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e if data mining algorithms has a super linear complexity parallel
processing and hardware can help, but do not solve the problem

e runtimes can only be reduced by limiting the number of input
objects

e solution:
— reduce the input data to set of objects having a smaller cardinality
— perform data mining on the reduced input set

—> Results may vary from using the complete data set
—> parallel processing can be used for this preprocessing step
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Idea: Select a limited subset from the input data.

e Random sampling: draw k times from the data set and remove the
drawn the elements

e Bootstrapping: draw k times from the input data set but do not
exclude the drawn elements from the set

e Stratified sample: Draw a sample which maintains a the
distribution w.r.t. to set of attributes (e.g., class labels)

— compute how many instances for attribute value
(combination of attribute values) should be contained in the
sample

= Partition the input data w.r.t. to the values/ value combinations
— draw the computed amount from each partition
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Spatial Sampling

LMU

Index-based Sampling [Ester, Kriegel & Xu 1995]

e random sampling is problematic in spatial data

e use spatial index structures to estimate spatial distributions

e index structures try to group similar objects
(similar effect to clustering)

e index structures are usually built up in an efficient way

e allow fast access for similarity queries
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Spatial Sampling

Method

build up an R*-tree

sample a set of objects from all leaf nodes

=

LMU

Structure of an
R*-tree
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BIRCH [Zhang, Ramakrishnan & Linvy 1996]

Method

e Build a compact description of micro clusters (cluster features)
e organize custer features in a tree structure (CF-tree)

e |eafs of the tree have a maximal expansion

e data mining algorithms use the leaf nodes as data objects

e Birch is a hierarchical clustering approach
e the topology of the tree is dependent on the insertion order
e building up a Birch tree can be done in linear time

LMU
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Basic concepts

e (luster Features of a set C{X,,.., X,}: CF=(N, LS, SS)
e N=|C| cardinality of C

. LS=ﬁ:)ﬁ linear sum of the vectors X;

SS = i)?f - i{Xl.,Xl) sum of squared vector lengths
i=1

i=1

CF can be used to compute:
e the centroid of C (representing object)

* standard deviation of the distance from X to the centroid

LMU

52




=
J’ c a
e | IMliCro-Clustering

GROUP

Example:

(3.4) o] (5,1)
S (s @
2 * <> 77
(396) i \\ ////4 (895)
(4,7) ) i (/ ’T
(3,8) ; / AN

CF, = (6, (22,35),299) \

CF, = (4, (27,13),238)
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Additivity theorem
for two disjunctive clusters C, und C, the following equation holds:
CF(C, U ) =CF (C)) + CF (C,) = (N,+ N, LS, +1LS,, QS, + QS,)

i.e., clusters can be computed incrementally and easilymerged into one cluster.

Distance between CFs = distance between centroids

Definition

A CF-tree is a height balanced tree where all nodes are described by cluser
features.
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Properties of CF Trees

e Each inner node contains at most B entries [CF,, child]] where
CF, is the CF vector of the i*" subcluster child.

e Alead node contains at most L entries of the form [CF].

e each leaf has two pointers previous and next to a allow
sequential access

e for each lead node the diameter of all contained entries is less
than the threshold T.
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Construction of a CF-tree (analogue to constructing a B*-tree)
e transform the data set p into a CF vector CF,=(1, p, p?)
* insert CF,into the subtree having the minimal distance
* when reaching the leaf level, CF, is inserted into the closest leaf
* if after insertion the diameter is still < T then CF, is absorbed into the leaf
* else CF, is removed from the leaf and spawns a new leaf .
e if the parent node has more than B entries, split the node:
— select the pair of CFs having the largest distance seed CFs

— assign the remaining CFs to the closer one of the seed CFs
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Example: B=7,L=5

Root

| CF; | CFg | CFo | o _1CFo inner nodes
child, | childg | childg child;,
(:I:ZZ£/2:I:9O_F'-TTi;-E;i;;;."""".""‘~.__---------i»
prev|CFy|CFy,| = CF,,| next prev|CFoslCFog) - CFoq| next <= Jeafes
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Using Birch for Data Clustering
Phase 1

e construct a CF-tree by successively adding new vectors

Phase 2 (loop until number of leafes is small enough)

e if the CF-tree B, still contains to many leafes, adjust the treshold to T, > T,
e Construct CF-tree B, w.r.t. T, by successively inserting the leaf CF’s of B,
Phase 3

e Apply clustering algorithms

e Clustering algorithm can use special distance measures on CFs
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Discussion

advantages:

e compression rate is adjustable

o efficient method to build a representative sample
— construction on secondary storages: O(n log n)
— construction in main memory CF-Baums: O(n)

disadvantages:

e only suitable for numerical vector spaces

e results depend on insertion order
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Data Bubbles [Breunig, Kriegel, Kroger, Sander 2001]

= 2.5
1 mio. . o

data points

Original DB and
OPTICS-plot

k=10,000 k=1,000 k=200

Sampling

|

OPTICS-plots for
compressed data
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There are three problems making the result unstable:

1. Lost Objects
many objects are not in the plot (plot is too small)

2. Size Distortions

Cluster are too small or too large relative to other clusters

3. Structural Distortions

hierarchical cluster structures are lost OPTICS original
Solutions:
— Post processing Lost Objects and Size Distortions
use nn-classifier and replace all representative objects by the set of Sampling 100 Obj.

represented objects

1
— Data Bubbles can solve structural distortions ii‘ ‘ ‘ ‘

CF 100 Obj.
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reasons for structural distortions:

— Distance between the original objects is only badly described by the
distance between the centroids.

«—dist(rd,rB) —, «—dist(rC,rD)—,
1 H ' oi o
. ! . % o p oo o
0 o - © 0o o L 8
o o b . 020 b o
| o o o | o~ 0 0 ~0 O o
| o I OB o | 000 i ODO o
° 90 2% o o °,lo | Po 0% oo
oo O ! 0o © o o O » © 0o © 00
o O 00 O o
NP S v a1 9000°
real-distance real-distance

— the reachability distance of a representative objects does really
approximate the reachability distance of the represented objects

&9
G%O
o

o o7&

oe

o

— “peal-reach” H “real-reach”
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Data Bubble: adds more information to representations
Definition: Data Bubble
— Data Bubble B=(n, M, r) of the set X={X;} containing n objects

n .
M= (Z Xij /i centroid of X
i=1

( i_Xj)z

PR is the radius of X.

expected kNN Distance

— Expected kNN Distance of the objects X;in a data bubble

(assuming a uniform distribution) A
nnDist(k,B) =r- (—J

n
— Data Bubbles can either be generated from samples or CFs
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e Definition: Distance between Data Bubbles
dist(B.M,C.M)

-(B.r+C.r)

=>dist(B,C)

e Definition: Core- and reachability distance for data bubbles

are defined in the same way as for points

e Definition: virtual reachability distance of a data bublle

— expected kNN-distance within the the data bubble

— better approximation of the reachability distance of the represented
objects
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e C(Clustering using Data Bubbles:
— Generate m Data Bubbles from m sample objects or CF-features
— Cluster the set of data bubbles using OPTICS
— Generate reachability plot:

for each data bubble B:

¢ Plot the reachability distance B.reach (generated by the running OPTICS on
the data bubbles)

e For points being represented by B, plot the virtual reachability distance of

B
B = (n,Mp,rp)
is replaced by
B, B B, B Y
ng times
I reachability distance of B [ virtual reachability distance of B
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Results of using data bubbles based on sampling and CF

k=10,000 k=1,000 =200
)
g
a 1.5
5 i
= ..l
U L
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Speed-Up

speed-up factor

w.r.t to number of data objects
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wr.t. compression ratio

for 1 million data objects
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Discussion Micro-Clustering and Sampling
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often the same results can be achieved on much smaller samples

it is important that the data distributed is sufficiently represented

by the data set

e Sampling and Micro-Clustering try to approximate the spatial data
distribution by a smaller subset of the data

e there are similar approaches for classification

instance selection:

— Select samples from each class which allow to approximate the class

margins

— samples being very “typical” for a class might be useful to learn a
discrimination function of a good classifier.

— similar to the concept of support vectors in SVMs
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