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§ Sample Applications
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* Gene Expression Analysis
— Data:

e

Ot

ey
Y

oy

e Expression level of genes under

protein

different samples such as

different individuals (patients)

different time slots after treatment

different tissues

different experimental environments

e Data matrix: samples (usually ten to hundreds)
A
e N
r
genes =
(usually < ™
several expression level of
thousands) the ith gene under
L the jth sample
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% Sample Applications

DATABASE

GROUP

— Task 1: Cluster the rows (i.e. genes) to find groups of genes with similar
expression profiles indicating homogeneous functions

* Challenge: Genel [
Gene2 &
genes usually have gz::i . Cluster 1: {G1, G2, G6, G8}
different functions Gene5 . : : Cluster 2: {G4, G5, G6}
! coned Cluster 3: {G5, G6, G7, G}
under varying Genes [

Gene9

(combinations of) conditions

— Task 2: Cluster the columns (e.g. patients) to find groups with similar
expression profiles indicating homogeneous phenotypes

* Challenge:
different phenotypes SHES S
depend on different Cluster 1: {P1, P4, P8, P10}
o 7
(combmatlons Of) A Cluster 2: {P4, P5, P6}

Cluster 3: {P2, P4, P8, P10}
subsets of genes
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% Sample Applications

DATABASE

GROUP

e Metabolic Screening —
— Data

S-Amino-3-deoxy-AMP

F-Ken-3'-deoxyANMP

Tarosing O

e Concentration of different metabolites

in the blood of different test persons

M6, M6, O-Trideme thyl-
puromyein-5-phosphate

H 1-H6, 196, O-wide methyl-
puromyein-5. phosphate

* Example: P — s
Puromysin O#—| NepH |—O#—{2114 j-oq-_LpT’_ Sﬁ;ggﬁgfﬁ;g;ﬂn:mﬂ.
1 h N-twetyl-O-demethyl-
Bavarian Newborn Screening AT Odenelyl

e Data matrix:

metabolites (usually ten to hundreds)

A
4 N\
-
test persons ~
(usually several < .
thousands) \ concentration of
the ith metabolite
L in the blood of the

jth test person
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% Sample Applications

DATABASE

GROUP

— Task: Cluster test persons to find groups of individuals with similar
correlation among the concentrations of metabolites indicating
homogeneous metabolic behavior (e.g. disorder)

e Challenge:

different metabolic disorders appear through different correlations of

(subsets of) metabolites
A N

Concentration 002 ° o
of Metabolite 2 © oo

Concentration of Metabolite 1
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% Sample Applications

DATABASE

GROUP

e Customer Recommendation / Target Marketing
— Data
e Customer ratings for given products

e Data matrix:
products (hundreds to thousands)

A
e N
-
customers J me ~
(millions) rating of the ith
product by the jth
L customer

— Task: Cluster customers to find groups of persons that share similar
preferences or disfavor (e.g. to do personalized target marketing)

e Challenge:

customers may be grouped differently according to different
preferences/disfavors, i.e. different subsets of products
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% General Problems & Challenges

DATABASE

GROUP

The “curse of dimensionality”: one buzzword for many problems
e First aspect: Optimization Problem (Bellman).

“[The] curse of dimensionality [... is] a malediction that has plagued the
scientists from earliest days.” [Bel61]

— The difficulty of any global optimization approach increases exponentially
with an increasing number of variables (dimensions).

— General relation to clustering: fitting of functions (each function explaining

one cluster) becomes more difficult with more degrees of freedom.

— Direct relation to subspace clustering: number of possible subspaces
increases dramatically with increasing number of dimensions.
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§ General Problems & Challenges

DATABASE €
GROUP

e Third aspect: Relevant and Irrelevant attributes
— A subset of the features may be relevant for clustering

— Groups of similar (“dense”) points may be identified when considering these
features only

irrelevant attribute

DR P R —

v

relevant attribute/
relevant subspace

— Different subsets of attributes may be relevant for different clusters
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% General Problems & Challenges

DATABASE s
GROUP

Effect on clustering:
e Usually the distance functions used give equal weight to all dimensions
e However, not all dimensions are of equal importance

e Adding irrelevant dimensions ruins any clustering based on a distance
function that equally weights all dimensions

Cooooo oo o
L= R R R R T
T T T T T T T T T

Knowledge Discovery in Databases Il: Clustering High-Dimensional Data 10




e

DATABASE
SYSTEMS
GROUP

General Problems & Challenges

again: different attributes are relevant for different clusters

coocooocooo
chmurnnNDER
T T T T T T T

o 02 0.4 X 0.0 1 o 0z 0.4
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General Problems & Challenges

e Fourth aspect: Correlation among attributes

— Groups of similar (“dense”) points may be identified when considering this

A subset of features may be correlated

correlation of features only

MU

— Different correlations of attributes may be relevant for different clusters
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E General Problems & Challenges Ek
LMU

DATABASE
SYSTEMS
GROUP

Why not feature selection?
— (Unsupervised) feature selection is global (e.g. PCA)
— We face a local feature relevance/correlation: some features (or
combinations of them) may be relevant for one cluster, but may be

irrelevant for a second one
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% General Problems & Challenges Eh
DATABASE I_Mu
SYSTEMS
croup
Use feature selection before clustering
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§ General Problems & Challenges

DATABASE €
GROUP

Cluster first and then apply PCA

e ®
[ [ ]
® oo.oSf:.': ® ." ® .'.o&f:o‘.' o0 o.‘
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% General Problems & Challenges

DATABASE s
GROUP

e Problem Summary

e Curse of dimensionality/Feature relevance and correlation
- Usually, no clusters in the full dimensional space

- Often, clusters are hidden in subspaces of the data, i.e. only a subset of features
is relevant for the clustering

- E.g. a gene plays a certain role in a subset of experimental conditions

e Local feature relevance/correlation

- For each cluster, a different subset of features or a different correlation of
features may be relevant

- E.g. different genes are responsible for different phenotypes
e Overlapping clusters

- Clusters may overlap, i.e. an object may be clustered differently in varying
subspaces

- E.g. a gene plays different functional roles depending on the environment
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% General Problems & Challenges

DATABASE
GROUP

e General problem setting of clustering high dimensional data

Search for clusters in
(in general arbitrarily oriented) subspaces
of the original feature space

e Challenges:

e Find the correct subspace of each cluster
- Search space:
= all possible arbitrarily oriented subspaces of a feature space
= infinite
e Find the correct cluster in each relevant subspace
- Search space:
= “Best” partitioning of points (see: minimal cut of the similarity graph)
= NP-complete [SCH75]
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% General Problems & Challenges
DATABASE
oy LMU
e Even worse: Circular Dependency
e Both challenges depend on each other
e In order to determine the correct subspace of a cluster, we need to know
(at least some) cluster members
e In order to determine the correct cluster memberships, we need to know
the subspaces of all clusters
e How to solve the circular dependency problem?
e Integrate subspace search into the clustering process
e Thus, we need heuristics to solve
- the clustering problem
- the subspace search problem
simultaneously
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D%SE Outline
o LMU

1.

Introduction

Axis-parallel Subspace Clustering

Pattern-based Clustering

Arbitrarily-oriented Subspace Clustering

Summary
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%S Challenges
o LMU

What are we searching for?

— Overlapping clusters: points may be grouped differently in different
subspaces

=> “subspace clustering”
— Disjoint partitioning: assign points uniquely to clusters (or noise)
=> “projected clustering”
Notes:

— The terms subspace clustering and projected clustering are not used in a
unified or consistent way in the literature
— These two problem definitions are products of the presented algorithms:

¢ The first “projected clustering algorithm” integrates a distance function
accounting for clusters in subspaces into a “flat” clustering algorithm (k-medoid)
=> DISJOINT PARTITION

¢ The first “subspace clustering algorithm” is an application of the APRIORI
algorithm => ALL CLUSTERS IN ALL SUBSPACES
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% Challenges

DATABASE

GROUP

e The naive solution:

— Given a cluster criterion, explore each possible subspace of a d-dimensional
dataset whether it contains a cluster

— Runtime complexity: depends on the search space, i.e. the number of all
possible subspaces of a d-dimensional data set

— What is the number of all possible subspaces of a d-dimensional data set?
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% Challenges

DATABASE

GROUP

e What is the number of all possible subspaces of a d-dimensional
data set?

— How many k-dimensional subspaces (k<d) do we have?
The number of all k-tupels of a set of d elements is

:
RS

— So the naive solution is computationally infeasible:

— Overall:

We face a runtime complexity of O(29)
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% Challenges
SvSTEMS LMU

GROUP

o Search space ford =4

4D

3D [oX X QK{K

1D
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S

amense | Wiederholung: Frequent-ltemset-Mining

GROUP

Gegeben:
— eine Menge von Items /
— eine Transaktionsdatenbank DB liber |
— Ein absoluter support-Grenzwert s

e Finde alle frequent Itemsets in DB, d.h.
{X< 1| support(X) > s}

TransaktionsID Items Support der 1-ltemsets:
2000 A,B,C (A): 75%, (B), (C): 50%, (D), (E), (F): 25%,
1000 A,C Support der 2-ltemsets:
4000 AD (A, C): 50%,
5000 B.E,F (A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%

Knowledge Discovery in Databases Il: Clustering High-Dimensional Data 24




e

DATABASE
SYSTEMS
GROUP

Wiederholung: Frequent-ltemset-Mining

LMU

»haiver* Algorithmus: zahle die Haufigkeit aller k-elementigen

Teilmengen von | - ineffizient, da('l'('j solcher Teilmengen

Gesamt-Kosten: O(2!')

=> Apriori-Algorithmus und Varianten, Tiefensuch-Algorithmen

Knowledge Discovery in Databases Il: Clustering High-Dimensional Data 25
s | Wiederholung: Frequent-ltemset-Mining
oy LMU
Itemset Cover Sup. Freq.
tid *r o 2343 | 4 | 100%
1 {Bier, Chips, Wein} {Bier} {1,2} 2 50 %
2 {Bier, Chips} {Chips} {1,2,4} 3 75%
3 {Pizza, Wein} {Pizza} {3.4} 2 50 %
4 {Chips, Pizza} {Wein} {1.3} 2 50 %
Transaktionsdatenbank {Bier, Chips} (1.2} 2 50 %
{Bier, Wein} {1} 1 25%
{Chips, Pizza} {4} 1 25%
{Chips, Wein} {1} 1 25%
{Pizza, Wein} {3} 1 25%
{Bier, Chips, Wein} {1} 1 25%
Monotonie Eigenschaft von frequent Itemsets
wenn X frequent ist, sind alle Teilmengen Y < X auch frequent
Umkehrung:
wenn X nicht frequent, kénnen alle Itemsets die X als
Teilmenge enthalten auch nicht mehr frequent sein!
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e

amese | Wiederholung: Frequent-ltemset-Mining

SYSTEMS
GROUP

Suchraum: (Itemset:Support)
{34

LMU

-

{Bier}:2 {Chips}:3 {Pizza}:2

{Wein}:2

{Bier,Chips}:2 {Bier,Pizza}:0 {Bier,Wein}:1

I
{Bier,Chips,Pizza}:0 : {Bier,Chips,Wein}:1 | {Bier,Pizza,Wein}:0

{Bier,Chips,Pizza,Wein}.0

{Chips,Pizza,Wein}:0

! Positive Rand-Itemsets 1 Minimaler Supports =1 Negative Rand-ltemsets
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§s Wiederholung: Frequent-ltemset-Mining: i
oy LMU
Apriori Algorithmus [AS94]
— zuerst die ein-elementigen Frequent Itemsets bestimmen, dann die zwei-
elementigen und so weiter (Breitensuche)
Finden von k+1-elementigen Frequent Itemsets:
— nur solche k+1-elementigen Itemsets betrachten, fir die alle k-
elementigen Teilmengen haufig auftreten
— Bestimmung des Supports durch Zahlen auf der Datenbank (ein Scan)
Knowledge Discovery in Databases Il: Clustering High-Dimensional Data 28




D%SE Approaches
SRouP LMU

e Basically, there are two different ways to efficiently navigate
through the search space of possible subspaces

— Bottom-up:

e |f the cluster criterion implements the downward closure, one can use
any bottom-up frequent itemset mining algorithm (e.g. APRIORI [AS94])

e Key: downward-closure property OR merging-procedure

— Top-down:

e The search starts in the full d-dimensional space and iteratively learns
for each point or each cluster the correct subspace

e Key: procedure to learn the correct subspace
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% Bottom-up Algorithms

DATABASE
GROUP

e Rational:

— Start with 1-dimensional subspaces and merge them to compute higher
dimensional ones

— Most approaches transfer the problem of subspace search into frequent
item set mining

e The cluster criterion must implement the downward closure property

— If the criterion holds for any k-dimensional subspace S, then it also holds for any
(k—1)-dimensional projection of S
— Use the reverse implication for pruning:

If the criterion does not hold for a (k—1)-dimensional projection of S, then the
criterion also does not hold for S

e Apply any frequent itemset mining algorithm (e.g. APRIORI)

— Some approaches use other search heuristics like best-first-search,
greedy-search, etc.

* Better average and worst-case performance
e No guaranty on the completeness of results
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§ Bottom-up Algorithms

DATABASE
SYSTEMS
GROUP

e Downward-closure property

LMU

if Cis a dense set of points in subspace S,
then Cis also a dense set of points in any subspace Tc S

MinPts = 4

p and g density-connected in {A,B}, {A} and {B}
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Ay

p and g not density-connected in {B} and {A,B}
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% Bottom-up Algorithms

DATABASE
SYSTEMS
GROUP

e Downward-closure property

LMU

the reverse implication does not hold necessarily

A
(o]
A2 §e oo
%6
(o)
..
& %
Al ... &
[0((0) TO0 [(00)) '_B
Bl B2 B3
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% Bottom-up Algorithms

DATABASE
GROUP

e The key limitation: global density thresholds
— Usually, the cluster criterion relies on density

— In order to ensure the downward closure property, the density threshold
must be fixed

— Consequence: the points in a 20-dimensional subspace cluster must be as
dense as in a 2-dimensional cluster

— This is a rather optimistic assumption since the data space grows
exponentially with increasing dimensionality

— Consequences:

e A strict threshold will most likely produce only lower dimensional
clusters

e Aloose threshold will most likely produce higher dimensional clusters
but also a huge amount of (potentially meaningless) low dimensional
clusters
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% Bottom-up Algorithms

DATABASE
GROUP

e Properties (APRIORI-style algorithms):
— Generation of all clusters in all subspaces => overlapping clusters
— Subspace clustering algorithms usually rely on bottom-up subspace search
— Worst-case: complete enumeration of all subspaces, i.e. O(29) time
— Complete results
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§ Bottom-up Algorithms

DATABASE

GROUP

e CLIQUE [AGGR98]

— Cluster model
e Each dimension is partitioned into & equi-sized intervals called units

¢ A k-dimensional unit is the intersection of k 1-dimensional units (from
different dimensions)

e A unit uis considered dense if the fraction of all data points in u exceeds
the threshold t

¢ A cluster is a maximal set of connected dense units

L]

2-dimensional ‘
dense unit \ °

* 2-dimensional cluster
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% Bottom-up Algorithms

DATABASE

GROUP

— Downward-closure property holds for dense units
— Algorithm
e All dense cells are computed using APRIORI-style search

e A heuristic based on the coverage of a subspace is used to further prune
units that are dense but are in less interesting subspaces

(coverage of subspace S = fraction of data points covered by the dense
units of S)

e All connected dense units in a common subspace are merged to
generate the subspace clusters
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% Bottom-up Algorithms

DATABASE

GROUP

e Discussion
J Input: € and t specifying the density threshold
J Output: all clusters in all subspaces, clusters may overlap

. Uses a fixed density threshold for all subspaces (in order to ensure the
downward closure property)

. Simple but efficient cluster model
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% Bottom-up Algorithms

DATABASE

GROUP

e ENCLUS [CFZ99]

— Cluster model uses a fixed grid similar to CLIQUE
— Algorithm first searches for subspaces rather than for dense units
— Subspaces are evaluated following three criteria

e Coverage (see CLIQUE)

e Entropy

— Indicates how densely the points are packed in the corresponding subspace (the
higher the density, the lower the entropy)

— Implements the downward closure property

e Correlation

— Indicates how the attributes of the corresponding subspace are correlated to each
other

— Implements an upward closure property

Knowledge Discovery in Databases Il: Clustering High-Dimensional Data
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$ Bottom-up Algorithms

DATABASE €
GROUP

— Subspace search algorithm is bottom-up similar to CLIQUE but determines
subspaces having

Entropy<® and  Correlation > ¢

[0 Q0

@]
[ xoxo@m‘hﬂn 1

S e o 34

+ Low entropy (good clustering)

v High entropy (bad clustering) wefo

Low correlation (bad cIustering)_I
)

High correlation (good clustering

— Discussion
e Input: thresholds ® and ¢

e Qutput: all subspaces that meet the above criteria (far less than
CLIQUE), clusters may overlap

e Uses fixed thresholds for entropy and correlation for all subspaces
e Simple but efficient cluster model
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% Bottom-up Algorithms

DATABASE s
GROUP

e drawback of grid-based approaches: : ! : ' !
choice of & and t
cluster for t = 4 © '
(is C2 a cluster?) L [ B . o
for T > 4: no cluster found i 0 ® X I i ° i
(esp. C1is lost) - “"‘ _______ ______
A>3 aun .
! ! ! G2
T A A P e
e e S

e motivation for density-based approaches
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% Bottom-up Algorithms

DATABASE

GROUP

e SUBCLU [KKKOA4]
— Cluster model:
e Density-based cluster model of DBSCAN [EKSX96]
Clusters are maximal sets of density-connected points

Density connectivity is defined based on core points

Core points have at least MinPts points in their e-neighborhood

o . MinPts=5
° ® o
o ° ° o ..

Detects clusters of arbitrary size and shape (in the corresponding
subspaces)

— Downward-closure property holds for sets of density-connected points
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% Bottom-up Algorithms
DATABASE
oy LMU
— Algorithm
e All subspaces that contain any density-connected set are computed
using the bottom-up approach
e Density-connected clusters are computed using a specialized DBSCAN
run in the resulting subspace to generate the subspace clusters
— Discussion
e Input: € and MinPts specifying the density threshold
e Qutput: all clusters in all subspaces, clusters may overlap
* Uses a fixed density threshold for all subspaces
e Advanced but costly cluster model
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D%SE Top-down Algorithms
SYSTEMS I_Mu

GROUP

e Rational:
— Cluster-based approach:
e Learn the subspace of a cluster in the entire d-dimensional feature
space
e Start with full-dimensional clusters
e lteratively refine the cluster memberships of points and the subspaces
of the cluster
— Instance-based approach:
e Learn for each point its subspace preference in the entire d-dimensional
feature space
e The subspace preference specifies the subspace in which each point
“clusters best”
e Merge points having similar subspace preferences to generate the
clusters
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% Top-down Algorithms
DATABASE I_Mu
Shove
e The key problem: How should we learn the subspace preference of
a cluster or a point?
— Most approaches rely on the so-called “locality assumption”
e The subspace is usually learned from the local neighborhood of cluster
representatives/cluster members in the entire feature space:
— Cluster-based approach: the local neighborhood of each cluster representative is
evaluated in the d-dimensional space to learn the “correct” subspace of the cluster
— Instance-based approach: the local neighborhood of each point is evaluated in the d-
dimensional space to learn the “correct” subspace preference of each point
e The locality assumption: the subspace preference can be learned from
the local neighborhood in the d-dimensional space
— Other approaches learn the subspace preference of a cluster or a point from
randomly sampled points
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% Top-down Algorithms

DATABASE

GROUP

e Discussion:

— Locality assumption

e Recall the effects of the curse of dimensionality on concepts like “local
neighborhood”

e The neighborhood will most likely contain a lot of noise points

— Random sampling

e The larger the number of total points compared to the number of

cluster points is, the lower the probability that cluster members are
sampled

— Consequence for both approaches

e The learning procedure is often misled by these noise points
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% Top-down Algorithms

DATABASE

GROUP

e Properties:

— Simultaneous search for the “best” partitioning of the data points and the
“best” subspace for each partition => disjoint partitioning

— Projected clustering algorithms usually rely on top-down subspace search
— Worst-case:

e Usually complete enumeration of all subspaces is avoided

e Worst-case costs are typically in O(d?)
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% Top-down Algorithms

DATABASE

GROUP

e PROCLUS [APW+99]
— K-medoid cluster model
e Cluster is represented by its medoid
* To each cluster a subspace (of relevant attributes) is assigned

e Each point is assigned to the nearest medoid (where the distance to
each medoid is based on the corresponding subspaces of the medoids)

e Points that have a large distance

to its nearest medoid are

. e . 4/ \\
classified as noise e
Voo
4 ,/’/,'\A/:’,’
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% Top-down Algorithms

DATABASE

GROUP

— 3-Phase Algorithm
¢ |nitialization of cluster medoids

— Asuperset M of bk medoids is computed from a sample of a-k data points such that
these medoids are well separated

— krandomly chosen medoids from M are the initial cluster representatives

— Input parameters a and b are introduced for performance reasons

e |terative phase works similar to any k-medoid clustering

— Approximate subspaces for each cluster C
locality of C2

» The locality of Cincludes all points that have a distance to the medoid
of C less than the distance between the medoid of C and the medoid
of the neighboring cluster

» Compute standard deviation of distances from the medoid of C to the
points in the locality of C along each dimension

» Add the dimensions with the smallest standard deviation to the
relevant dimensions of cluster C such that

7 . . . .
locality of C1 - in summary k/ dimensions are assigned to all clusters

- each cluster has at least 2 dimensions assigned
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Top-down Algorithms

LMU

— Reassign points to clusters
» Compute for each point the distance to each medoid taking only the
relevant dimensions into account
» Assign points to a medoid minimizing these distances
— Termination (criterion not really clearly specified in [APW+99])
» Terminate if the clustering quality does not increase after a given

number of current medoids have been exchanged with medoids from
M

(it is not clear, if there is another hidden parameter in that criterion)

e Refinement

— Reassign subspaces to medoids as above (but use only the points assigned to each
cluster rather than the locality of each cluster)

— Reassign points to medoids; points that are not in the locality of their corresponding
medoids are classified as noise

Knowledge Discovery in Databases Il: Clustering High-Dimensional Data
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Top-down Algorithms

LMU

Discussion

e Input:
— Number of clusters k
— Average dimensionality of clusters /
— Factor a to determine the size of the sample in the initialization step
— Factor b to determine the size of the candidate set for the medoids

Output: partitioning of points into k disjoint clusters and noise, each
cluster has a set of relevant attributes specifying its subspace

Relies on cluster-based locality assumption: subspace of each cluster is
learned from local neighborhood of its medoid

Biased to find /-dimensional subspace clusters

Simple but efficient cluster model

Knowledge Discovery in Databases Il: Clustering High-Dimensional Data
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e PreDeCon [BKKKOA4]

— Cluster model:

e Density-based cluster model of DBSCAN [EKSX96] adapted to projected
clustering

— For each point p a subspace preference indicating the subspace in which p clusters
best is computed

— g-neighborhood of a point p is constrained by the subspace preference of p
— Core points have at least MinPts other points in their e-neighborhood
— Density connectivity is defined based on core points
— Clusters are maximal sets of density connected points
* Subspace preference of a point p is d-dimensional vector w,=(w;,...,w,),
entry w,, represents dimension / with

1 if VAR, >6
W, = _
S Vi

VAR, <6
VAR; is the variance of the ¢-neighborhood of p in the entire d-
dimensional space, d and k >> 1 are input parameters
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DATABASE
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— Algorithm
e PreDeCon applies DBSCAN with a weighted Euclidean distance function
. 2
dIStp(p'q) = pri '(pi _qi)
i
dist(p,q) = max {dist ,(p,q), dist (q,p)}
e Instead of shifting spheres (full-dimensional Euclidean &-
neighborhoods), clusters are expanded by shifting axis-parallel ellipsoids
(weighted Euclidean g-neighborhoods)
e Note: In the subspace of the cluster (defined by the preference of its
members), we shift spheres (but this intuition may be misleading)
A T
AN 4
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Discussion

e Input:
— Jdand k to determine the subspace preference
— A specifies the maximal dimensionality of a subspace cluster
— ¢ and MinPts specify the density threshold

e Qutput: a disjoint partitioning of data into clusters and noise

e Relies on instance-based locality assumption: subspace preference of
each point is learned from its local neighborhood

e Advanced but costly cluster model
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e The big picture

e Basic assumption:

)

“subspace search space is limited to axis-parallel subspaces’

e Algorithmic view:

- Bottom-up subspace search
- Top-down subspace search

e Problem-oriented view:

- Subspace clustering (overlapping clusters)
- Projected clustering (disjoint partitioning)
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e How do both views relate?

— Subspace clustering algorithms compute overlapping clusters

e Many approaches compute all clusters in all subspaces

These methods usually implement a bottom-up search strategy a la itemset mining

These methods usually rely on global density thresholds to ensure the downward
closure property

These methods usually do not rely on the locality assumption
These methods usually have a worst case complexity of 0(29)

e Other focus on maximal dimensional subspace clusters

These methods usually implement a bottom-up search strategy based on simple but
efficient heuristics

These methods usually do not rely on the locality assumption
These methods usually have a worst case complexity of at most O(d?)
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Summary
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e The big picture

— Projected clustering algorithms compute a disjoint partitioning of the data

e They usually implement a top-down search strategy

e They usually rely on the locality assumption

e They usually do not rely on global density thresholds

e They usually scale at most quadratic in the number of dimensions
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1.

Introduction: Why Clustering High-Dimensional Data is special

2. Axis-parallel Subspace Clustering
3. Arbitrarily-oriented Subspace Clustering
4. Pattern-based Clustering
5. Summary
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Correlation Clustering Algorithms

ORCLUS [AYO0O]:
first approach to generalized projected clustering

similar ideas to PROCLUS [APW+99]
k-means like approach
start with k. > k seeds

assign cluster members according to distance function based on
the eigensystem of the current cluster (starting with axes of data
space, i.e. Euclidean distance)

reduce k. in each iteration by merging best-fitting cluster pairs
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Correlation Clustering Algorithms

MU

e best fitting pair of clusters: least average distance in the projected
space spanned by weak eigenvectors of the merged clusters

1
cluster .
 gensyste™ eigen
\i\%q'/ ... System C]uSter2
Y g

@ ®e® &

5oueisip abesane

eigensystem cluster 1 U cluster 2
O
{[——""‘ o

e assess average distance in all merged pairs of clusters and finally

merge the best fitting pair
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e adapt eigensystem to the updated cluster

* new iteration: assign points according to updated eigensystems

(distance along weak eigenvectors)

e dimensionality gradually reduced to a user-specified value /

e initially exclude only eigenvectors with very high variance
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properties:
e finds k correlation clusters (user-specified)
e higher initial k. = higher runtime, probably better results

e biased to average dimensionality / of correlation clusters (user
specified)

e cluster-based locality assumption: subspace of each cluster is
learned from its current members (starting in the full dimensional
space)
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4C [BKKZ04]
e density-based cluster-paradigm (cf. DBSCAN [EKSX96])

e extend a cluster from a seed as long as a density-criterion is
fulfilled — otherwise pick another seed unless all data base objects
are assigned to a cluster or noise

e density criterion: minimal required number of points in the
neighborhood of a point

e neighborhood: distance between two points ascertained based on
the eigensystems of both compared points
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e LMU

e eigensystem of a point p based on its e-neighborhood
in Euclidean space

e threshold o discerns large from small eigenvalues

* ineigenvalue matrix £, replace large eigenvalues by 1, small
eigenvalues by k>>1

e adapted eigenvalue matrix yields a correlation similarity matrix for
point p:

AVAl
VpEpr
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§ Correlation Clustering Algorithms
Ghoup. LMU

e effect on distance measure:

e distance of pand g w.r.t. p: \/(p—CI)'VpE;,‘VpT‘(p—Q)T

e distance of pand g w.r.t. g: \/(q — p)-Vq . E(; -VqT (q — p)T
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e symmetry of distance measure by choosing the maximum:

distance 4

C

e pand g are correlation-neighbors if

J(p—a)v, -E,-v]-(p—q),
max- < &

(@-p)-v, E; vy (a-p)f

N\

J
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properties:

finds arbitrary number of clusters

e requires specification of density-thresholds
— W (minimum number of points): rather intuitive
— ¢ (radius of neighborhood): hard to guess

e biased to maximal dimensionality A of correlation clusters (user
specified)

e instance-based locality assumption: correlation distance measure
specifying the subspace is learned from local neighborhood of
each point in the d-dimensional space

enhancements also based on PCA:
e COPAC [ABK+07c] and
e ERIC [ABK+07Db]
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different correlation primitive: Hough-transform
e points in data space are mapped to functions in the parameter

space 1 5
- /’S -
e .
,-'/(J P -fp:
,}'J" fﬂ:
p ) '}fpl \
- .
~ P /
A (¢.0))
o 520
;’x [ .
picture space * parameter space @

f(a,....aq)={p,n) :g p. - ljsin(aj) -cos(e, )

e functions in the parameter space define all lines possibly crossing
the point in the data space
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e Properties of the transformation
— Point in the data space = sinusoidal curve in parameter space
— Point in parameter space = hyper-plane in data space

— Points on a common hyper-plane in data space = sinusoidal curves through a
common point in parameter space

— Intersections of sinusoidal curves in parameter space = hyper-plane through the
corresponding points in data space
P

by o z i ; L. 270 ~
5 / s S = o
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Algorithm based on the Hough-transform: CASH [ABD+08]

BLERG

I y ne L ——
L ! ! ' lire1 B a ne L

lire @

dense region

cluster C1 dense’region

cluster C2 R

2
m 5 o 4 10 ¥

dense regions in parameter space correspond to linear structures
in data space
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Idea: find dense regions in parameter space

e construct a grid by recursively splitting the parameter space (best-
first-search)

e identify dense grid cells as intersected by many parametrization
functions

e dense grid represents (d-1)-dimensional linear structure

e transform corresponding data objects in corresponding (d-1)-
dimensional space and repeat the search recursively
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properties:

e finds arbitrary number of clusters

e requires specification of depth of search (number of splits per axis)
e requires minimum density threshold for a grid cell

e Note: this minimum density does not relate to the locality
assumption: CASH is a global approach to correlation clustering

e search heuristic: linear in number of points, but ~ d*
e But: complete enumeration in worst case (exponential in d)
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e PCA: mature technique, allows construction of a broad range of
similarity measures for local correlation of attributes

e drawback: all approaches suffer from locality assumption

e successfully employing PCA in correlation clustering in “really”
high-dimensional data requires more effort henceforth

e new approach based on Hough-transform:
— does not rely on locality assumption
— but worst case again complete enumeration
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e some preliminary approaches base on concept of self-similarity
(intrinsic dimensionality, fractal dimension):
[BCOO,PTTFO2,GHPTO5]

e interesting idea, provides quite a different basis to grasp
correlations in addition to PCA

e drawback: self-similarity assumes locality of patterns even by
definition
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1. Introduction: Why Clustering High-Dimensional Data is special
2. Axis-parallel Subspace Clustering

3. Arbitrarily-oriented Subspace Clustering

4. Pattern-based Clustering

5. Summary
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% Outline: Pattern-based Clustering
crovp LMU

e Challenges and Approaches, Basic Models for
— Constant Biclusters
— Biclusters with Constant Values in Rows or Columns
— Pattern-based Clustering: Biclusters with Coherent Values
— Biclusters with Coherent Evolutions
e Algorithms for
— Constant Biclusters

— Pattern-based Clustering: Biclusters with Coherent Values

e Summary
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Pattern-based clustering relies on patterns in the data matrix.

e Simultaneous clustering of rows and columns of the data matrix
(hence biclustering).
— Data matrix A = (X,Y) with set of rows X and set of columns Y
- a,,is the element in row x and column y.

— submatrix A, = (I,J) with subset of rows | = X and subset of columns J c Y
contains those elements a; with i € lundj € J

Y
Ao~y | I={yij}
[ S
X% i Ay

[/

| = {i,x} a
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Challenges and Approaches, Basic Models

General aim of biclustering approaches:

MU

Find a set of submatrices {(l,,J,),(1,,J,),....(1,J,)} of the matrix
A=(X,Y) (with |, Xand J,c Y fori=1,...,k) where each submatrix
(= bicluster) meets a given homogeneity criterion.
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e Some values often used by bicluster

models:
— mean of row /: — mean of all elements:
- a, = Y.
anJ_TZau IR
jed iel,jed
1
— mean of column j: J J
jed
1
i T & . Z a
iel I 1J
icl
Knowledge Discovery in Databases Il: Clustering High-Dimensional Data 78




§ Challenges and Approaches, Basic Models

DATABASE

GROUP

Different types of biclusters (cf. [MO04]):
e constant biclusters
e biclusters with

— constant values on columns
— constant values on rows

e biclusters with coherent values (aka. pattern-based clustering)
e biclusters with coherent evolutions
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Constant biclusters

e all points share identical value in selected attributes.
e The constant value p is a typical value for the cluster.

e (Cluster model: aij = U

e Obviously a special case of an axis-parallel subspace cluster.
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e example — embedding 3-dimensional space:
az2
al az ad 3 |
P1 1 1 35 . a3
S 1 23 W
: 2 - P Z
3
Pa | 1| 1 |07 1 =peaagd 2
i I - al
1 3
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e example — 2-dimensional subspace:
a2
al 2 -‘-
P1 1 1 3
2 1 1 -
2 -
Fd 1 1
14
I I e al
1 3
e points located on the bisecting line of participating attributes
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e example —transposed view of attributes:

val ue

al al ad
Pl | 1 1 | 38 3 4
P2 | 1 1 ] 23

H1

2 —
P4 | 1 1 |07 1 -
| — ¢ 3 g attribute
al a2 a3

e pattern:identical constant lines
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real-world constant biclusters will not be perfect

* cluster model relaxes to: &;; ~ K

Optimization on matrix A = (X,Y) may lead to | X]|:|Y| singularity-biclusters
each containing one entry.

e Challenge: Avoid this kind of overfitting.
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Biclusters with constant values on columns

e Cluster model for A, = (1,J):
Eiij — /Ll -+- (:j
Viel,jel

* adjustment value c; for columnj €

e results in axis-parallel subspace clusters
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e example — 3-dimensional embedding space:

az
al a2 ad 1
P | 1] 2 |28 4_ 5
P2 | 1 2.3 -
P3 1 3 L. - 1"raB
Pa | 1 2: | O ¥ /
2 mleeens
4
' 3
1 : 2
1
| 1 T T - al
1 2 3 4
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e example — 2-dimensional subspace:

al a2 az
P 1| 2 i
B 1 | 2
o . - 3
B2 | 1 | 2 2]
1 4
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Challenges and Approaches, Basic Models

e example —transposed view of attributes:

value
al aZ a3 =8}
P1 1 . 35 3
P2 1 = 23 —a M2

Ps | 1 | 2 | 07 1 - 4¢§5§§Q?-P4

T T
al a2 a3

e pattern:identical lines
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Biclusters with constant values on rows
e Cluster model for A, = (1,J):

My

a; = U+,
Viel,jel

e adjustment value r; for row/ € |
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e example — 3-dimensional embedding space:

al al ad
1 1 1 3.5
P2 2 2 23

P4 4 4 a.7

MU

e inthe embedding space, points build a sparse hyperplane parallel

to irrelevant axes

Knowledge Discovery in Databases Il: Clustering High-Dimensional Data

90




§ Challenges and Approaches, Basic Models

DATABASE
SYSTEMS
GROUP

e example — 2-dimensional subspace:

a2
A
al a2 4 - *»
P1 1 1
B2 | 2 | 2 3 -
: : ; 2 @
4 | 4 4
1 4 1]

LMU

e points are accommodated on the bisecting line of participating

attributes
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e example —transposed view of attributes:

value
al aZ a3 4
P1 1 1 35
P2 2 2 2.3 3 —
2 ]

P4 4 4 0.7

LMU

P4

S . attribute

e pattern: parallel constant lines
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Biclusters with coherent values

LMU

e based on a particular form of covariance between rows and

columns
Viel,jel

e special cases:
— ¢;=0forall j > constant values on rows
— r,=0for all i > constant values on columns
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e embedding space: sparse hyperplane parallel to axes of irrelevant

attributes

al az ad
P1 1 2 s

P4 g ] 07

MU
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e subspace: increasing one-dimensional line

a2
i
al az 6 | *
P1 1
2| 2 5
; 4
P4 5 o]
3 &
2 — [
1 _

LMU

'..3.1
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e transposed view of attributes: value
F
6 |
5 —
al a2 a3
P1o| 2 | a5 4
F1
2 2 2] 3 _
1 i 0.2 g
P4 o B 07y 2 —
Aoy P4
— 11— attribute
al a2 a3
e pattern: parallel lines
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Biclusters with coherent evolutions
e for all rows, all pairs of attributes change simultaneously

— discretized attribute space: coherent state-transitions
— change in same direction irrespective of the quantity

NG\
W |
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e Approaches with coherent state-transitions: [TSS02,MKO03]
e reduces the problem to grid-based axis-parallel approach:

a2
al az a3 ‘ .
P1 | 05| 15 | 35
P2 | 07 | 13 | 23 3 | e il
: 3 | 23 | 02 * W e a3
24.--".--" v
P4 | o | 21 | o7 1
b L 2
1 50 2
U{ 11,1 1
:'| T T e 2l
1 2 3
W
0 +
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al a2 al a2 a3
F1 0 + F1 045 15 35
P2 | 0 [ + P2 [ 07|13 ] 23
PA | 0 | + Ps [ o8] 21|07
a2 value
A i
P‘|
3 - 3 5
+ 2 =]
24" ¢ 2
I. 1
T1— % 7
0 { 0 I \ _
— - 8 —— 2 attribute
1 2 3 al a2 a3
“‘T‘D o pattern: all lines cross border between

states (in the same direction)
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e change in same direction — general idea: find a subset of rows and
columns, where a permutation of the set of columns exists such
that the values in every row are increasing

e clusters do not form a subspace but rather half-spaces

e related approaches:

— guantitative association rule mining [Web01,RRK04,GRRKO5]
— adaptation of formal concept analysis [GW99] to numeric data [Pfa07]
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e example — 3-dimensional embedding space

Challenges and Approaches, Basic Models

al a2 ad
P1 s 15 3A
P2 07 %3 23
P4 1.8 21 0.7

MU
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e example — 2-dimensional subspace

a2

i
al a2

P1 | 05| 15 |
B e | 13

Ps | 18| 21 |

al
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e example —transposed view of attributes

value
al az a3
F1 05 15 35 3 |
F2 07 13 P
P4 18 21 0.7 1 _

F1

P2

P4
F3 e attribute

e pattern: all lines increasing
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Matrix-Pattern

specialized

more

more
general

Y

no change of values

change of values

only on
columns
or only
on rows

Challenges and Approaches, Basic Models

Bicluster Model

Constant Bicluster

LMU

Spatial Pattern

axis-parallel, located
on bisecting line

Constant Columns

Constant Rows

axis-parallel sparse
hyperplane — projected

change of values
by same quantity
(shifted pattern)

change of values
in same direction

Coherent Values

Coherent Evolutions
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T space: bisecting line

axis-parallel sparse hyperplane —
projected space: increasing line
(positive correlation)

state-transitions:
grid-based axis-parallel
change in same direction:

half-spaces (no classical |

cluster-pattern)

-~

no order of generality
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classical problem statement by Hartigan [Har72]

quality measure for a bicluster: variance of the submatrix A;:

VAR (AU ): Z (aij —ay )2

iel,jed

avoids partitioning into |X|-|Y| singularity-biclusters (optimizing the sum of
squares) by comparing the reduction with the reduction expected by chance

recursive split of data matrix into two partitions

each split chooses the maximal reduction in the overall sum of squares for all
biclusters
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Biclusters with Constant Values

simple approach: normalization to transform the biclusters into
constant biclusters and follow the first approach (e.g. [GLDOO])

some application-driven approaches with special assumptions in
the bioinformatics community (e.g. [CST0O0,SMDO03,STG+01])

constant values on columns: general axis-parallel
subspace/projected clustering

constant values on rows: special case of general correlation
clustering

both cases special case of approaches to biclusters with coherent
values
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classical approach: Cheng&Church [CCOO]

e introduced the term biclustering to analysis of gene expression data
e quality of a bicluster: mean squared residue value H

1
Z (aij —a; — alj +a;

H(1,J)=
(19)=rr57 2.

e submatrix (1,J) is considered a bicluster, if H(l,J) < 0
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e =0 - perfect bicluster:
— each row and column exhibits absolutely consistent bias
— bias of row i w.r.t. other rows: aiJ —a 1

* the model for a perfect bicluster predicts value a; by a row-constant, a
column-constant, and an overall cluster-constant:

a; =q;; +a,; —a
ﬁﬂzau’ﬁzﬁJ‘%Jﬁjzau‘%J
a; =+ +C,
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e for a non-perfect bicluster, the prediction of the model deviates from the true
value by a residue:

a; = res(aij)+aiJ +a; —a,

0

res(aij) =a; —a; —a; +a,

e This residue is the optimization criterion:

1 2
H(I’J)—ﬁ Z(aij — 8 —a +a|3)
‘ H iel,jel
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e The optimization is also possible for the row-residue of row i or
the column-residue of columnjj.

e Algorithm:

1. find a 0 -bicluster: greedy search by removing the row or column (or the set
of rows/columns) with maximal mean squared residue until the remaining
submatrix (I,J) satisfies H(l,J)< .

2. find a maximal 9 -bicluster by adding rows and columns to (I,J) unless this
would increase H.

3. replace the values of the found bicluster by random numbers and repeat
the procedure until k d -biclusters are found.
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Weak points in the approach of Cheng&Church:

1. One cluster at a time is found, the cluster needs to be masked in
order to find a second cluster.

This procedure bears an inefficient performance.
The masking may lead to less accurate results.

The masking inhibits simultaneous overlapping of rows and
columns.

5. Missing values cannot be dealt with.
The user must specify the number of clusters beforehand.
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p-cluster model [WWYY02]
e p-cluster model: deterministic approach

e specializes 0 -bicluster-property to a pairwise property of two
objects in two attributes:

‘(ailjl -8, )_ (aizjl -8, )‘ <o
difference =&

Fz2

\

=]

—

al a2

e submatrix (I,J) is a & -p-cluster if this property is fulfilled for any
2x2 submatrix ({iy, i}, {j;, j,}) where {i;, i,} € | and {j,, j,} €J.
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Algorithms for Biclusters

~= | \With Coherent Values LMU
Algorithm:
1. create maximal set of attributes for each pair of objects forming a 6 -p-cluster

2.
3.
4

Problem: complete enumeration approach

Ad

Related approaches:

create maximal set of objects for each pair of attributes forming a o -p-cluster
pruning-step
search in the set of submatrices

P4
3

&
<

>
-

A—p
x
b_
N

dressed issues:
1. multiple clusters simultaneously

4. allows for overlapping rows and columns F1

6. allows for arbitrary number of clusters

o —_
4—» K
—p-
L]
-
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FLOC [YWWYO02],MaPle [PZC+03]

al az
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Biclustering models do not fit exactly into the spatial intuition
behind subspace, projected, or correlation clustering.

Models make sense in view of a data matrix.

Strong point: the models generally do not rely on the locality
assumption.

Models differ substantially = fair comparison is a non-trivial task.
Comparison of five methods: [PBZ+06]

Rather specialized task — comparison in a broad context
(subspace/projected/correlation clustering) is desirable.

Biclustering performs generally well on microarray data — for a
wealth of approaches see [MOO04].
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Summary and Perspectives

comparison: correlation clustering — biclustering:

Know

LMU

model for correlation clusters more general and meaningful

models for biclusters rather specialized

in general, biclustering approaches do not rely on locality

assumption

non-local approach and specialization of models may make

biclustering successful in many applications

correlation clustering is the more general approach but the
approaches proposed so far are rather a first draft to tackle the

complex problem
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1. Introduction: Why Clustering High-Dimensional Data is special

5. S

Know

Axis-parallel Subspace Clustering

Arbitrarily-oriented Subspace Clustering

Pattern-based Clustering

ummary
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e Let’s take a global view:
— Traditional clustering in high dimensional spaces is most likely meaningless
with increasing dimensionality (curse of dimensionality)
— Clusters may be found in (generally arbitrarily oriented) subspaces of the
data space
— So the general problem of clustering high dimensional data is:
“find a partitioning of the data where each cluster may exist in its own
subspace”
¢ The partitioning need not be unique (clusters may overlap)
* The subspaces may be axis-parallel or arbitrarily oriented
— Analysis of this general problem:
¢ A naive solution would examine all possible subspaces to look for clusters
e The search space of all possible arbitrarily oriented subspaces is infinite
e We need assumptions and heuristics to develop a feasible solution
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— What assumptions did we get to know here?
e The search space is restricted to certain subspaces

¢ A clustering criterion that implements the downward closure property enables
efficient search heuristics

The locality assumption enables efficient search heuristics
e Assuming simple additive models (“patterns”) enables efficient search heuristics

— Remember: also the clustering model may rely on further assumptions that
have nothing to do with the infinite search space
¢ Number of clusters need to be specified
e Results are not deterministic e.g. due to randomized procedures

— We can classify the existing approaches according to the assumptions they
made to conquer the infinite search space
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— The global view
¢ Subspace clustering/projected clustering:

— The search space is restricted to axis-parallel subspaces

— A clustering criterion that implements the downward closure property is defined
(usually based on a global density threshold)

— The locality assumption enables efficient search heuristics
¢ Bi-clustering/pattern-based clustering:

— The search space is restricted to special forms and locations of subspaces or half-
spaces

— Over-optimization (e.g. singularity clusters) is avoided by assuming a predefined
number of clusters

¢ Correlation clustering:
— The locality assumption enables efficient search heuristics

— Any of the proposed methods is based on at least one assumption because
otherwise, it would not be applicable
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The global view

- Subspace clustering/projected clustering:
= Search space restricted to axis-parallel subspaces

= Clustering criterion implementing the downward closure property (usually based on a global
density threshold)

= Locality assumption

a2
i i value
A
P
3 3
J m =7
2 T o _
1 _
1 /\om
—1— al 3 . attribute
1 2 3 al a2 a3
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e The global view

- Bi-clustering/pattern-based clustering:
= Search space restricted to special forms and locations of subspaces or half-spaces
= Greedy-search heuristics based on statistical assumptions

value
- a2 A
A
6 |
6 - *
5 - -
5| /
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4+ P1
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2- = 2 —
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1 P4
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e The global view

- Correlation clustering:
= Locality assumption
= Greedy-search heuristics

al-2a2+a3=0

al a2 ad
P1 3 2 1 P1
B2 4
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P4 3 4 5

P4
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The global view
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Clustering
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Block clustering [Har72]
A-bicluster [CCO0]

FLOC [YWWY(2]

p-Cluster [WWYY(2]
MaPle [PZCTD03]
CoClus [CDGS04]
OP-Cluster [LW03]
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ORCLUS [AY00]

4C [BKKZ04]

Aleorithm

COPAC [ABKT07¢]
ERIC [ABKT07D]
CASH[ABDT08]
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