A A
o) A A o)
(@] A e}
@] le) A
@]
o © A o © °| a
original classifier classifier based on new labels optimal classifier

=> classification can be improved by using classifiers being trained on other views
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Input: 2 sets of multi-view data
TR = labeled training set, U = set of unlabeled samples
Co-Training Algorithm
For k times do
For each R, Do
train CL; for view i.
draw a sample from U.
generate new labels using CL,.
add newly labeled objects to TR
58
S
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Requirements for Clustering multiview data :

employ all views.
use specific distance measures
employ index and data structures for the employed data types

the effort should only increase linearly with the number of views
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Idea: An object is in a dense region if there are k neighbors sufficiently similar over all
views. (similarity can be reliably observed from each view)

used for : sparse data

Vs

Union Core-Object:
Given: &, &,.., &, € IR, MinPts € N.o € O is an union core object if

U

R;(0)eo

> MinPts whereij (0) denotes the local £-neighborhood in view i .

Direct union reachabibility:
Object p € Ois direct union reachable by g € O w.rt. ¢, 5,.., &,

and MinPts if g is a union core object and 3 e {1,---,m}1 R(p)e Ng" @)

-
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Cluster expansion using the union method

MinPts = 3
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Idea: An object is in a dense region if the &-neighborhoods in all views are dense.

Used for: dense views and unreliable similarity functions.

N

Intersection core object:
Given: g, &,.., &, € IR*, MinPts € N. o € O is an intersection core object if

[V (o)

R;(0)eo

> MinPts where Nf_" (0) denotes the local &-neighborhood in view i .

Direct intersection reachable:
Object p € O is direct intersection reachable by g € O w.rt. ¢, &,,.., &, and MinPts
if g is an intersection core objectand V i e {1,...,m}: R(p)e N (q)
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Cluster expansion using the intersection method

MinPts = 3
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Cluster in single views.
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(Bets-What is this?)

Example images for cluster IC 5
(color histograms)

Example images for cluster IC 5 Cluster IC5 based on the intersection method.
(segment trees)
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truly similar objects: +
dissimilar objects: -

precision sphere

recall sphere

J optimally precision sphere = recall sphere
(one view is enough)

J the intersection methods tries to remove false positive from the recall
sphere.

J the union method tries to add false negatives to the precision sphere
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