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Image Data

— low-level image descriptors
(color histograms, pyramids of gradients, textures,..)

— Regional descriptors
— Betwewn 16 and 1000 features
* Metabolome data
— feature = concentration of one metabolite
— between 50 and 2000 features
* Micro-Array Data
— Features correspond to genes
— Upto 20,000 features
* Text
— Features correspond to words or terms
— between 5000 and 20000 features
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Curse of Dimensionality

— Distance to the nearest and the farthest neighbor converge
nearestNeighborDist

~ 1
farthestNeighborDist

— The likelihood that a data object is located on the margin of the data space
exponentially increases with the dimensionality

feature space (FS)
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Further Explanation of the Curse of Dimensionality:
e Consider the space of d relevant features for a given application

=> truely similar objects display small distances in most features
e Now add d*x additional features being independent of the d above

e With increasing x the distance in the independent subspace will dominate the
distance in the complete feature space

= How many relevant features must by similar to indicate object similarity?
= How many relevant features must be dissimilar to indicate dissimilarity?

= With increasing dimensionality the likelihood that two objects are similar in
every respect gets smaller.
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e Patterns and models on high-dimensional data are often hard to interprete
= Long decision rules

e Efficiency in high-dimensional spaces is often limited
= index structures degenerate
= distance computations are much more expensive

e Pattern might only be observable in subspaces or projected spaces

e Cliques of correlated feature dimensions dominate the object description
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Idea: Not all features are necessary to represent the object:
— Features might be useful for the given task
— Correlated features add redundant information

Deleting some of the features can improve the efficiency as well as the quality of
the found methods and patterns.

Solution:
Delete all useless features from the original feature space.
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input: Vector space F =D, x..x D, with D={D,,..,D,}.

output: a minimal subspace M over D' D which is optimal for a giving data
mining task.

=> Minimality increases the efficiency and
reduces the effects of the curse of dimensionality

Challenges:

e Optimality depends on the given task
e There are 29 possible solution spaces (exponential search space)
e There is often no monotonicity in the quality of subspace
(Features might only be useful in combination with certain other features)
= For many popular criteria, feature selection is an exponential problem
= Most algorithms employ search heuristics
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Selected methods in this course

LMU

1. Forward Selection and Feature Ranking
Information Gain , y2-Statistik, Mutual Information
2. Backward Elimination and Random Subspace Selection
Nearest Neighbor Criterion, Modelbased Search
3. Branch and Bound Search based on Inconsistency
4. Genetic Algorithms for Subspace Search
5. Feature Clustering for Unsupervized Problems
Knowledge Discovery in Databases II: High-Dimensional Data 9
-
=

DATABASE
SYSTEMS
GROUP

Forward Selektion and Feature Ranking

LMU

Input: a supervised learning task

— Target variable C
— Training set of labeled feature vectors

Approach

e Compute the quality g(D; C) for each dimension in D* {D,,..,D,} to predict the
correlation to C

* Sort the dimensions {D;,..,D,} w.r.t. q(D; C)
e Select the k-best dimension

Assumption:

Features are only correlated via their connection to C

=> it is sufficient to evaluate the connection between each single feature D and
the target variable C
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How suitable is D to predict the value of C?

Statistical measures :
e Rely on distributions over feature values and target values.
— For discrete values: determine probabilities all value pairs.

—  For real valued features:
e Discretize the value space (reduction to the case above)
e Use probability density functions (e.g. uniform, Gaussian,..)

e How strong is the correlation between both value distributions?

e How good does splitting the values in the feature space seperate values in the
target dimension?
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Idea: Evaluate the class discrimination in each dimension.
(compare decision tree)

Divide the training set w.r.t. a feature/subspace into two subsets
(either by values or by a split criterion).
The entropie of t]be training set T is defined as

entropy(T) = —Z p; -log p. (p, : relative frequency of class iin T)
i=1
entropy(T) = 0, falls p; = 1 for any class i
entropy(T) = 1 for k = 2 class having p,=1/2
. . _ 2| T(a), |
InformationGain(T ,a) = entropy(T )—ZW-entropy(T (@);)
Jj=1

where T(a); is a subset of T, a is an attribute having the jth value.

Real valued attributes: Determine a splitting position in the value set.
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Idea: Measure for the independency of a variable from the class variable.
Divide data based on a split value s or based on discrete values

A= {0|xSS/\ClaSS(0)=C]-}‘ Objects in C; where x<s

B= U{o | x <5 AClass(0) = C,} Objects of other classes with x <'s

I#j

C ={{o|x>sAClass(o) = Cj}‘ Objects in C; where x >s

= U{o|x>S/\ClaSS(o)=C,}

I#j

Objects of other classes where x > s

zz(, ,-)— | DB |(4D-CB)’

v 2-Statistics is defined as: - (A+C)(B+D)(A+B)(C+D)

larger the maximum/average value over all classes correspond to better features:

m

(@) =maxlz’(@,C)) or  Z,la)= 2 PHC)7 (aC)
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Measures the dependency between random variables.

Here: Measure the dependency between the class variable and the features.
(compare features among theself to measure redundancy)

1. Discrete case:

(XY p(x,y)
1= y;;p(x plo gp( p(y)

2. Real-valued case:

pP(x,y)
(X, 7) = [ | p(x, 11 oz ddy
y p(x)p(y)
|
Term for describing the independency of x,y:
rel. Frequency of the value In case of statistical independency:
pair (xy) p(x,y)= p(x)ply) => log(1) =
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Advantages: y
e Efficient: compares d features to C instead of (k} subspaces

e Training suffices with rather small sample sets

Disadvantages:

e Independency assumptions: Classes and feature values must display a direct
correlation.

e In case of correlated features: Always selects the features having the strongest
direct correlation to the class variable, even if the features are strongly
correlated between each other.

(features might even have an identical meaning)
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Idea: Start with the complete feature space and delete redundant features
Approach: Greedy Backward Elimination
Generate the subspaces R of the feature space F

2. Evaluate subspaces R with the quality measure q(R)

3. Select the best subspace R* w.r.t. q(R)

4. If R* has the wanted dimensionality , terminate
else start backward elimination on R*.

Applications:

e Useful in supervized and unsupervized setting
in unsupervised cases: g(R) measures structural characteristics

e Greedy search if there is no monotonicity on q(R)
=> for monotonous g(R) employ branch and bound search
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Idea: Subspace quality can be evaluated by the distance between the within-class
nearest neighbor and the between class nearest neighbor

Quality criterion:

For all o € DB compute the closest object having the same class NN(o) (within-
class nearest neighbor) and the closet object belonging to another class
NN, (o) (between-class nearest neighbor) where C=Class(o).

1 NN . (0)

Quality of subspace U: U)= .
q( ) ‘DB| 0eDB NNEJ(O)

Remark: g(U) is not monotonous.
=> By deleting a dimension the quality can increase or decrease.
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Idea: Directly employ the data mining function to evaluate the subspace.

Example: Evaluate each subspace by training a Naive Bayes classifier and 10-facher
and evaluate the classifier in the subspace R by employing cross validation on a
moderate sample set.

Practical aspects:
e Success of the data mining algorithm must be measurable
(e.g. class accuracy)
e Runtime for training and applying the classifier should be low
e The classifier parameterization should not be of great importance
e Test set should have a moderate number of instances
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Advantages:

e Considers complete subspaces
(multiple dependencies are used)

e Canrecognize and eliminate redundant features

Disadvantages:

e Tests w.r.t. subspace quality usually require much more effort

e All solutions employ heuristic greedy search which does not need to find the
optimal result space
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Given: A classification task over the feature space F.
Aim: Select the k best dimensions to learn the classifier.

Backward-Elimination based in Branch and Bound:

FUNCTION BranchAndBound (Featurespace F, int k)
queue.init (ASCENDING) ;
queue.add (F, quality(F))
curBound:= INFINITY;
WHILE queue.NotEmpty () and aktBound > queue.top() DO
curSubSpace:= queue.top();
FOR ALL Subspaces U of curSubSpace DO
IF U.dimensionality() = k THEN
IF gquality (U)< curBound THEN
curBound := quality(U);
BestSubSpace := U;
ELSE
queue.add( U, quality(U));
RETURN BestSubSpace
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Example: Target dimension k = 1.
O selected feature @ deleted feature

(Al)=0.0
QOO
IC (A)=0.0 1C(B)=0.015 @ C(C)=0.021 IC(D)=0.03
@OOO] (0] JOle] QOO ' )|
@
IC(E)=0.015 IC (F)=0.1 IC (G)=0.1 IC (G)=0.1 1C(J)=0.03 IC(K)=0.2
0000 @060 eOlCe Ceeo O OOee
©)
IC(H)=0,02 IC(1=0.03 IC(L)=0.1
[ IX JOl [ X JOI ) CoO0e
aktBound = 0.02
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Idea: Having identical vectors u,v (v, =u; 1<i <d)in subspace U for the class
labels are different (C(u)=C(v) ).

=> the subspace displays an inconsistent labeling

Measuring the inconsistency of a subspace U:

* X, (A): Amount of all identical vectors A in U

e X°(A): Amount of all identical vectors in U having class label C
e [C,(A): inconsistency w.r.t. AinU

IC, (4) = X, (4)-max X (A)

D> IC, (A4)

Inconsistency of U: IC (U ) = 4<£8
| DB |

Monotonicity: U, c U, = IC(U,) > IC (U,)
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Advantage:

e Monotonicity allows efficient search for optimal solutions

e Well-suited for binary or discrete data
(identical vectors are very likely with decreasing dimensionality)

Disadvantages:

e Useless without groups of identical features (real-valued vectors)
e Worst-Case runtime complexity remains exponential in d
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Idea: Select n random Subspace having the target dimensionality k out of the

d possible subspaces and evaluate each.
k

Application:
¢ Needs quality measures for complete subspaces
e Trade-off between quality and effort depends on k.

Disadvantages:

e No directed search for combining well-suited and non-redundant features.

e Computational effort and result strongly depend on the used quality measure
and the sample site.
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Genetic Algorithms for Feature Selection

LMU

Idea: Employ sophisticated randomized search schemes on the set of k-
dimensional subspaces.

Genetic Algorithms:

e Population of solutions := set of k-dimensional subspaces

e Fitness criterion: quality measure for a subspace
¢ Rules and likelihood for mutation:

dimension D; in U is replaced by dimension D; with a likelihood of x%
e Reproduction: combination of 2 subspaces U1 and U2:

Unite the features sets of U1 and U2.

— Delete random dimension until dimensionality is k

e Selection: All subspaces having at least a quality of y% of the best fitness in the
current generation are copied to the next generation.

* Free tickets: Additionally each subspace is copied to the next generation with a
probability of u% into the next generation.
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Genetic Algorithm: Schema

Generate initial population
WHILE Max_Fitness > Old_Fitness DO

Mutate current population

WHILE nextGeneration < PopulationSize DO

LMU

Generate new candidate from pairs of old subspaces

IF K has a free ticket or K is fit enough THEN

copy K to the next generation

RETURN fittest subspace
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Remarks:

e Here: only basic algorithmic scheme (multiple variants)

e Efficient convergence by ,Simulated Annealing”
(Likelihood of free tickets decreases with the iterations)

Advantages:

e (Can escape from local extreme values during the search

e Often good approximations for optimal solutions

Disadvantages:

e Runtime is not bounded can become rather inefficient

e Configuration depends on many parameters which have to be
tuned to achieve good quality results in efficient time
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Given: A feature space F and an unsupervized data mining task.
Target: Reduce F to subspace to k dimension while reducing redundancy.

Idea: Cluster the features in the space of objects and select one representative
feature for each of the clusters.

(This is equivalent to clustering in a transposed data matrix)

Requires a measure for the redundancy of features:

COV(X,Y)

Pearson correlation: COR(X,Y)=
JVAR(X)\[VAR(Y)
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Algorithmic scheme:

e C(Cluster features with a k-medoid clustering method based on correlation
e Select the medoids to span the target data space

Remark:
e For group/cluster of dependent features there is one representative feature
e Other clustering algorithms could be used as well.

e For large dimensionalities, approximate clustering methods are used due to
there linear runtime (c.f. BIRCH chapter 3.)
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Advantages:
e Depending on the clustering algorithm quite efficient
e Does not need any type of examples

Disadvantages:
e Results are usually not deterministic (partitioning clustering)

e Representatives are usually unstable for different clustering
methods and parameters.

e Based on pairwise correlation and dependencies
=> multiple dependencies are not considered
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* Forward-Selection: Examines each dimension D’ €{D,,..,D4}. and selects the k-
best to span the target space.

- Greedy Selection based on Information Gain, y2 Statistics or Mutual Information

e  Backward-Elimination: Start with the complete feature space and successively
remove the worst dimensions.
- Greedy Elimination with model-based and nearest-neighbor based approaches
- Branch and Bound Search based on inconsistency

e k-dimensional Projections: Directly search in the set of k-dimensional
subspaces for the best suited
- Genetic algorithms (quality measures as with backward elemination)
- Feature clustering based on correlation
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Discussion:
e Many algorithms based on different heuristics
e There are two reason to delete features:

— Redundancy: Features can be expressed by other features.
— Missing Correlation to the target variable

e Often even approximate results are capable of increasing
efficiency and quality in a data mining task

e Caution: Selected features need not have a causal connection to
the target variable, but both observation might depend on the
same mechanisms in the data space. (hidden variables)
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e Reasons for using feature selection
e Curse-of-Dimensionality

e Forward selection and feature ranking
— Information Gain
— 2 Statistics
— Mutual Information

e Backward Elimination
— Model-based subspace quality
— Nearest neighbor-based subspace quality
— Inconsistency and Branch & Bound search
e k-dimensional projections
— Genetic algorithms
— Feature clustering
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