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Idea: Instead of deleting features, try to find a low dimensional
feature space generating the original space as accurate as
possible:

— Redundant features are summarized

— lIrrelevant features are weighted by small values

Methods being discussed in the course:

e Reference point embedding

e Principal component analysis (PCA)

e Singular value decomposition(SVD)

e Fischer-Faces (FF) and Relevant Component Analysis(RCA)
e Large Margin Nearest Neighbor (LMNN)
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Idea: Describe the position of each object by their distances to a set of reference
points.

Given: Vector space F =D, x..x D where D ={D,,..,D,}.
Target: A k-dimensional space R which yields optimal solutions to given data
mining task.

Method: For each reference point R = {r,,..,r,} and a distance measure d(e,):
Transform vector x € F: d(r,X)

d(r,x)
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e Distance measure is usually determined by the application.
e Selection of reference points:

— use centroids of the classes or cluster-centroids
— using points on the margin of the data space

Advantages :
e Simple approach which is easy to implement

e The transformed vectors yields lower and upper bounds of the
exact distances

Disadvantages:

e Even using d reference points does not reproduce a d-
dimensional feature space

e Selecting good reference points is relevant and difficult
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Preliminaries:

Inner product of vectors x,y:

Yi d
X'yT:(Xl Xd)'[EJ<XaY>;Xryu

Yq
Outer product of vectors x,y:
Xl lel
XToy=| iy, e oyg)=]
X4 Xa ¥

Matrix product:

X Yq

X4 Y4



Given n Vectors v; € IR, nxd matrix

Vil (Vi oo Vig
is called data matrix

) Vn,d

Centroid/mean vector of D:

T
= 2

Centered data matrix:

Centroid

v~
_ : L
Dcent - . °

— e o
Vo —H

o i ~
L4 >
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Quadratic forms or Mahalanobis distance:

i=l j=1

| A, Ay _
da(6y) =((x= Y Ax-y) | = (xy)[f N J(xy)T\/ZZ(X.y)A,,(X,y,)

A Aug

Remark: If A symmetric and positive definite then d,, is a metric.
Weighted Euclidian Distance: A is a diagonal matrix with A, >0 :

i=l

0 - A

A - 0 :
da,y)= [(x=y) i .1 |x=y) :\/Z:Ai(xi_yi)2

Connection to basis transformation :

If there is a symmetric decomposition A = B-B” then the Mahalanobis distance
is equivalent to the Euclidian distance under basis transformation B:

dy (%) = ((x=y)B-B" (x=y)" )5 = (xB-yB)-(xB—yB) J =d,,(xB.yB)
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Variance Analysis

Which attributes are the most important to the distance ?
=> attributes with strongly varying value differences [x-y./

=> distance to the mean value is large [x-1/
=> Variance is large:: %Z(Xi — 1)
i=1

Idea: Variance Analysis (= unsupervised feature selection)

/

LMU

(]

o0
J
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7]
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Attributes with large variance allow strong distinction between objects

v

Attributes with small variance: difference between objects are negligible

Method:
Determine the variance between the values in each dimension

Sort all features w.r.t. to the variance

Select k features having the strongest variance

Beware: Even linear correlation can distribute one

strong feature over arbitrarily many other dimension!!!
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Idea: Rotate the data space in a way that the principal components are placed
along the main axis of the data space
=> Variance analysis based on principal components

.. o. ‘ .....;..,.‘° ‘ o...oo: :

e Rotate the data space in a way that the direction with the largest variance is places on
an axis of the data space

e Rotation is equivalent to a basis transformation by an orthonormal basis

— Mapping is equal of angle and preserves distances:

x-B=x(b*,l,...,b*,d):(<x,b*,1>,...,<x,b*,d>) mit v<b. b.>:0/\ \v4

izj\ ) 1<i<d

b|=1

e Bis built from the largest variant direction which is orthogonal to all previously selected
vectors in B.
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e (Covariance matrix:

— Describes the variance of all features and the pairwise correlations between them

VAR(X)= 13 (¢, -} COV(X,¥)= 23 (x - s Ny, ~ 41,

i=1 i=1
— Covariance matrix 2, (dxd) for the nxd data matrix D:
VAR(X,) - COV(X,,X,) 1

z“D = : : :_Df;rentDcent
COV(X,,X,) --- VAR(X,)

e Eigenvalue 4, and eigenvector v,of matrix dxd D: D-v, = A,-v;
e Eigenvalue decomposition M =VAV'

V =(v, V) mitv_<vi,vj>=0 und‘%’HviH:
i#] i
A o 0
A= .o
0 - 4
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e Applying the eigenvalue decomposition to the covariance matrix:

A0 0y
o =VAVT =(v,---,v,) 0 . 0| :
0 0 A, \vy,

e v;: Orthogonal principal components (eigenvectors)
e A:Variance along each direction (eigenvalues)

Beware: 1.=0 means that the corresponding direction is a linear combination of
other principal components.

=> Depending on the algorithm completely redundant dimension cause problems
Workaround: Add a diagonal matrix with very small values o, to 2.
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PCA
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Feature reduction using PCA
1. Compute the covariance matrix X
2. Compute the eigenvalues and the corresponding eigenvectors of X
3. Select the k biggest Eigenvalues and their eigenvectors (v’)
4. The k selected eigenvectors represent an orthogonal basis

5. Transform the n xd data matrix D with the d x k basis V*:

X, (X)X, V)

X (X Vy) oo (X, Vg)
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Generalization of the eigenvalue decomposition

Decomposition of an nxXd matrix into 2 orthogonal matrixes O,A
and 1 diagonal matrix S containing the singular values.

D=0SA"

Xigo 0 X O Ok

X .d 0

O : nxk left singular vectors, orthogonal column matrix

S : kxk diagonal matrix containing singular values

A : kxd right singular vectors, orthogonal column matrix

k : Rank of D (max. Amount of independent rows/columns)

Decomposition based on numerical algorithms.

Knowledge Discovery in Databases Il: High-Dimensional Data
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Apply SVD to the covariance data:

D =0SA"

cent
2
A2 0

1 —(OSAT)0SAT = AST(OTO)AT = A(STS)AT = Al 1 i (AT

>, =—D/

cent
n

D

cent

e Here: Ais a matrix of eigenvectors
e Eigenvalues of the covariance matrix = squared singular values of D
e O s anxk matrix of orthonormal column vectors=> O’0 is the identity matrix E

Conclusion: Eigenvalues and Eigenvectors of the covariance matrix X can be determined by
the SVD of the data matrix D.

— SVD is sometimes a better way to perform PCA (Large dimensionalities e.g., text data)
= SVD can cope is dependent dimensions (k<d is an ordinary case in SVD)
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Connection between the orthonormal busies O und A: D=0SA"
e Aisak-dimensional basis of eigenvectors of D"-D

(cf. previous slide)
e Analogously: O is a k-dimension basis of Eigenvectors D-DT

— D-D"is a kernel matrix for the linear kernell <x,y> (cf. SVMs in KDD |)
— The vectors of A and O are connected in the following way:

D, =0SA'"=>0'D_,, =0'0SA" =SA" = S'0'D

Zox

The jth d- dlmen5|onal eigenvector in A is a linear combination of the vectors in D based on

T
cent A

cent cent

k-dimensional jth eigenvectors as weighting vector (the it values is the weight for vector d)
= A basis in vector space corresponds to a basis in the kernel space

—> A PCA can be computed for any kernel space based on the kernel matrix
(Kernel PCA allows PCA in a non-linear transformation of the original data)
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Let K(x,y)=(®(x),®(y)) a kernel for the non-linear transformation ®(x).
Assume: K(x,y) is known, but ®(x) is not explicitly given.

i>*n

K(x,%) - K(x,x,)
- Let K be the kernel matrix of D w.r.t. K(x,y) : K = : :
K(x.,%) - K(x,x)

n> n’>“'™n

- The eigenvalue decomposition of K : K = VSV’
where V is a n-dimensional basis from eigenvectors of K

- To map D w.r.t. Vthe principal components in the target space the vectors x; in
D must be transformed using the kernel K(x,y).

n

23 w0)| (S emiew)] (Surox

i=l

(ot S00))| | Susosdots) | | Sukin)
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SVD and PCA are standard problem in algebra.

e Matrix decomposition can be formulated as a optimization task.

e This allows a computation via numerical optimization algorithms

e In this formulation the diagonal matrix is often distributed to both basis

matrixes
\/Z e 0 \/Z e 0

D=ASB' =| A : . > .1 BT |=uV!

()\/Z ()\/Z

* As an optimization problem: L({U.v)=[D-uv'[’

(squared Frobenius Norm of a matrix) HM Hzf = anzm:‘m-’j‘z

1
i=l j=1

subject to: Vv :<Vi,Vj>:O/\<ui,uj>=0

i#]
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Idea: Use examples to increase the discriminative
power of the target space.

Target:

s _[0
“lo

zw{

0 1
0 0

il

)

0 1
0 0

|

MU

e Minimize the similarity between objects from

different classes.
(between class scatter matrix: 2,)

2,: Covariance matrix of the class centroids
— _T — —

Z " My —H My —H
H > o=
e

ceC

\C

/um_ﬁ /um_ﬁ_

2%

CeC

1C]

e Maximize similarity between objects belonging

to the same class
(within class scatter matrix X,,)

2. Average covariance matrix of all classes.

)

W

Knowledge Discovery in Databases Il: High-Dimensional Data



w

e | Fischer Faces

GROUP

T

. . . X. -2, X
Determine basis x; in a way that S =——>—
: . X+ 2 X
subject to I;éj:<Xi,Xj>:() i Sw A

is maximized

Computation: Determine a orthonormal basis with dimensionality
d‘ < d. Reduction to the eigenvalue decomposition.

AX=A4-2, %

W

Remark: The vector having the largest eigenvalue corresponds to
the normal vector of the separating hyper plane in linear
discriminant analysis or Fisher’s discriminant analysis. (cf. KDD )
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Fischer Faces are limited due to nature of X, and X,

Assumption of mono-modal classes:
each class is assumed to follow a multivariate

=> distribution of class centroids 2,
=> within correlation in 2,

Conclusion: Multi-modal or non-Gaussian distribution are not modeled well

Relevant Component Analysis:

Remove linear dependent features (e.g. with SVD)

Given: chunks data which are known to consist of similar objects.
1 1

=> replace X, with an within-chunk matrix: ¥ —C'C,
el &el”

The covariance of all data objects is dominated by dissimilarity y _ 1 DD

=> replace 2, with the covariance matrix of D ‘D‘

Knowledge Discovery in Databases ll: High-Dimensional Data
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Large Margin Nearest Neighbor (LMNN)

LMU

Observation: Objects in a class might vary rather strongly.

Idea: Define an optimization problem only considering the distances the most

similar objects from the same and other classes.

Define: 'y, =1 if x;and x; are from the same class else y; =0

Target: L:IR?—IRY linear transformation of the vector space: D(x,y)=|L(x)-L(y)[
Target neighbors: T, k-nearest neighbors from the same class
1;; =1 : x; is a target neighbor of x; else 7,; =0
Training by minimizing the following error function:
n n 2 n n n 2
E(L) =YY JLO)- Ll | +eX 3> m, 1=y, )[1 +JL06)=L0x ) = [L06)- L )Hzl
i=1 j=1 i=1 j=1 I=1
where [z], = max(z,0)

Problem is a semi-definite program
=> Standard optimization problem where the optimization paramters must
form a semi-definite matrix. Here the matrix is the basis transformation L(x).
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Summary
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Linear basis transformation yield a rich framework to optimize feature spaces
Unsupervized Methods delete low variant dimensions

(PCA und SVD)

Kernel PCA allows to compute PCA in non-linear kernel spaces

Supervized methods try to minimize the within class distances while
maximizing between class distances

Fischer Faces extend linear discriminant analysis based on the assumption that
all classes follow Gaussian distributions

Relevant Component Analysis(RCA) generalize this notion and only minimize
the distances between chunks of similar objects

Large Margin Nearest Neighbor(LMNN) minimizes the distances to the nearest
target neighbors and punish small distances to non-target neighbors in other
classes
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