
Ludwig-Maximilians-Universität München Institut für Informatik

PD Dr. Matthias Schubert, Dr. Eirini Ntoutsi Erich Schubert

Knowledge Discovery in Databases II WS 2012/2013

Übungsblatt 3: Cluster Analysis in High-Dimensional Data

Aufgabe 3-1 *Dichte-basiertes Projected-Clustering (PreDeCon)*

Gegeben sei obige 2D Datenmenge (der Abstand zwischen den Gitterlinien beträgt 1), die mit euklidischer Distanz verglichen werden soll. Berechnen Sie, ob p_3 und p_6 Kernpunkte im Algorithmus PreDeCon wären. Nehmen Sie hierzu folgende Parameterwerte an: minPts = 3, $\epsilon = 1$, $\delta = 0.25$, $\lambda = 1$, $\kappa = 100$

Aufgabe 3-2 Dichte-basiertes Subspace-Clustering (SubClu)

Beweisen Sie die folgende Aussage (Monotonie der Kernpunkt-Eigenschaft):

Sei D eine Menge von d-dimensionalen Featurevektoren, \mathcal{A} die Menge aller Attribute (Dimensionen/Feature). Sei weiter $p \in D$ und $S \subseteq \mathcal{A}$ ein Unterraum (Attribut-Teilmenge).

Dann gilt für beliebige $\epsilon \in \mathbb{R}^+$ und $minPts \in \mathbb{N}$:

$$\forall T \subseteq S : |\mathcal{N}_{\epsilon}^{S}(p)| \ge minPts \Rightarrow |\mathcal{N}_{\epsilon}^{T}(p)| \ge minPts$$

$$\operatorname{mit} |\mathcal{N}_{\epsilon}^{S}(p)| := \{ q \in D \mid L_{P}(\pi_{S}(p), \pi_{S}(q)) \le \epsilon \}.$$