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e Focus on quality: How can we derive meaningful patterns?

e Feature Selection, Feature Reduction, Metric Learning and

Subspace Clustering yield high complexities

In this chapter:

e How can we mine high volume data faster?

e Performance depends on
— the volume of the data set

— the scalability of the data mining algorithms
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Solution Approaches

Use modern Hardware:

e Cloud Computing => Parallel Data Mining
e Broadband Networks => Distributed Data Mining

Where does it help?
e high volume data repositories (electronic payments, sales data,

web pages, emails, ...)

=> every data object must be examined at least once
preprocessing (select relevant data objects)

LMU

data transformation (data discretization, temporal aggregation

etc.)
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Limitations of high-performance computing architectures:

e best-case speed up of parallel algorithms: linear in the number of
machines

e in most cases: less than linear due to communication and result
merging overheads

e in problems having a super linear complexity: adding more
machines helps but does not make the problem scalable

What can be done in these cases?
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Reduce the number of objects being processed
= Sampling and Micro-Clustering
Why does this make sense ?

Representative Sample # Large Sample

e A too small data set might not be representative
e Avery large data set can still be biased and not representative
=> there are redundant samples

=> removing these from the data set does not
hurt the representativeness
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Solution Approaches

Methods for reducing large data sets:

Sampling:

LMU

e Use a subset of the data set by removing redundant instances

Find redundant features

Micro-Clustering:

e use a clustering algorithm to determine a set of cluster

descriptions
perform data mining on cluster descriptions
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Parallel and Distributed Data Mining

Go
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LMU

use multiple cores /work stations to increase performance

—> parallel data mining

if data is stored in distributed locations:
= distributed data mining

if data is confidential:
= privacy preserving data mining

Privacy can only be preached if there are at least two

parties (data owner and data user).
=> closely related to distributed mining
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e Parallel DBSCAN to speed up processing

e Clustering end customers for distributors:

— Retailer do not want to share customer information but might share distributions
or statistics

— Retailer needs ,,privacy-preserving” Clustering algorithms to derive general end
customer groups

e Pharmaceutical companies collect costumer sales data from pharmacies
— helps the company to plan the production of pharmaceutics
— find profitable areas for researching new drugs

But: Individual drug consume of costumers might be sold to insurance companies or
is made available to the public.
(potential employers, landlords, credit institutions,..)
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Parallel Data Mining:

e Data repository is already integrated and available in a common
location.

e data has to be analyzed on k work stations

e performance gain by following a ,,Divide and Conquer” strategy:
= Distribute data to worker tasks
= each worker analyses the data and returns a local result
= local results must be combined to global patterns/functions

Important aspects:

e Distribute data in a way that joining local results into global
patterns is easy

e Avoid communication between the workers as much as possible
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joint data repository DB
F DB %

/\parﬁﬁon DB into S,

partitioned
51 S’2 Sn-1 Sn data
= ‘ = ‘ = ‘ = ‘ analyze S,
) set of all local patterns
merge-step |
mutiple iterations derive global patterns from local ones
might be required

global patterns
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e The distribution of data to the different Peers is given
= no effort for data partitioning
= local patterns are less controllable
= joining local patterns might be more difficult

e an unfavorable distribution might lead to the following
problems:

— Discrepancies between the result of distributed and stationary mining
— Large communication effort

e Differences between parallel and distributed:
— distribution is given

— network costs are usually assumed to be higher
(between companies, mobile clients..)

12




D
&

amens: | WOrkflow Distributed Data Mining

SYSTEMS
GROUP

=

LMU

distributed data

analyze S;

set of all local patterns

tiole iterati merge-step
mutipie iterations gog s
might be required build joint patterns
Lglobal patterns
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1. Data Partitioning:
e Vertical Partitioning

Features are distributed. Objects are available everywhere

"

e Horizontal Partitioning

Objects are distributed over workers and sites.
Object description is the everywhere the same.
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e |n practice: Data might be partitioned in both ways.
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2. By Task: Classification, Clustering, Association Rules

3. Partitioning dependency: Does the result depend on the used/given
partitioning of the data.

4. Type of local patterns: Approximations, data objects, distributions...
examples: Gaussians, hyper rectangles, centroids...

5. Organization of the distributed Workflow:
Master and Slave processes, P2P computation
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e Usually the result is expected to be independent from the
partitioning (deterministic result)

e Main focus is speeding up the computation
e Partitioning strategy is often a major part of the algorithm:

— minimize effort for joining local patterns
= local patterns should be independent from each other

= in case of dependencies: extra communication is required or
inaccurate results have to be accepted

— Runtime depends on the worst runtime of any worker task
= all parallel steps should take about the same amount of time
= all sites should receive the same amount of data

16
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Parallelism via Database Primitives

In general data mining algorithms can be based on
database primitives (e.g. eps-range query)

parallel computing of the database primitives yield a
better hardware support to general data mining
algorithms.

Example:

parallel computation of &-range queries can
accelerate density-based clustering

parallel kNN queries , allow fast instance-based
classification.

characteristics:

LMU

[ Data Mining Alg. ]

!

DB-Interface

distributed query

e Joining the results have to be done on one machine processing
e Partitioning might still play a major role
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Ge

Horizontal and compact Partitioning
Determine local core points and clusters

Connect local clusters to global clusters:
— Clusters from different sites
— Noise points from other sites

neral problem:

What happens to objects where &range intersects with of the
partition?

mirror marginal objects

* requires communication between the partitions

18
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PDBSCAN [Xu, Jager,Kriegel99]

Idea:

e Store vectors in a distributed index structure (dR*-Tree)
— Directory of the R-tree in each Site
— Data pages partitioned w.r.t. spatial distance

e compute local clusters for each site

e Marginal points cause a cross-site queries

e Afterwards merge clusters having commong points
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dR*-tree:
e Perform range queries on the complete data set

e Queries on S, being completely processible on DBs; can be answered
completely simultaneously

e Access to pages on other sites reduce concurrence and raise communication
costs

=> Algorithms should employ as much local queries as possible

20
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PDBSCAN

Data partitioning in the dR*-tree

(the same amount of pages on each site)

Idea:

DBSCAN runs for each pointin p, and p,

If e-range intersects with the margin:

1. Margins might have to be loaded from other sides to
determine core points

2. Expanding clusters beyond the margin is to expensive
would lead to large communication overheads.

=> store points in merge list
Join local cluster having common merge points:

merge point needs to be a core point in at least one
partition

=> merge clusters

LMU

local pages p; and p,

margins
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e Arbitrary distribution of points over the sites
e Partitions might spatially overlap
— Each site S; might store elements of the e-range of point p
— p might be a core point, even if p isn‘t a local core point.
S, |- . S, | ° globale
. R Sicht

e Density-based clustering does not use a compact cluster model

= Transfer local points to determine global clusters
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Idea:

e If the cardinality of the transferred points is small, multiple
iterations between the sites are no problem (low traffic)

e Centroids and cluster quality in k-Means or related methods is
suitable for distributed computing:

TD® = OEZD:B(mm{d(o C )}) S;}ig(mm{d(o C)}) ]

* global centroid C; is computed from local centroids C, ;:

/- z\c S o

EDB

c

e Summary: In each iteration it is possible to optimize the global
clustering by adding up local components.
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Distributed clustering using variance minimization (Master-Slave):

Determine initial distribution and start-Centroids
loop:
transfer centroids to all sites
assign local points to the current centroids
=> compute local centroids and local TD? values

After retransferring local centroids, cluster
cardinalities and TD? values

= Add local sum-vectors, cluster cardinalities and TD?
values (implies new global centroids)

— Determine global TD? value
if TD? value does not improve => terminate
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Master Site Slave Sites

initialization:

| k centroids from each slave site ‘
< local k-partitioning clustering

<

initialize global model by
clustering local centroids

o~
global centroids
loop: i\
Assign local points to global centroids
/ R

Update global model and global

TD?2 value Local change
centroids & + local
. . TD? values
Stop: if TD? doesn‘t improve
else:
I global centroids
25
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Map(k,v)%(k‘,v‘) Reduce(k‘,v‘[])%v“

e Based on statements from functional programming: Map and Reduce

e Originally developed by Google to allow batch processing for large amounts of
data with little implementation effort ( e.g. calculating PageRank)

e Open source version: Hadoop (used by Facebook)

e Datais represented as <key, value> pairs
example: <DokID3, , Today is a beautiful day..”>

e Both mapper and reducer can be distributed over multiple worker tasks
e Optimization is done automatically by adding workers if necessary
e Trade-off: Parallelism vs. Bandwidth

26
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Processing in 3 steps:

1. Map-Step: Input: <key1l, valuel> Output:<key2,value2>

each input pair is computed into 0 to n output pairs

Example: <ID, Text> => <Today, 1>,<is,1>, <a,1>....

2. Shuffle-Step: Output of the mapper is grouped w.r.t. keys.
Example: <Today, <1,1,1,1,1,1,1,1,1,1,1,1>>

3. Reduce-Step: Each pair from step 2 is processed into an output.
Example: <Today,12>

For complex problems multiple MapReduce steps might be necessary to
implement an algorithm.

Only the complex steps are computed in a parallel way.
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Partitioner: Controls the distribution of data over the mapper tasks.
Default: HashPartitioner

Combiner: Local aggregation step which summarizes data from a mapper
Step is performed between Map step and shuffle step.

=> Transfer volume from the Mappers to shuffle step can be reduced
Example: <Today, <1,1,1,1,>> -> <Today,4>

28
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input: A data set D having n feature vectors, kK number of clusters

. . . . . . 2
output: k centroids minimizing TD TD*(D.C) = Z(min(dist(c,X))Q
Steps: e

e Assign vectors to next clusters
e Compute centroids for a set of objects
e Compute TD?

= All steps can be done by a linear scan of D

=> Results are additive. Cluster and TDZ are sums and therefore,
computable in a distributed way. (associative law)
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Sample k initial centroids C.
WHILE TD2 < oldValue
oldValue =TD2
assign vectors in D to centroids in C (Mapper)
compute centroids C and quality TD2 (Reducer )
RETURN C

Remark:

e Only the expensive steps are processed in a distributed way
e one MapReduce task for each iteration

e C has to be transferred to mappers and reducers
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Input: D: set of vectors,C: set of centroids ,k=|C|: number of centroids
Output: <centroid_id, vector>
FOREACHvV inD DO
bestCluster = null; minDist = o«
FOREACHC_iinCDO
IF minDist > dist(C_i, v) THEN
minDist = dist(C_i, v)
bestCluster = C_i
ENDIF
END FOR
OUTPUT<bestCluster, v>
END FOR

Afterwards shuffle step generates aggregated pairs : <Cluster,<v1,..,vI>>
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Input: <Cluster,<vl,..,vI>>
Output: <newC, TD2> new centroids and parts of TD2
FOR EACH <C, <v1,..,vI>> DO
linearSum = 0;
count =0;
TD2 = 0;
FOR EACH v_jin <v1,..,vI> DO
linearSum +=v_j
count = count+1
TD2 +=dist(vj,C)
END FOR
newC = linearSum/count
OUTPUT< newC, TD2>
END FOR
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e Number of calls corresponds to the number of iterations

e Optimization by local combiners which precompute parts of the
linear sums.

e Algorithms does not solve the problem of a suitable initialization

e newer methods use sampling techniques to cluster data in
sublinear time.

>
e Privacy Preservation
SYSTEMS I_Mu

GROUP

Connection to distributed Data Mining:
= only any issue if multiple parties are involved:
Data-Owner: knows exact data, but does not want to reveal it completely

Data-User: is interested in deriving general patterns

Privacy Preserving Data Mining:
Allows the data user global patterns from the data being provided by the data
owners without revealed specific information about data objects:
1. Data user must not be able to draw conclusions over the specific data
objects during the mining process.
2. The generated patterns must not reveal information about specific
objects.
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Why is privacy preservation important ?

1.

A lot of data is only provided by the data owners if the privacy is saved
Example: Analyze clickstreams from web browsers

Data mining should not be used as a excuse to collect data.

Protection from misuse of the provided information by third parties.

Example: Publication of results about the surfing behavior is used to
personalize spam mails and fishing attempts.

Conclusion:

Data Mining does not necessarily violate privacy constraints.

Results are general patterns which should not contain object specific
information.

The same patterns can be derived from different samples drawn from the data
distribution.
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idea: Change data in a way preserving the patterns but removes object-
specific information

Solutions depends on the way data is generalized in the given data mining
method:

overfitting patterns have the tendency to contain too specific information
= generality of the patterns is complementary to privacy preservation

Privacy protection is done by:

change data objects (data perturbation)
General model for the data (distribution functions)
Generate new data following the same distribution

(sampling from distribution functions)
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discretization:
e Disjunctive distribution of the value set into several discrete subsets
e Actual values are replaced by an interval of values
example:
e original information: Person A earns 42.213 € p.a.
e discrete information:
Person A earns between 35.000 € and 55.000 € p.a.
problem:
e information is weaker but still detectable
e If the number of objects in any interval too small possible privacy breach
= Uniform distribution of the number of objects per interaval
(no equidistant distribution over the value set)
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Data Perturbation:

e Transmit the sum of the original value w and a random number r: wir;

e Distributions forr:
— Uniform distribution [-a,,..,a] a€lR*
— Normal distribution with mean 0 and standard deviation ¢

e The perturbation distribution has a mean value of 0
=>the mean value of the summed up distribution is E(W)
(mean values of the sum of two random variables add up)
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,Privacy-Level” (Quality of Privacy Preservation)
Idea:

If it is possible to predict that x is in the interval [x,, x,] with c% then the size
of the interval [x,, x,] corresponds to the privacy level having the confidence
level c.

Formal:

input: changed feature value y being constructed from r and the original
feature value x.

output: Breadth 2v of the interval [y-v..y+v] in which the original value x is
contained with ¢ % probability. (2v = Privacy Level)
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Example:
e error Ris uniform distributed in [-a,..,a]. y-v y
e for 100 % = o =v = privacy level = 2a R ,
(value must be within the interval) y-a xy yra
e for50% =2v/2a =05
=>v=05a Y-V YV
e generally:v=c®% * a e .,
y-a XY  y+a
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Input: data of perturbated data W ={w,,..,w,}

e Probability density function of R: fz:IR— [0..1]

Output: Approximation of the original distribution X f,:IR— [0..1]
e Approximation of the approach

F} (a)= _[f (X, +7, = w )d _ij‘”l(Wl‘X )f’“(z)dz

e fX1+Yl( w)
Ile+n(W1‘X1 —Z ﬁz _[fY Z}JZ J.fY Z)dZ
TfX1+Yl(W1‘X1 )dZ JfY Z)dZ ij Z)dz
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e The distribution over all values can be derived from F,,(a) :

Fi@=-Y F, (@

e The following probability density function can be determined by

differentiation
f,'((a) :lz Oon(Wi _a)fX (a)

" __[fY(Wi _Z)fX (Z)dz

e Since f,(a) is unknown, f’y (a) iteratively approximated from f, (a).
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Iterative approximation algorithms for reconstructing the
original distribution:

fO,:= uniform distribution
j:= 0 //iteration counter
repeat

J+l — l C fY(Wi _a)f)?(a)

X (a) T n ©

i=1 i
[ 10w =2)ri ()
ji=j+l
until ( /7@~ fi(@< g)
43
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e Swapping = exchange values ol.attrl and o2.attrl
= original feature vectors cannot be reconstructed

= Well-suited for algorithms assuming independent features like Naive

Bayes, Decision trees
= Patterns depending on feature correlation are destroyed

\ = /
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Idea:

e Data owners provide local patterns/distributions instead of
instances

e Patterns/Distribution must be general enough to preserve the
privacy

Possible solutions:

e distribution function

e explicit cluster models (centroids covariance matrix)
e Locally frequent patterns
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e Distributed mining is based on sharing data for a special purpose
e Privacy breach when the shared data is used for other purposes

e Generally patterns, functions, models are not problem for privacy
if generalization is performed well-enough

e Data mining algorithms can be made aware of this problems and
can be tuned to allow a certain level of privacy

Caution:

e Data Mining can be used to learn private information
(e.g. link prediction, predict unknown values from available
information)
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