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1. Introduciton and Challenges

2. Feature Selection
3. Feature Reduction and Metric Learning

4. Clustering in High-Dimensional Data
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e Customer Recommendation / Target Marketing
— Data

e Customer ratings for given products

e Data matrix:
products (hundreds to thousands)

N
Ve N
~
customers < - N
(millions) \ rating of the ith
product by the jth
L customer

— Task: Cluster customers to find groups of persons that share similar
preferences or disfavor (e.g. to do personalized target marketing)
e Challenge:

customers may be grouped differently according to different
preferences/disfavors, i.e. different subsets of products
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Challenges for Clustering High-Dimensional Data

LMU

e Relevant and Irrelevant attributes

— A subset of the features may be relevant for clustering

— Groups of similar (“dense”) points may be identified when considering these

features only

irrelevant attribute

.
.
.'D

'
|
A 4

v

relevant attribute/
relevant subspace

Different subsets of attributes may be relevant for different clusters
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Challenges for Clustering High-Dimensional Data

LMU

Effect on clustering:
e Usually the distance functions used give equal weight to all dimensions
e However, not all dimensions are of equal importance

e Adding irrelevant dimensions ruins any clustering based on a distance
function that equally weights all dimensions

CooCooo oo o
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again: different attributes are relevant for different clusters
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Task: Cluster test persons to find groups of individuals with similar correlation
among the concentrations of metabolites indicating homogeneous metabolic
behavior (e.g. disorder)

e Challenge:

different metabolic disorders appear through different correlations of

(subsets of) metabolites
N N

healthy

Concentration 00000 o
of Metabolite 2

Concentration of Metabolite 1
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e Correlation among attributes
— A subset of features may be correlated

— Groups of similar (“dense”) points may be identified when considering this
correlation of features only
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— Different correlations of attributes may be relevant for different clusters
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Why not feature selection?
— (Unsupervised) feature selection is global (e.g. PCA)

— We face a local feature relevance/correlation: some features (or
combinations of them) may be relevant for one cluster, but may be
irrelevant for a second one
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Use feature selection before clustering
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Cluster first and then apply PCA
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Problem Summary

e Curse of dimensionality/Feature relevance and correlation
- Usually, no clusters in the full dimensional space

- Often, clusters are hidden in subspaces of the data, i.e. only a subset of features
is relevant for the clustering

- E.g. a gene plays a certain role in a subset of experimental conditions

e Local feature relevance/correlation

- For each cluster, a different subset of features or a different correlation of
features may be relevant

- E.g. different genes are responsible for different phenotypes
e Overlapping clusters

- Clusters may overlap, i.e. an object may be clustered differently in varying
subspaces

- E.g. a gene plays different functional roles depending on the environment
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e General problem setting of clustering high dimensional data

Search for clusters in
(in general arbitrarily oriented) subspaces
of the original feature space

e Challenges:

e Find the correct subspace of each cluster
- Search space:
= all possible arbitrarily oriented subspaces of a feature space
= infinite
e Find the correct cluster in each relevant subspace
- Search space:

= “Best” partitioning of points (see: minimal cut of the similarity graph)
= NP-complete [SCH75]
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Challenges for Clustering High-Dimensional Data

e Even worse: Circular Dependency
e Both challenges depend on each other

e In order to determine the correct subspace of a cluster, we need to know

(at least some) cluster members

e In order to determine the correct cluster memberships, we need to know

the subspaces of all clusters

e How to solve the circular dependency problem?
* Integrate subspace search into the clustering process
¢ Thus, we need heuristics to solve

- the clustering problem
- the subspace search problem

simultaneously

Knowledge Discovery in Databases II: High-Dimensional Data
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Overview over discussed methods

e Buttom-Up approach: Subspace Clustering
— Clique [AGGR98]
— Subclue [KKK04]

LMU

e Top-Down Approaches: Correlation and Projected Clustering

— ProCLUS [APW+99] and ORCLUS[AY00]
— 4C [BKKZ04]
— CASH

e Pattern based clustering
— P-Clustering

Knowledge Discovery in Databases II: High-Dimensional Data
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e Rational:

— Start with 1-dimensional subspaces and merge them to compute higher
dimensional ones

— Most approaches transfer the problem of subspace search into frequent
item set mining
e The cluster criterion must implement the downward closure property

— If the criterion holds for any k-dimensional subspace S, then it also holds for any
(k—1)-dimensional projection of S

— Use the reverse implication for pruning:

If the criterion does not hold for a (k—1)-dimensional projection of S, then the
criterion also does not hold for S

e Apply any frequent itemset mining algorithm (e.g. APRIORI)

— Some approaches use other search heuristics like best-first-search,
greedy-search, etc.

e Better average and worst-case performance
e No guaranty on the completeness of results

Knowledge Discovery in Databases Il: High-Dimensional Data
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Downward-closure property

if Cis a dense set of points in subspace S,

then Cis also a dense set of points in any subspace Tc S

A MinPts = 4 Ay

€

p and g density-connected in {A,B}, {A} and {B} p and g not density-connected in {B} and {A,B}
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Bottom-up Algorithms

Downward-closure property

LMU

the reverse implication does not hold necessarily
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CLIQUE serves two purposes:
1. Identify subspaces containing clusters
2. ldentify the clusters

Approach

e C(Cluster: ,dense regions” in the feature space

LMU

e Partition the feature space into § equal sized parts in each dimension

(regions = grid cells)
e Density threshold t:
If region r contain more than t objects =>r is dense

e Clusters are maximal sets of neighboring regions
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CLIQUE
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Identify subspaces containing clusters

Task: Find dense regions

e Greedy approach (Bottom-Up), comparable to the APRIORI Algorithm for finding

frequent Item Set (Downward Closure):

— Start with the empty set

— Add one dimension in each step

e Downward Closure for dense grid cells

If region r is dense in a k-dimensional space then each projection of the region into

a k-1 dimensional subspace has to be dense as well.

Inversion:

If any (k-1) dimensional projection of r is not dense, then r cannot be dense in the k-

dimensional feature space.
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CLIQUE

LMU

Example

o

2-dim. dense region

e
- s

3-dim. candidate region

] 2-dim. region which has to be checked

If all £ k-1 dimensional regions are dense
=> check candidate on data set

heuristics reduction of uninteresting subspace
=> prevents the exponential growth of interesting subspaces
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CLIQUE

Identify Clusters

Task: Find maximal sets of connected dense regions

Given: all dense regions in a k-dimensional subspace

LMU

e ,depth-first“-search on the following graph (search space):

nodes: dense regions

edges: common hyperplanes (neighboring regions)

e runtime complexity:

Under the condition that dense region can be held in main memory (e.g. in a hash tree)

For each region we have to check 2k neighbors

= number of tree accesses: O (2 - k-

n)

D
&
DATABASE

SYSTEMS
GROUP

CLIQUE

Experimental Evaluation

runtime vs. number of objects n

T T 1T T T 1
20000 |~ sec "tups-scale” ©—
15000
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0 | |
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LMU

runtime vs. dimensionality d
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runtime complexity of CLIQUE

linear in n, super linear in d
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Discussion
J Input: & and t specifying the density threshold
J Output: all clusters in all subspaces, clusters may overlap

J Uses a fixed density threshold for all subspaces (in order to ensure the
downward closure property)

J Simple but efficient clu

[ I J0le] O@C0 (OC) @ @ @
[III.)(XI.X] @
9006
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Motivation:
Drawbacks of a grid-based regions:
e Positioning of the grid influences the clustering

e Only rectangular regions &
* Selection of € and 7 is very sensitiv. | b4 bbb
Example: e : i i b

SR S ©3 K S N S

— i CIK) i i i

Cluster for t =4 i ...IP.. L i (¢} EL
(is C2 a cluster?) N ;".’;.;‘l;."; """ P L
for T > 4: no cluster S N SO S S E.-Qg-.:u---

( C1 is lost) o | (e o @

= define regions based on the neighborhood of data points
= use densit-based clustering
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Cluster model:

e Density-based cluster model of DBSCAN

e Clusters are maximal sets of density-connected points

e Density connectivity is defined based on core points

e Core points have at least MinPts points in their e-neighborhood

o © @ MinPts=5
° °© o
o ° ° o o °

e Detects clusters of arbitrary size and shape (in the corresponding subspaces)
e Downward-closure property holds for sets of density-connected points
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Downward closure of density connected sets

If Cis a densitiy connected set in subspace S then Cis a density connected set
in any subspace T S.

(Does not hold for clusters because of the maximality of clusters.)

A MinPts = 4 Ay

L soooo o o >
N, B B

p and g density connected in {A,B}, {A} and {B} p and ¢ not density connected in {B} and {A,B}
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Algorithm

Init:

e For each 1 dimensional Subspace S generate all clusters

Loop: Terminate if no k dimensional subspace contains any cluster

e Build: build (k+1) dimensional candidate spaces:
— Combine subspaces with overlapping dimensions but for one.
— Prune candidates having a k-dimensional subspace without any cluster

e On each candidate perform DBSCAN to extend the underlying clusters:
(noise in any subspace must remain noise for extended spaces)

— If any cluster is found add candidate subspace to the k+1 subspaces and collect the clusters
— Else prune the candidate

Remark: Algorithmic pattern is rather close to APRIORI for frequent item set mining.

-
v
-
oamanse | SUBCLU LMU
A Function DBSCAN(D, S, &, MinPts)
o computes all density-connected
A2 fe °, clusters w.r.t. € and MinPts in data
% o set D and subspace S
[¢]
S1 = {{A}, {B}}
o C{A} ={Al,A2}
P °F C{B} = {BI,B2,B3}
Al o° Cl = {C{A}.C{BY)
(9
O [(o0)e) [(00) .—B
Bl B2 B3
tuning:

e Call DBSCAN(c, U, €, MinPts) for subspace U — Cand having the smallest
amount of data objects in clusters (example: U = {B})

e Reduces the amout of range queries for each call of DBSCAN minimiert
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Experimental Evaluation
180000 700000
160000 v J—
140000
/ 500000
5 120000 / = /
= | ooon = 400000
E / £ /
'E 80000 / ESDDDDU
= 60000 = /
/ 200000 /
40000
— / 100000
i " i
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0 5000 10000 15000 20000 25000 30000 0 10 20 30 40 50
size dimensionality

* Scales super linear with the dimension and the number of objects
* Finds more clusters than CLIQUE
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The key limitation: global density thresholds

Bottom-up Algorithms

e Usually, the cluster criterion relies on density

LMU

e |n order to ensure the downward closure property, the density threshold must

be fixed

e Consequence: the points in a 20-dimensional subspace cluster must be as dense

as in a 2-dimensional cluster

This is a rather optimistic assumption since the data space grows exponentially
with increasing dimensionality
Conseqguences:

— A strict threshold will most likely produce only lower dimensional clusters

— Aloose threshold will most likely produce higher dimensional clusters but also a huge amount
of (potentially meaningless) low dimensional clusters
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— Algorithm
e All subspaces that contain any density-connected set are computed
using the bottom-up approach
e Density-connected clusters are computed using a specialized DBSCAN
run in the resulting subspace to generate the subspace clusters

— Discussion
e Input: € and MinPts specifying the density threshold
e Qutput: all clusters in all subspaces, clusters may overlap
e Uses a fixed density threshold for all subspaces

e Advanced but costly cluster model
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Rational:
e Cluster-based approach:
— Learn the subspace of a cluster in the entire d-dimensional feature space

— Start with full-dimensional clusters
— lteratively refine the cluster memberships of points and the subspaces of the cluster

e Instance-based approach:
— Learn for each point its subspace preference in the entire
d-dimensional feature space
— The subspace preference specifies the subspace in which each point “clusters best”

— Merge points having similar subspace preferences to generate the clusters
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The key problem:
How should we learn the subspace preference of a cluster or a point?

e Most approaches rely on the so-called “locality assumption”

— The subspace is usually learned from the local neighborhood of cluster
representatives/cluster members in the entire feature space:

e Cluster-based approach: the local neighborhood of each cluster representative
is evaluated in the d-dimensional space to learn the “correct” subspace of the
cluster

¢ Instance-based approach: the local neighborhood of each point is evaluated in
the d-dimensional space to learn the “correct” subspace preference of each
point
e The locality assumption: the subspace preference can be learned from the local
neighborhood in the d-dimensional space

— Other approaches learn the subspace preference of a cluster or a point from
randomly sampled points
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e PROCLUS [APW+99]

— K-medoid cluster model
e Cluster is represented by its medoid
* To each cluster a subspace (of relevant attributes) is assigned

e Each point is assigned to the nearest medoid (where the distance to
each medoid is based on the corresponding subspaces of the medoids)

e Points that have a large distance
to its nearest medoid are

classified as noise 4
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— 3-Phase Algorithm
¢ |nitialization of cluster medoids

— A superset M of bk medoids is computed from a sample of a-k data points such that
these medoids are well separated

— krandomly chosen medoids from M are the initial cluster representatives

— Input parameters a and b are introduced for performance reasons

e lterative phase works similar to any k-medoid clustering

— Approximate subspaces for each cluster C

locality of C2 » The locality of Cincludes all points that have a distance to the medoid

Mgy of Cless than the distance between the medoid of C and the medoid
of the neighboring cluster

‘ » Compute standard deviation of distances from the medoid of C to the
points in the locality of C along each dimension

» Add the dimensions with the smallest standard deviation to the

relevant dimensions of cluster C such that
f

locality of C1 - in summary k/ dimensions are assigned to all clusters

- each cluster has at least 2 dimensions assigned
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— Reassign points to clusters

» Compute for each point the distance to each medoid taking only the
relevant dimensions into account
» Assign points to a medoid minimizing these distances
— Termination (criterion not really clearly specified in [APW+99])

» Terminate if the clustering quality does not increase after a given
number of current medoids have been exchanged with medoids from
M

(it is not clear, if there is another hidden parameter in that criterion)

e Refinement

— Reassign subspaces to medoids as above (but use only the points assigned to each
cluster rather than the locality of each cluster)

— Reassign points to medoids; points that are not in the locality of their corresponding
medoids are classified as noise
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ORCLUS [AY0O0]:

first approach to generalized projected clustering
e similar ideas to PROCLUS [APW+99]

e k-means like approach

e start with k. > k seeds

assign cluster members according to distance function based on

the eigensystem of the current cluster (starting with axes of data
space, i.e. Euclidean distance)

reduce k. in each iteration by merging best-fitting cluster pairs
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e best fitting pair of clusters: least average distance in the projected
space spanned by weak eigenvectors of the merged clusters

ster 1
fem clV :

1oensys €igeng
.\W ... Jstem Cluster »
e®0® % ¢

| elgensystem cluster 1 U cluster 2

e assess average distance in aII merged pairs of clusters and finally
merge the best fitting pair

5oueisip abesane
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Discussion
e Input:

— Number of clusters k

Average dimensionality of clusters /

Factor a to determine the size of the sample in the initialization step

Factor b to determine the size of the candidate set for the medoids

Output: partitioning of points into k disjoint clusters and noise, each
cluster has a set of relevant attributes specifying its subspace

Relies on cluster-based locality assumption: subspace of each cluster is
learned from local neighborhood of its medoid

Biased to find /-dimensional subspace clusters

Simple but efficient cluster model

Knowledge Discovery in Databases IlI: Clustering High-Dimensional Data
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4C [BKKZ04]

LMU

Idea: Integrate PCA into into density-based clustering.
4C = Compution Correlation Connected Clusters

Approach:

Determine the core point property in the complete space
Perform PCA on the local neighborhood to
local determine subspace correlations

PCA factorizes M, into M, =V E VT
V: eigenvectors
E: eigenvalues
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Correlation Clustering Algorithms

e effect on distance measure:

LMU

e distance of p and g w.r.t. p: \/(p—Q)‘Vp 'E; ‘VpT ‘(p _Q)T

e distance of pand g w.r.t. g: \/(q —p)- Vq -E(; -VqT -(6] —p)T
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Correlation Clustering Algorithms
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e symmetry of distance measure by choosing the maximum:

C

e pand g are correlation-neighbors if

max-

Jp=a)V,-E -V (p—q),

a-p)v, E V] (q-p)
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Algorithm 4C (DB, &, u, A, 3) N

/[ assumption: each point in DB is marked
/I as unclassified

for each unclassified O € DB do
compute N, (O);
if | N(O) | > u then
if CorDim( N(O) ) < A then
. ey
if | N (0) | = n then

expand a new cluster;

In all other cases: mark O as noisy

P

LMU

w

DATABASE 4 C

SYSTEMS
GROUP

N

/lexpand cluster \

generate new clusterlID;
Insert all X with DirCorReach(O,X) into queue ®;
while ® = & do
Q = first point in @;
compute N':"Q (Q) ;
for each X with DirCorReach(Q,X) do
if X is unclassified or noise then
assign current clusterlD to X;

if X is unclassified then

insert X into @;
K remove Q from @;

LMU
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( 4C vs. DBSCAN } [ 4C vs. ORCLUS J

{——

[ orcus |

¢~y Cluster found Clusters found
N~ by DBSCAN by 4C
g L3 o [ ]
== | Correlation Clustering Algorithms MG
properties:

e finds arbitrary number of clusters

e requires specification of density-thresholds
— W (minimum number of points): rather intuitive
— ¢ (radius of neighborhood): hard to guess

e biased to maximal dimensionality A of correlation clusters
(user specified)

e instance-based locality assumption: correlation distance measure
specifying the subspace is learned from local neighborhood of
each point in the d-dimensional space

enhancements also based on PCA:
e COPAC [ABK+07c] and
e ERIC [ABK+07Db]

Knowledge Discovery in Databases II: High-Dimensional Data 102




D
v
DX\SE Use Hough Transformation to determine Clusters

GROUP

e Hough-Transformation
Known from image analysis (finds geometric primitives lines, circles..)
in 2D pixel images

Extension to arbitrary dimensions

Transfers clustering into a new space
(“parameter space” of the Hough transform)

reduces the search space from not countable infinity to O(n!)
e Common search heuristic is full enumeration

=> For efficient clustering a better heuristic is necessary!!
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amese | HOUgh-Transformation
LMU
: d
e Given: D c IR
e target: linear subspaces, containing many points x xeD

e |dea: Maps points from the data space (picture space) to functions
in the parameters space

(0,05)

=% W

parameter space ac
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* ¢, | <i <d:Orthonormal basis

* X =(x,....x)": d-dimensional Vector on the hyper sphere around
the origin with radius r

* u,;: unity vector in the direction of the projection of x to the
subspace span(e, ...,e,)

* a,.... 0, a;angle between u,and e,

ey

e;f o

1
X, =r- ll_Isin(aj) ~cos(al.)
j=1
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e points in data space are mapped to functions in the parameter
space

SN o ( (ZS,()‘X)
9, ™ ¢

picture space x parameter space @

fp(al,...,ad_l)=<p,n> =Zpl.- f_[sin(aj) -cos(a,)

e functions in the parameter space define all lines possibly crossing
the point in the data space
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Properties of the transformation

LMU

e Pointin the data space = sinusoidal curve in parameter space
e Pointin parameter space = hyper-plane in data space

e Points on a common hyper-plane in data space = sinusoidal curves
through a common point in parameter space

e Intersections of sinusoidal curves in parameter space = hyper-plane

through the corresponding points in data space
b

5
05— -, A0 x
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e Dense region in parameter space < T

lineare regions in the data space
(hyper planes wherer A <d-1)

e Exact solutions: Determine all Intersections .|

— Computation too expensive
— Too exact to find linear clusters

e approximative solution: gridbased

clustering in parameter spaces

— determine grid cells intersecting at least
m sinusoids
— Search space is finite but in O(79)

— Cluster quality depends on the resolutio r
(Auflésung des Grids)

dense region
cluster C1

dense’regio
cluster C2
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Idea: find dense regions in parameter space

e construct a grid by recursively splitting the parameter space (best-
first-search)

e identify dense grid cells as intersected by many parametrization
functions

e dense grid represents (d-1)-dimensional linear structure

e transform corresponding data objects in corresponding (d-1)-
dimensional space and repeat the search recursively
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CASH: Clustering in Arbitrary Subspaces based on the Hough-
Transform []

e Parameter space is recursively partitioned per axis in a predefined
order [, ..., a,,;, O]

e Select the hyper rectangle representing the most points to
continue (Best-First Search)
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Algorithm CASH:
efficient search heuristics LMU

Hyper rectangle representing less than m points can be pruned
from the search space — early determination of the search path

Hyper rectangles intersecting at least m sinusoids after s recursive
partitionings represent correlation clusters (where A <d-1)
— Cluster points (i.e. sinusoids) are removed from any other hyper rectangle

— To detect correlation clusters in subspaces with 4 <d-2 :
recursive processing of the cluster after transformation into the
corresponding d-1-dimensional subspace

Zimek: Correlation Clustering 111
£ | Algorith :
& gorithmus CASH:
DATABASE a na
svsws Characateristics LMU

Detects an arbitrary amount of cluster

Required input:

— search depth (number of splits < maximal size of a cluster cell/accuracy)
— minimal density of a cell (< minimal number of pointin a cluster)

Density of a cell is not based on the “locality assumption”
=> method for global correlation clustering
In average the search heuristic scales with ~ d°

BUT: worst case runtime degenerates to exhaustive search
(exponential growth in d)
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properties:

e finds arbitrary number of clusters

e requires specification of depth of search (number of splits per axis)
e requires minimum density threshold for a grid cell

e Note: this minimum density does not relate to the locality
assumption: CASH is a global approach to correlation clustering

e search heuristic: linear in number of points, but ~ d*
e But: complete enumeration in worst case (exponential in d)
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e PCA: mature technique, allows construction of a broad range of
similarity measures for local correlation of attributes

e drawback: all approaches suffer from locality assumption

e successfully employing PCA in correlation clustering in “really”
high-dimensional data requires more effort henceforth

e new approach based on Hough-transform:
— does not rely on locality assumption
— but worst case again complete enumeration
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e some preliminary approaches base on concept of self-similarity
(intrinsic dimensionality, fractal dimension):
[BCOO,PTTFO2,GHPTO5]

e interesting idea, provides quite a different basis to grasp
correlations in addition to PCA

e drawback: self-similarity assumes locality of patterns even by
definition
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e Challenges and Approaches, Basic Models for
— Constant Biclusters
— Biclusters with Constant Values in Rows or Columns
— Pattern-based Clustering: Biclusters with Coherent Values
— Biclusters with Coherent Evolutions
e Algorithms for
— Constant Biclusters

— Pattern-based Clustering: Biclusters with Coherent Values

e Summary
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Pattern-based clustering relies on patterns in the data matrix.

e Simultaneous clustering of rows and columns of the data matrix
(hence biclustering).
— Data matrix A = (X,Y) with set of rows X and set of columns Y
— a,,is the element in row x and column y.

— submatrix A, = (I,J) with subset of rows | < X and subset of columns J Y
contains those elements a; with i € lundj € J

Y

]
AXY ' vy ] ‘ J =Dt
]

/]

X X AIJ
\\ \
I ={ix} .y,
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General aim of biclustering approaches:
Find a set of submatrices {(I,,J,),(1,,J,),....(1,,J,)} of the matrix
A=(XY) (withl.c Xand J,c Y fori=1,...,k) where each submatrix
(= bicluster) meets a given homogeneity criterion.
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e Some values often used by bicluster

models:
— mean of row i — mean of all elements:
1 1
- a,, =——— E a..
a,, Z aij J Il ij
‘J‘ jed iel,jeJ
) =— E a;
— mean of column j: J lj
jeJ
ay = ‘72 a, _ LZ ’
iel [
1 iel
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Different types of biclusters (cf. [MO04]):
e constant biclusters
e biclusters with

— constant values on columns
— constant values on rows

e biclusters with coherent values (aka. pattern-based clustering)
e biclusters with coherent evolutions
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Challenges and Approaches, Basic Models

Constant biclusters
e all points share identical value in selected attributes.

e The constant value p is a typical value for the cluster.

e (Cluster model: a; = u

e Obviously a special case of an axis-parallel subspace cluster.

LMU
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LMU
e example — embedding 3-dimensional space:
a2
al a ad
P 1 1 35 . a3
P 4
P2 1 1 24 #
4
3
P4 | 1 1 07 ==
i | w2l
1 3
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e example — 2-dimensional subspace:

al

a2

P

P

P4

a2

e points located on the bisecting line of participating attributes
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Challenges and Approaches, Basic Models

e example —transposed view of attributes:

a1 a a3
P1 1 1 3.5
P2 1 1 2.3
P4 1 1 o7

LMU
val ue
A
1
3 _|
=7,
2 -
1 4 f P4
| —+ 3 g aftribute

e pattern:identical constant lines
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real-world constant biclusters will not be perfect

cluster model relaxes to: d,; = (I

Optimization on matrix A = (X,Y) may lead to |X]|-|Y| singularity-biclusters
each containing one entry.

Challenge: Avoid this kind of overfitting.
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Biclusters with constant values on columns
e Cluster model for A, = (l,J):
aij = U + C j
Viel,jeJ
* adjustment value c; for columnj €
e results in axis-parallel subspace clusters
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e example — 3-dimensional embedding space:

a2
al a2 a3 ‘
F1 1 2 35
P2 1 23

P4 1 2 0.7
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e example — 2-dimensional subspace:

al as a2
P11 i
p2 1
P . > 3
Pa | 1 | 2 2] @
1
T T T o 21
1 2 3
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e Challenges and Approaches, Basic Models

e example —transposed view of attributes:

al a2 a3
P1 1 . 3A
p2 1 2 23

P4 1 2 0.7

e pattern: identical lines

val ue

F1

P4
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Biclusters with constant values on rows

e Cluster model for A, = (l,J):
a, =H + 7

Viel,jelJ

e adjustment value r; forrow i € |
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Challenges and Approaches, Basic Models
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e example — 3-dimensional embedding space:

al az ad
1 1 1 35
P2 2 2 2.3
P4 4 4 07

e in the embedding space, points build a sparse hyperplane parallel
to irrelevant axes
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Challenges and Approaches, Basic Models
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e example — 2-dimensional subspace:

al a2
P1 1 1
pz 2 2
P4 4 4

a2
A
4 — +
3 _
2 - ©
1 - ik}
| 1 | | -"31
1 2 3 4

e points are accommodated on the bisecting line of participating

attributes
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e example —transposed view of attributes:

value
1 2 E
a a a 4 |
P1 1 1 35 =
P2 2 7 2= 3 -
_ 3.3 5 P2
P4 4 4 ny
s P4

v P attribute

e pattern: parallel constant lines
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Biclusters with coherent values

e based on a particular form of covariance between rows and
columns

a, =p+r+c,
Viel,jeld

e special cases:
— ¢;=0forallj —> constant values on rows
— r,=0for all i = constant values on columns
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Challenges and Approaches, Basic Models
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e embedding space: sparse hyperplane parallel to axes of irrelevant
attributes

al az a3
P1 1 2 35

P4 g ] 07
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e subspace: increasing one-dimensional line
az
A
al a2 6 |
P1 1
=REE 5 —
. ; 4
P4 ] G
3 - =}
2 &
1 _
T T T T - a1
1 2 3 4
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e transposed view of attributes: value

A

6 |

5

al az a3

P1o| 2 | a5 4
F1

2 2 23 3 _|

P4 g B a7 2 -
ey P4

" 73 e attribute

e pattern: parallel lines
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Biclusters with coherent evolutions

e for all rows, all pairs of attributes change simultaneously
— discretized attribute space: coherent state-transitions
— change in same direction irrespective of the quantity

N\
|

Knowledge Discovery in Databases II: High-Dimensional Data
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Challenges and Approaches, Basic Models

LMU

e Approaches with coherent state-transitions: [TSS02,MKO03]
e reduces the problem to grid-based axis-parallel approach:

al a2 a3
P1 0As 15 3A
p2 07 13 23
P4 na 21 0.7

Knowledge Discovery in Databases Il: High-Dimensional Data

- R

139

D
&
DATABASE

SYSTEMS
GROUP

Challenges and Approaches, Basic Models

al a2
F1 +
P2 +
P4 1] +
a2
A
3 4
24" &
O
1 | —=
[ [
1 2 3
"-h.\,_-ll""\-\—\_‘v_,_,_ﬂ"'
1] +
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al a2 ad
P1 os | 15 | 35
P2 | 0F | 13 | 23
P4 | 08| 21 0.7
value
p‘]
3
* 2
2_
! ¥ [
I:u{ N |
T 5 e attribute

I I |
al a2 a3
pattern: all lines cross border between
states (in the same direction)
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e change in same direction — general idea: find a subset of rows and

Challenges and Approaches, Basic Models

LMU

columns, where a permutation of the set of columns exists such

that the values in every row are increasing
e clusters do not form a subspace but rather half-spaces

e related approaches:
— quantitative association rule mining [Web01,RRK04,GRRKO5]

— adaptation of formal concept analysis [GW99] to numeric data [Pfa07]
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e example — 3-dimensional embedding space

Challenges and Approaches, Basic Models

LMU

al

a2

ad

F1 05 | 15 a5
P2 07f | 1.3 2.3
P4 18 1 21 0.7
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e example — 2-dimensional subspace

a2
al a2
Pl | 05| 15 3 |
P2 07 1:3
: _ i 2 — *.
P4 | 18 | 21 1 "
T 1 o
1 2 3
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e example —transposed view of attributes

val ue
al az a3
F1
F1 05 1.5 3.5 3 _|
P2 | 07 | 13 | 23
P3 0.3 0. 0.2 2 P2
=F} 18 | 21 07 1
T P4
“?thhq . .
r — 1 attribute

al a2 a3

e pattern: all lines increasing
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Matrix-Pattern

specialized

more

no change of values

change of values

Challenges and Approaches, Basic Models

Bicluster Model

Constant Bicluster

LMU

Spatial Pattern

axis-parallel, located 4
on bisecting line

/ axis-parallel

A

only on >
columns axis-parallel sparse =
or only Constant Columns Constant Rows hyperplane — projected | 8
on rows " space: bisecting line ED
o
o _ 5
change of values axis parallel sparse hypc?rplape -g
. Coherent Values | projected space: increasing line
by same quantity (positive correlation) 2
(shifted pattern) p
~ state-transitions:
L G . grid-based axis-parallel
= Coherent Evolutions . .
g g | change of values change in same direction:
¥ in same direction half-spaces (no classical *
cluster-pattern)
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e classical problem statement by Hartigan [Har72]
e quality measure for a bicluster: variance of the submatrix A;;:
2
VAR (AIJ ): Z (aij - aIJ)
iel,jed
e avoids partitioning into |X|-|Y| singularity-biclusters (optimizing the sum of
squares) by comparing the reduction with the reduction expected by chance
e recursive split of data matrix into two partitions
e each split chooses the maximal reduction in the overall sum of squares for all
biclusters
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e simple approach: normalization to transform the biclusters into
constant biclusters and follow the first approach (e.g. [GLDOO])

e some application-driven approaches with special assumptions in
the bioinformatics community (e.g. [CST00,SMDO03,STG+01])

e constant values on columns: general axis-parallel
subspace/projected clustering

e constant values on rows: special case of general correlation
clustering

e both cases special case of approaches to biclusters with coherent
values
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classical approach: Cheng&Church [CCOO0]

e introduced the term biclustering to analysis of gene expression data
e quality of a bicluster: mean squared residue value H

1
H([,J)—— Z(al.j—au—a,j+aﬂ)2

‘[HJ iel,jeJ

e submatrix (1,J) is considered a bicluster, if H(l,J) < 0
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e 0§ =0 > perfect bicluster:
— each row and column exhibits absolutely consistent bias
— bias of row jw.r.t. otherrows: @, — a

* the model for a perfect bicluster predicts value a; by a row-constant, a
column-constant, and an overall cluster-constant:

a,=a,;+a;—ay,

ﬁ“:“U’rz‘ “4y T Ty Ty
a;=H+71, +c;
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e for a non-perfect bicluster, the prediction of the model deviates from the true
value by a residue:

a, :res(al.j)+aij +a,—ay,

0

res(al.j) =a,—a,; —a;+a;

e This residue is the optimization criterion:

1
H(I’J)_W,-eéga” —a,; —ay, +aU)2
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e The optimization is also possible for the row-residue of row i or
the column-residue of column .

e Algorithm:

1. find a 0 -bicluster: greedy search by removing the row or column (or the set
of rows/columns) with maximal mean squared residue until the remaining
submatrix (1,J) satisfies H(l,J)< d.

2. find a maximal J -bicluster by adding rows and columns to (I,J) unless this
would increase H.

3. replace the values of the found bicluster by random numbers and repeat
the procedure until k 8 -biclusters are found.
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Weak points in the approach of Cheng&Church:

1. One cluster at a time is found, the cluster needs to be masked in
order to find a second cluster.

2. This procedure bears an inefficient performance.
The masking may lead to less accurate results.

The masking inhibits simultaneous overlapping of rows and
columns.

5. Missing values cannot be dealt with.
The user must specify the number of clusters beforehand.
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p-cluster model [WWYYO02]
e p-cluster model: deterministic approach

e specializes 0 -bicluster-property to a pairwise property of two
objects in two attributes:

— — — <
‘(al]jl ai1j2 ) (aizjl aizjz )‘ - 5
difference <&

Fz2

\

[my]

“—

al a2

e submatrix (1,J) is a 0 -p-cluster if this property is fulfilled for any
2x2 submatrix ({i, i}, {j;, j,}) where {i, i,} € | and {j, j,} €J.
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Algorithm:

1. create maximal set of attributes for each pair of objects forming a d -p-cluster

2. create maximal set of objects for each pair of attributes forming a o -p-cluster
3. pruning-step =T
4. search in the set of submatrices ./I Ak
] Ak A e
Problem: complete enumeration approach |/+ "
v v

Addressed issues:
1. multiple clusters simultaneously
4. allows for overlapping rows and columns
6. allows for arbitrary number of clusters

Related approaches:
FLOC [YWWYO02],MaPle [PZC+03]

F1

A—p
A4—p K
-
-4
>
g

4
|

i
R
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Summary

LMU

e Biclustering models do not fit exactly into the spatial intuition
behind subspace, projected, or correlation clustering.

e Models make sense in view of a data matrix.

e Strong point: the models generally do not rely on the locality
assumption.

e Models differ substantially = fair comparison is a non-trivial task.

e Comparison of five methods: [PBZ+06]

e Rather specialized task — comparison in a broad context

(

subspace/projected/correlation clustering) is desirable.

e Biclustering performs generally well on microarray data —for a
wealth of approaches see [MO04].
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Summary and Perspectives

LMU

comparison: correlation clustering — biclustering:

model for correlation clusters more general and meaningful
models for biclusters rather specialized

in general, biclustering approaches do not rely on locality
assumption

non-local approach and specialization of models may make
biclustering successful in many applications

correlation clustering is the more general approach but the
approaches proposed so far are rather a first draft to tackle the
complex problem

Knowledge Discovery in Databases Il: High-Dimensional Data 156




D
&
DATABASE

SYSTEMS
GROUP

[ABD+08]

[ABK+06]

[ABK+07a]

[ABK+07b]

[ABK+07c]

Literature

LMU

E. Achtert, C. Bohm, J. David, P. Kréger, and A. Zimek.
Robust clustering in arbitrarily oriented subspaces.

In Proceedings of the 8th SIAM International Conference on Data Mining (SDM),
Atlanta, GA, 2008

E. Achtert, C. Bohm, H.-P. Kriegel, P. Kroger, and A. Zimek.

Deriving quantitative models for correlation clusters.

In Proceedings of the 12th ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), Philadelphia, PA, 2006.

E. Achtert, C. Bohm, H.-P. Kriegel, P. Kréger, |. Miller-Gorman, and A. Zimek.
Detection and visualization of subspace cluster hierarchies.

In Proceedings of the 12th International Conference on Database Systems for
Advanced Applications (DASFAA), Bangkok, Thailand, 2007.

E. Achtert, C. Bohm, H.-P. Kriegel, P. Kroger, and A. Zimek.

On exploring complex relationships of correlation clusters.

In Proceedings of the 19th International Conference on Scientific and Statistical
Database Management (SSDBM), Banff, Canada, 2007.

E. Achtert, C. Bohm, H.-P. Kriegel, P. Kroger, and A. Zimek.

Robust, complete, and efficient correlation clustering.

In Proceedings of the 7th SIAM International Conference on Data Mining (SDM),
Minneapolis, MN, 2007.

Knowledge Discovery in Databases Il: High-Dimensional Data 157

D
&
DATABASE

SYSTEMS
GROUP

[AGGR98]

[AHKO1]

[APW+99]

[AS94]

[AY0O]

Literature

LMU

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.

Automatic subspace clustering of high dimensional data for data mining applications.
In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), Seattle, WA, 1998.

C. C. Aggarwal, A. Hinneburg, and D. Keim.

On the surprising behavior of distance metrics in high dimensional space.

In Proceedings of the 8th International Conference on Database Theory (ICDT),
London, U.K., 2001.

C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park.

Fast algorithms for projected clustering.

In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), Philadelphia, PA, 1999.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules.

In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), Minneapolis, MN, 1994.

C. C. Aggarwal and P. S. Yu.

Finding generalized projected clusters in high dimensional space.

In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), Dallas, TX, 2000.

Knowledge Discovery in Databases Il: High-Dimensional Data 158




D
&
DATABASE

SYSTEMS
GROUP

[BBCO4]

[BCOO]

[BDCKYO02]

[Bel61]

[BFG99]

Literature

LMU

N. Bansal, A. Blum, and S. Chawla.
Correlation clustering.
Machine Learning, 56:89-113, 2004.

D. Barbara and P. Chen.

Using the fractal dimension to cluster datasets.

In Proceedings of the 6th ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD), Boston, MA, 2000.

A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini.

Discovering local structure in gene expression data: The order-preserving
submatrix problem.

In Proceedings of the 6th Annual International Conference on Computational
Molecular Biology (RECOMB), Washington, D.C., 2002.

R. Bellman.

Adaptive Control Processes. A Guided Tour.

Princeton University Press, 1961.

K. P. Bennett, U. Fayyad, and D. Geiger.

Density-based indexing for approximate nearest-neighbor queries.

In Proceedings of the 5th ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD), San Diego, CA, 1999.

Knowledge Discovery in Databases Il: High-Dimensional Data 159

D
&
DATABASE

SYSTEMS
GROUP

[BGRS99]

[BKKKO4]

[BKKZ04]

[CCO0]

[CDGS04]

Literature

LMU

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.

When is “nearest neighbor” meaningful?

In Proceedings of the 7th International Conference on Database Theory (ICDT),
Jerusalem, Israel, 1999.

C. Bohm, K. Kailing, H.-P. Kriegel, and P. Kroger.

Density connected clustering with local subspace preferences.

In Proceedings of the 4th International Conference on Data Mining (ICDM),
Brighton, U.K., 2004.

C. Bohm, K. Kailing, P. Kréger, and A. Zimek.

Computing clusters of correlation connected objects.

In Proceedings of the ACM International Conference on Management of Data
(SIGMOQD), Paris, France, 2004.

Y. Cheng and G. M. Church.

Biclustering of expression data.

In Proceedings of the 8% International Conference Intelligent Systems for Molecular
Biology (ISMB), San Diego, CA, 2000.

H. Cho, I. S. Dhillon, Y. Guan, and S. Sra.

Minimum sum-squared residue co-clustering of gene expression data.

In Proceedings of the 4th SIAM International Conference on Data Mining (SDM),
Orlando, FL, 2004.

Knowledge Discovery in Databases Il: High-Dimensional Data 160




D
&
DATABASE

SYSTEMS
GROUP

[CFZ99]

Literature

LMU

C. H. Cheng, A. W.-C. Fu, and Y. Zhang.

Entropy-based subspace clustering for mining numerical data.

In Proceedings of the 5th ACM International Conference on Knowledge Discovery and
Data Mining (SIGKDD), San Diego, CA, pages 84-93, 1999.

[CSTOO]  A. Califano, G. Stolovitzky, and Y. Tu.
Analysis of gene expression microarrays for phenotype classification.
In Proceedings of the 8th International Conference Intelligent Systems for Molecular
Biology (ISMB), San Diego, CA, 2000.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu.
A density-based algorithm for discovering clusters in large spatial databases
with noise.
In Proceedings of the 2nd ACM International Conference on Knowledge Discovery and
Data Mining (KDD), Portland, OR, 1996.

[FMO04] ). H. Friedman and J. ). Meulman.
Clustering objects on subsets of attributes.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
66(4):825-849, 2004.

[FWVO07] D. Francois, V. Wertz, and M. Verleysen.
The concentration of fractional distances.
IEEE Transactions on Knowledge and Data Engineering, 19(7): 873-886, 2007.

Knowledge Discovery in Databases Il: High-Dimensional Data 161
D
v q
*< | Literature
DATABASE
LMU

[GHPTO5] A. Gionis, A. Hinneburg, S. Papadimitriou, and P. Tsaparas.
Dimension induced clustering.
In Proceedings of the 11th ACM International Conference on Knowledge Discovery and
Data Mining (SIGKDD), Chicago, IL, 2005.

[GLDOO] G. Getz, E. Levine, and E. Domany.
Coupled two-way clustering analysis of gene microarray data.
Proceedings of the National Academy of Sciences of the United States of America,
97(22):12079-12084, 2000.

[GRRKO5] E. Georgii, L. Richter, U. Riickert, and S. Kramer.
Analyzing microarray data using quantitative association rules.
Bioinformatics, 21(Suppl. 2):ii1-ii8, 2005.

[GW99] B. Ganter and R. Wille.
Formal Concept Analysis.
Mathematical Foundations. Springer, 1999.

[HAKOO] A. Hinneburg, C. C. Aggarwal, and D. A. Keim.
What is the nearest neighbor in high dimensional spaces?
In Proceedings of the 26th International Conference on Very Large Data Bases
(VLDB), Cairo, Egypt, 2000.

Knowledge Discovery in Databases Il: High-Dimensional Data 162




D
&
DATABASE

SYSTEMS
GROUP

[Har72]

[HKK+10]

Literature

LMU

J. A. Hartigan.
Direct clustering of a data matrix.
Journal of the American Statistical Association, 67(337):123-129, 1972.

M. Houle, H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek.
Can Shared-Neighbor Distances Defeat the Curse of Dimensionality?

In Proceedings of the 22nd International Conference on Scientific and Statistical Data
Management (SSDBM), Heidelberg, Germany, 2010.

[1BBO4] J. lhmels, S. Bergmann, and N. Barkai.
Defining transcription modules using large-scale gene expression data.
Bioinformatics, 20(13):1993—-2003, 2004.
[Jol02] I. T. Jolliffe.
Principal Component Analysis.
Springer, 2nd edition, 2002.
[KKKO4 K. Kailing, H.-P. Kriegel, and P. Kroger.
Density-connected subspace clustering for highdimensional data.
In Proceedings of the 4th SIAM International Conference on Data Mining (SDM),
Orlando, FL, 2004.
Knowledge Discovery in Databases Il: High-Dimensional Data 163
D
v q
*° | Literature

DATABASE
SYSTEMS
GROUP

LMU

[KKRWO5] H.-P. Kriegel, P. Kréger, M. Renz, and S. Wurst.

[KKZ09]

[LWO03]

[MKO3]

A generic framework for efficient subspace clustering of high-dimensional data.
In Proceedings of the 5th International Conference on Data Mining (ICDM),
Houston, TX, 2005.

H.-P. Kriegel, P. Kroger, and A. Zimek.

Clustering High Dimensional Data: A Survey on Subspace Clustering, Pattern-based
Clustering, and Correlation Clustering.

ACM Transactions on Knowledge Discovery from Data (TKDD), Volume 3,

Issue 1 (March 2009), Article No. 1, pp. 1-58, 2009.

J. Liuand W. Wang.

OP-Cluster: Clustering by tendency in high dimensional spaces.

In Proceedings of the 3th International Conference on Data Mining (ICDM),
Melbourne, FL, 2003.

T. M. Murali and S. Kasif.

Extracting conserved gene expression motifs from gene expression data.

In Proceedings of the 8th Pacific Symposium on Biocomputing (PSB), Maui, HI, 2003.

Knowledge Discovery in Databases Il: High-Dimensional Data 164




D
&
DATABASE

SYSTEMS
GROUP

Literature

LMU

[MOO04] S. C. Madeira and A. L. Oliveira.

Biclustering algorithms for biological data analysis: A survey.
IEEE Transactions on Computational Biology and Bioinformatics, 1(1):24-45, 2004.

[MSEO6]  G. Moise, J. Sander, and M. Ester.

P3C: A robust projected clustering algorithm.
In Proceedings of the 6th International Conference on Data Mining (ICDM),
Hong Kong, China, 2006.

[NGCO01] H.S. Nagesh, S. Goil, and A. Choudhary.

Adaptive grids for clustering massive data sets.
In Proceedings of the 1st SIAM International Conference on Data Mining (SDM),
Chicago, IL, 2001.

[PBZ+06] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. Biihimann, W. Guissem,

L. Hennig, L. Thiele, and E. Zitzler.

A systematic comparison and evaluation of biclustering methods for gene
expression data.

Bioinformatics, 22(9):1122-1129, 2006.

[Pfa07] J. Pfaltz.

What constitutes a scientific database?
In Proceedings of the 19th International Conference on Scientific and Statistical
Database Management (SSDBM), Banff, Canada, 2007.

Knowledge Discovery in Databases Il: High-Dimensional Data

165

D
&
DATABASE

SYSTEMS
GROUP

Literature

LMU

[PHLO4] L. Parsons, E. Haque, and H. Liu.

Subspace clustering for high dimensional data: A review.
SIGKDD Explorations, 6(1):90-105, 2004.

[PJAMO2] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali.

A Monte Carlo algorithm for fast projective clustering.
In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), Madison, W1, 2002.

[PTTFO2] E. Parros Machado de Sousa, C. Traina, A. Traina, and C. Faloutsos.

How to use fractal dimension to find correlations between attributes.
In Proc. KDD-Workshop on Fractals and Self-similarity in Data Mining: Issues and
Approaches, 2002.

[PZC+03] J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu.

MaPle: A fast algorithm for maximal pattern-based clustering.
In Proceedings of the 3th International Conference on Data Mining (ICDM),
Melbourne, FL, 2003.

[RRKO4] U. Riickert, L. Richter, and S. Kramer.

Quantitative association rules based on half-spaces: an optimization
approach.

In Proceedings of the 4th International Conference on Data Mining (ICDM),
Brighton, U.K., 2004.

Knowledge Discovery in Databases Il: High-Dimensional Data

166




D
&
DATABASE

SYSTEMS
GROUP

[SCH75]

Literature

LMU

J.L. Slagle, C.L. Chang, S.L. Heller.
A Clustering and Data-Reorganization Algorithm.
IEEE Transactions on Systems, Man and Cybernetics, 5: 121-128, 1975

[SLGLO6] K. Sim, J. Li, V. Gopalkrishnan, and G. Liu.

[SMDO03

Mining maximal quasi-bicliques to co-cluster stocks and financial ratios for
value investment.

In Proceedings of the 6th International Conference on Data Mining (ICDM), Hong
Kong, China, 2006.

] Q.Sheng, Y. Moreau, and B. De Moor.
Biclustering microarray data by Gibbs sampling.
Bioinformatics, 19(Suppl. 2):ii196—ii205, 2003.

[STG+01] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller.

[Sz05]

[TSS02]

Rich probabilistic models for gene expression.

Bioinformatics, 17(Suppl. 1):5243-5252, 2001.

K. Sequeira and M. J. Zaki.

SCHISM: a new approach to interesting subspace mining.

International Journal of Business Intelligence and Data Mining, 1(2):137-160, 2005.
A. Tanay, R. Sharan, and R. Shamir.

Discovering statistically significant biclusters in gene expression data.
Bioinformatics, 18 (Suppl. 1):5136-S144, 2002.

Knowledge Discovery in Databases Il: High-Dimensional Data

167

D
&
DATABASE

SYSTEMS
GROUP

Literature

LMU

[TXO05] A. K. H. Tung, X. Xu, and C. B. Ooi.

CURLER: Finding and visualizing nonlinear correlated clusters.
In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), Baltimore, ML, 2005.

[Web01] G.I. Webb.

Discovering associations with numeric variables.
In Proceedings of the 7" ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), San Francisco, CA, pages 383—388, 2001.

[WLKLO4] K.-G.Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee.

FINDIT: a fast and intelligent subspace clustering algorithm using dimension
voting.
Information and Software Technology, 46(4):255-271, 2004.

[WWYY02] H.Wang, W. Wang, J. Yang, and P. S. Yu.

Clustering by pattern similarity in large data sets.
In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), Madison, WI, 2002.

[YWWY02] J.Yang, W. Wang, H. Wang, and P. S. Yu.

o-clusters: Capturing subspace correlation in a large data set.
In Proceedings of the 18th International Conference on Data Engineering (ICDE),
San Jose, CA, 2002.

Knowledge Discovery in Databases Il: High-Dimensional Data

168




