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Outline: Introduction

• Sample Applications

• General Problems and Challenges

• A First Taxonomy of Approaches
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Sample Applications

• Gene Expression Analysis
• Data:

- Expression level of genes under

diff t l h
DNA mRNA protein

different samples such as
different individuals (patients)

different time slots after treatment

different tissues

different experimental environments

- Data matrix: samples (usually ten to hundreds)- Data matrix: samples (usually ten to hundreds)

genes
(usually 
several 

thousands)
expression level of 
the ith gene under 
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the jth sample



Sample Applications

• Task 1: Cluster the rows (i.e. genes) to find groups of genes with similar 
expression profiles indicating homogeneous functionsexpression profiles indicating homogeneous functions

- Challenge:

genes usually have

Gene1 

Gene2 

Gene3 

Gene4 
Cluster 1: {G1, G2, G6, G8}

different functions

under varying

( bi i f) di i

Gene5

Gene6 

Gene7 

Gene8 

Gene9

Cluster 2: {G4, G5, G6}

Cluster 3: {G5, G6, G7, G9}

(combinations of) conditions

• Task 2: Cluster the columns (e.g. patients) to find groups with similar 
expression profiles indicating homogeneous phenotypesp p g g p yp

- Challenge:

different phenotypes P
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depend on different

(combinations of)

subsets of genes

Cluster 1: {P1, P4, P8, P10}

Cluster 2: {P4, P5, P6}

Cluster 3: {P2, P4, P8, P10}
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subsets of genes

Sample Applications

• Metabolic Screening
• Data

- Concentration of different metabolites

in the blood of different test personsin the blood of different test persons

- Example:

Bavarian Newborn Screening

- Data matrix:

metabolites (usually ten to hundreds)

t t

concentration of 
the ith metabolite 
in the blood of the 

test persons
(usually several 

thousands)
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jth test person



Sample Applications

• Task: Cluster test persons to find groups of individuals with similar 
correlation among the concentrations of metabolites indicating homogeneouscorrelation among the concentrations of metabolites indicating homogeneous 
metabolic behavior (e.g. disorder)

- Challenge:

different metabolic disorders appear through different correlations of 
(subsets of) metabolites

healthyhealthy
Concentration 
of Metabolite 2
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Concentration of Metabolite 1

Sample Applications

• Customer Recommendation / Target Marketing
• Data

- Customer ratings for given products

- Data matrix:
products (h d d t th d )products (hundreds to thousands)

rating of the ith 
product by the jth 

customers
(millions)

• Task: Cluster customers to find groups of persons that share similar 
preferences or disfavor (e g to do personalized target marketing)

customer

preferences or disfavor (e.g. to do personalized target marketing)

- Challenge:

customers may be grouped differently according to different 
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y g p y g
preferences/disfavors, i.e. different subsets of products



General Problems & Challenges

The “curse of dimensionality”: one buzzword for many problems

• First aspect: Optimization Problem (Bellman).
“[The] curse of dimensionality [… is] a malediction that has plagued the 
scientists from earliest days ” [Bel61]scientists from earliest days.  [Bel61]

• The difficulty of any global optimization approach increases exponentially 
with an increasing number of variables (dimensions).

• General relation to clustering: fitting of functions (each function explaining 
one cluster) becomes more difficult with more degrees of freedom.

• Direct relation to subspace clustering: number of possible subspacesDirect relation to subspace clustering: number of possible subspaces 
increases dramatically with increasing number of dimensions.
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General Problems & Challenges

• Second aspect: Concentration effect of Lp-norms
[ G S99 A 00] i i d h h i f ( i )• In [BGRS99,HAK00] it is reported that the ratio of (Dmaxd – Dmind) to 

Dmind converges to zero with increasing dimensionality d

- Dmind = distance to the nearest neighbor in d dimensionsd g

- Dmaxd = distance to the farthest neighbor in d dimensions

Formally:

10,
D i

DminDmax
lim:0 =⎥

⎤
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⎞
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d
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- This holds true for a wide range of data distributions and distance 
functions
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General Problems & Challenges

From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard deviation,
maximum observed value, and maximum possible value of the Euclidean norm of a random vector. The expectation grows, but the 
variance remains constant. A small subinterval of the domain of the norm is reached in practice. (Figure and caption: [FWV07])

• The observations stated in [BGRS99 HAK00] are valid within clusters but• The observations stated in [BGRS99,HAK00] are valid within clusters but 
not between different clusters as long as the clusters are well separated 
[BFG99,FWV07,HKK+10].
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• This is not the main problem for subspace clustering, although it should be 
kept in mind for range queries.

General Problems & Challenges

• Third aspect: Relevant and Irrelevant attributes
A b f h f b l f l i• A subset of the features may be relevant for clustering

• Groups of similar (“dense”) points may be identified when considering these 
features onlyy
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• Different subsets of attributes may be relevant for different clusters

relevant attribute/
relevant subspace
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General Problems & Challenges

• Effect on clustering:

- Usually the distance functions used give equal weight to all dimensions

- However, not all dimensions are of equal importance

- Adding irrelevant dimensions ruins any clustering based on a distance 
function that equally weights all dimensionsfunction that equally weights all dimensions
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General Problems & Challenges

• again: different attributes are relevant for different clusters
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General Problems & Challenges

• Fourth aspect: Correlation among attributes
A b f f b l d• A subset of features may be correlated

• Groups of similar (“dense”) points may be identified when considering this 
correlation of features onlyy

• Different correlations of attributes may be relevant for different clusters
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General Problems & Challenges

• Why not feature selection?
( i d) f l i i l b l ( CA)• (Unsupervised) feature selection is global (e.g. PCA)

• We face a local feature relevance/correlation: some features (or combinations 
of them) may be relevant for one cluster, but may be irrelevant for a second ) y , y
one

Disorder 3
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General Problems & Challenges

• Use feature selection before clustering

PCA

Projection on j
first principal 
component

DBSCAN
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General Problems & Challenges

• Cluster first and then apply PCA

DBSCAN

PCA of the

Projection on 
first principal 
component

PCA of the 
cluster points
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component



General Problems & Challenges

• Problem Summary
• Curse of dimensionality/Feature relevance and correlationy

- Usually, no clusters in the full dimensional space

- Often, clusters are hidden in subspaces of the data, i.e. only a subset of features 
is relevant for the clusteringis relevant for the clustering

- E.g. a gene plays a certain role in a subset of experimental conditions

• Local feature relevance/correlation
- For each cluster, a different subset of features or a different correlation of 

features may be relevant

- E g different genes are responsible for different phenotypesE.g. different genes are responsible for different phenotypes

• Overlapping clusters
- Clusters may overlap, i.e. an object may be clustered differently in varying 

bsubspaces

- E.g. a gene plays different functional roles depending on the environment
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General Problems & Challenges

• General problem setting of clustering high dimensional data

Search for clusters in

(in general arbitrarily oriented) subspaces

f h i i l fof the original feature space

• Challenges:Challenges:
• Find the correct subspace of each cluster

- Search space:
all possible arbitrarily oriented subspaces of a feature space

infinite

• Find the correct cluster in each relevant subspacep
- Search space:

“Best” partitioning of points (see: minimal cut of the similarity graph)

NP-complete [SCH75]

87

NP complete [SCH75]



General Problems & Challenges

• Even worse: Circular Dependency
• Both challenges depend on each other

• In order to determine the correct subspace of a cluster, we need to know (at 
least some) cluster members

• In order to determine the correct cluster memberships we need to know the• In order to determine the correct cluster memberships, we need to know the 
subspaces of all clusters

• How to solve the circular dependency problem?
• Integrate subspace search into the clustering process

• Thus, we need heuristics to solve
- the clustering problem

- the subspace search problemthe subspace search problem

simultaneously
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General Problems & Challenges

• Solution: integrate variance / covariance analysis into the clustering 
process

• Variance analysis:
Fi d l t i i ll l b- Find clusters in axis-parallel subspaces

- Cluster members exhibit low variance 
along the relevant dimensions

Cluster 3
• Covariance/correlation analysis:

- Find clusters in arbitrarily oriented 
subspacesp

- Cluster members exhibit a low covariance 
w.r.t. a given combination of the relevant 
dimensions (i.e. a low variance along the ( g
dimensions of the arbitrarily oriented 
subspace corresponding to the given 
combination of relevant attributes)
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A First Taxonomy of Approaches

• So far, we can distinguish between
Cl i i ll l b• Clusters in axis-parallel subspaces

(common assumption to restrict the search space)

Approaches are usually called n
t 

at
tr

ib
u

te

Approaches are usually called

- “subspace clustering algorithms”

- “projected clustering algorithms” relevant attribute/

ir
re

le
va

n

- “bi-clustering or co-clustering algorithms”

Cl t i bit il i t d b

relevant subspace

• Clusters in arbitrarily oriented subspaces

Approaches are usually called

- “bi-clustering or co-clustering algorithms”b c us e g o co c us e g a go s

- “pattern-based clustering algorithms”

- “correlation clustering algorithms”
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A First Taxonomy of Approaches

• A first big picture
• We have two problems to solve

• For both problems we need heuristics that have huge influence on the 
properties of the algorithmsproperties of the algorithms

- Subspace search

Assumptions Algorithm

Original search space
(i fi it )

Assumption specific
search space

FINAL SUBSPACES
Assumptions Algorithm

(e.g. axis-parallel only) (e.g. top-down)

- Cluster search

(infinite)
search space

O i i l h
Model specific

FINAL CLUSTERING
Cluster model Algorithm

(e.g. k-partitioning 
clustering)

(e.g. k-Means)
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Original search space
(NP-complete)

p
search space



A First Taxonomy of Approaches

• Note: this taxonomy considers only the subspace search space

• the clustering search space is equally importantg p q y p

• other important aspects for classifying existing approaches are e.g.
• The underlying cluster model that usually involves

- Input parameters

- Assumptions on number, size, and shape of clusters

- Noise (outlier) robustness

• Determinism

• Independence w r t the order of objects/attributesIndependence w.r.t. the order of objects/attributes

• Assumptions on overlap/non-overlap of clusters/subspaces

• Efficiency

Extensive survey: [KKZ09] 
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http://doi.acm.org/10.1145/1497577.1497578
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Outline: Axis-parallel Subspace Clustering

• Challenges and Approaches

• Bottom-up Algorithms

• Top-down Algorithms

• Summary
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Challenges

• What are we searching for?
O l i l i b d diff l i diff• Overlapping clusters: points may be grouped differently in different 
subspaces

=> “subspace clustering”p g

• Disjoint partitioning: assign points uniquely to clusters (or noise)

=> “projected clustering”

Notes:
• The terms subspace clustering and projected clustering are not used in a 

unified or consistent way in the literatureunified or consistent way in the literature

• These two problem definitions are products of the presented algorithms:
- The first “projected clustering algorithm” integrates a distance function p j g g g

accounting for clusters in subspaces into a “flat” clustering algorithm (k-medoid) 
=> DISJOINT PARTITION

- The first “subspace clustering algorithm” is an application of the APRIORI 
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p g g pp
algorithm => ALL CLUSTERS IN ALL SUBSPACES



Challenges

• The naïve solution:The naïve solution:
• Given a cluster criterion, explore each possible subspace of a d-dimensional 

dataset whether it contains a cluster

• Runtime complexity: depends on the search space, i.e. the number of all 
possible subspaces of a d-dimensional data set

• What is the number of all possible subspaces of a d-dimensional data set?What is the number of all possible subspaces of a d dimensional data set?
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Challenges

• What is the number of all possible subspaces of a d-dimensional 
d t t?data set?
• How many k-dimensional subspaces (k≤d) do we have?

The number of all k-tupels of a set of d elements isThe number of all k tupels of a set of d elements is

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k

d

• Overall:
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⎟
⎞

⎜
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d d
12
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−=⎟⎟
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⎞
⎜⎜
⎝

⎛∑
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• So the naïve solution is computationally infeasible: 

W f i l i f O(2d)
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We face a runtime complexity of O(2d)



Challenges

• Search space for d = 4

4D

3D

2D

1D
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Wiederholung: Frequent-Itemset-Mining

Gegeben:
i M It I• eine Menge von Items I

• eine Transaktionsdatenbank DB über I

• Ein absoluter support-Grenzwert sEin absoluter support Grenzwert s

• Finde alle frequent Itemsets in DB, d.h.q

{X ⊆ I | support(X) ≥ s}

TransaktionsID Items
2000 A,B,C
1000 A C

Support der 1-Itemsets:

(A): 75%, (B), (C): 50%, (D), (E), (F): 25%,

Support der 2-Itemsets:1000 A,C
4000 A,D
5000 B,E,F

Support der 2 Itemsets:

(A, C): 50%,

(A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%
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Wiederholung: Frequent-Itemset-Mining

„naiver“ Algorithmus: zähle die Häufigkeit aller k-elementigen 

Teilmengen von I - ineffizient, da solcher Teilmengen⎟⎟
⎞

⎜⎜
⎛ I ||g , g

Gesamt-Kosten: O(2| I |)

⎟⎟
⎠

⎜⎜
⎝ k

> A i i Al ith d V i t Ti f h Al ith=> Apriori-Algorithmus und Varianten, Tiefensuch-Algorithmen
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Wiederholung: Frequent-Itemset-Mining

tid XT

1 {Bier, Chips, Wein}

Itemset Cover Sup. Freq.

{} {1,2,3,4} 4 100 %

{Bier} {1 2} 2 50 %{ p }

2 {Bier, Chips}

3 {Pizza, Wein}

4 {Chi Pi }

{Bier} {1,2} 2 50 %

{Chips} {1,2,4} 3 75 %

{Pizza} {3,4} 2 50 %

{Wein} {1 3} 2 50 %4 {Chips, Pizza}

Transaktionsdatenbank

{Wein} {1,3} 2 50 %

{Bier, Chips} {1,2} 2 50 %

{Bier, Wein} {1} 1 25 %

{Chips Pizza} {4} 1 25 %{Chips, Pizza} {4} 1 25 %

{Chips, Wein} {1} 1 25 %

{Pizza, Wein} {3} 1 25 %

{Bier Chips Wein} {1} 1 25 %{Bier, Chips, Wein} {1} 1 25 %

Monotonie Eigenschaft von frequent Itemsets
wenn X frequent ist sind alle Teilmengen Y ⊆ X auch frequentwenn X frequent ist, sind alle Teilmengen Y ⊆ X auch frequent

Umkehrung:
wenn X nicht frequent, können alle Itemsets die X als

Teilmenge enthalten auch nicht mehr frequent sein!
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Teilmenge enthalten auch nicht mehr frequent sein!



Wiederholung: Frequent-Itemset-Mining

{}:4
Suchraum: (Itemset:Support)

{Bier}:2 {Chips}:3 {Pizza}:2 {Wein}:2

{Bier,Chips}:2 {Bier,Pizza}:0 {Bier,Wein}:1 {Chips,Wein}:1{Chips,Pizza}:1 {Pizza,Wein}:1

{Bier Chips Pi a}:0 {Bier Chips Wein}:1 {Bi Pi W i } 0 {Chips Pi a Wein}:0{Bier,Chips,Pizza}:0 {Bier,Chips,Wein}:1 {Bier,Pizza,Wein}:0 {Chips,Pizza,Wein}:0

{Bier,Chips,Pizza,Wein}:0
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Positive Rand-Itemsets Negative Rand-ItemsetsMinimaler Support s = 1

Wiederholung: Frequent-Itemset-Mining:

Apriori Algorithmus [AS94]
• zuerst die ein-elementigen Frequent Itemsets bestimmen dann die zwei-• zuerst die ein-elementigen Frequent Itemsets bestimmen, dann die zwei-

elementigen und so weiter (Breitensuche)

Finden von k+1-elementigen Frequent Itemsets:

• nur solche k+1-elementigen Itemsets betrachten, für die alle k-elementigen 
Teilmengen häufig auftreten

• Bestimmung des Supports durch Zählen auf der Datenbank (ein Scan)
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Bestimmung des Supports durch Zählen auf der Datenbank (ein Scan)



Approaches

• Basically, there are two different ways to efficiently navigate 
th h th h f ibl bthrough the search space of possible subspaces

• Bottom-up:p

- If the cluster criterion implements the downward closure, one can use any 
bottom-up frequent itemset mining algorithm (e.g. APRIORI [AS94])

K d d l OR i d- Key: downward-closure property OR merging-procedure

• Top-down:p

- The search starts in the full d-dimensional space and iteratively learns for 
each point or each cluster the correct subspace

K d t l th t b- Key: procedure to learn the correct subspace
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Bottom-up Algorithms

• Rational:
• Start with 1-dimensional subspaces and merge them to compute higher 

dimensional ones

• Most approaches transfer the problem of subspace search into frequent 
item set miningitem set mining

- The cluster criterion must implement the downward closure property
If the criterion holds for any k-dimensional subspace S, then it also holds for any 
(k 1) dimensional projection of S(k–1)-dimensional projection of S

Use the reverse implication for pruning:

If the criterion does not hold for a (k–1)-dimensional projection of S, then the 
criterion also does not hold for Scriterion also does not hold for S

- Apply any frequent itemset mining algorithm (e.g. APRIORI)

• Some approaches use other search heuristics like best-first-search, greedy-
search, etc.

- Better average and worst-case performance

No guaranty on the completeness of results
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- No guaranty on the completeness of results



Bottom-up Algorithms

• Downward-closure property
if C is a dense set of points in s bspace Sif C is a dense set of points in subspace S,

then C is also a dense set of points in any subspace T ⊂ S

A AMinPts = 4
ε

A A

o
q

q

p
p

B B
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p and q density-connected in {A,B}, {A} and {B} p and q not density-connected in {B} and {A,B}

Bottom-up Algorithms

• Downward-closure property

the reverse implication does not hold necessarily

A

A2A2

A1

B
B1 B2 B3
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B1 B2 B3



Bottom-up Algorithms

• The key limitation: global density thresholds
ll h l i i li d i• Usually, the cluster criterion relies on density

• In order to ensure the downward closure property, the density threshold must 
be fixed

• Consequence: the points in a 20-dimensional subspace cluster must be as 
dense as in a 2-dimensional cluster

Thi i h i i i i i h d• This is a rather optimistic assumption since the data space grows 
exponentially with increasing dimensionality

• Consequences:q

- A strict threshold will most likely produce only lower dimensional 
clusters

A l h h ld ill lik l d hi h di i l l- A loose threshold will most likely produce higher dimensional clusters 
but also a huge amount of (potentially meaningless) low dimensional 
clusters
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Bottom-up Algorithms

• Properties (APRIORI-style algorithms):
G i f ll l i ll b l i l• Generation of all clusters in all subspaces => overlapping clusters

• Subspace clustering algorithms usually rely on bottom-up subspace search

• Worst-case: complete enumeration of all subspaces i e O(2d) timeWorst case: complete enumeration of all subspaces, i.e. O(2 ) time

• Complete results
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Bottom-up Algorithms

• CLIQUE [AGGR98]
Cl d l• Cluster model

- Each dimension is partitioned into ξ equi-sized intervals called units

- A k-dimensional unit is the intersection of k 1-dimensional units (fromA k dimensional unit is the intersection of k 1 dimensional units (from 
different dimensions)

- A unit u is considered dense if the fraction of all data points in u exceeds 
h h h ldthe threshold τ

- A cluster is a maximal set of connected dense units

2-dimensional

ξ = 8
τ = 0.12

dense unit

2 dimensional cluster
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2-dimensional cluster

Bottom-up Algorithms

• Downward-closure property holds for dense units

• Algorithm• Algorithm

- All dense cells are computed using APRIORI-style search

- A heuristic based on the coverage of a subspace is used to further prune g p p
units that are dense but are in less interesting subspaces

(coverage of subspace S = fraction of data points covered by the dense 
units of S)units of S)

- All connected dense units in a common subspace are merged to generate 
the subspace clusters
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Bottom-up Algorithms

• Discussion

Input: ξ and τ specifying the density threshold- Input: ξ and τ specifying the density threshold

- Output: all clusters in all subspaces, clusters may overlap

- Uses a fixed density threshold for all subspaces (in order to ensure the y p (
downward closure property)

- Simple but efficient cluster model
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Bottom-up Algorithms

• ENCLUS [CFZ99]
Cl d l fi d id i il C Q• Cluster model uses a fixed grid similar to CLIQUE

• Algorithm first searches for subspaces rather than for dense units

• Subspaces are evaluated following three criteriaSubspaces are evaluated following three criteria

- Coverage (see CLIQUE)

- Entropy
Indicates how densely the points are packed in the corresponding subspace (the higher 
the density, the lower the entropy)

Implements the downward closure property

- Correlation
Indicates how the attributes of the corresponding subspace are correlated to each other

Implements an upward closure propertyp e e s upw d c osu e p ope y

113



Bottom-up Algorithms

• Subspace search algorithm is bottom-up similar to CLIQUE but determines 
subspaces havingsubspaces having

Entropy < ω and Correlation > ε

Low entropy (good clustering)

High entropy (bad clustering) Low correlation (bad clustering)

• Discussion

High correlation (good clustering)

- Input: thresholds ω and ε
- Output: all subspaces that meet the above criteria (far less than CLIQUE), 

clusters may overlapclusters may overlap

- Uses fixed thresholds for entropy and correlation for all subspaces

- Simple but efficient cluster model
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Bottom-up Algorithms

• drawback of grid-based approaches:
choice of ξ and τchoice of ξ and τ

cluster for τ = 4
(is C2 a cluster?) C1

for τ > 4: no cluster found
(esp. C1 is lost)

C2C2

• motivation for density-based approachesmotivation for density based approaches
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Bottom-up Algorithms

• SUBCLU [KKK04]
Cl d l• Cluster model:

- Density-based cluster model of DBSCAN [EKSX96]

- Clusters are maximal sets of density-connected pointsClusters are maximal sets of density connected points

- Density connectivity is defined based on core points

- Core points have at least MinPts points in their ε-neighborhood

MinPts=5p

qo
p

MinPts=5

o
p

q

MinPts=5

Detects clusters of arbitrary size and shape (in the corresponding

q

- Detects clusters of arbitrary size and shape (in the corresponding 
subspaces)

• Downward-closure property holds for sets of density-connected points
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Bottom-up Algorithms

• Algorithm

All subspaces that contain any density connected set are computed using- All subspaces that contain any density-connected set are computed using 
the bottom-up approach

- Density-connected clusters are computed using a specialized DBSCAN 
run in the resulting subspace to generate the subspace clusters

i i• Discussion

- Input: ε and MinPts specifying the density threshold

- Output: all clusters in all subspaces clusters may overlap- Output: all clusters in all subspaces, clusters may overlap

- Uses a fixed density threshold for all subspaces

- Advanced but costly cluster model
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Bottom-up Algorithms

• FIRES[KKRW05]
• Proposes a bottom-up approach that uses different heuristic for subspace 

search

• 3-Step algorithm

Starts with 1 dimensional clusters called base clusters (generated by- Starts with 1-dimensional clusters called base clusters (generated by 
applying any traditional clustering algorithm to each 1-dimensional 
subspace)

- Merges these clusters to generate subspace cluster approximations by 
applying a clustering of the base clusters using a variant of DBSCAN 
(similarity between two clusters C1 and C2 is defined by |C1 ∩ C2|)( y y | |)

- Refines the resulting subspace cluster

approximations cC

cAC

Apply any traditional clustering

algorithm on the points within the

approximations

subspace
cluster

cB

basecluster cAB

118

Prune lower dimensional projections
cA

Bottom-up Algorithms

• Discussion

Input:- Input:
Three parameters for the merging procedure of base clusters

Parameters for the clustering algorithm to create base clusters and for refinement

- Output: clusters in maximal dimensional subspaces, clusters may overlap

- Allows overlapping clusters (subspace clustering) but avoids complete 
enumeration; runtime of the merge step is O(d)enumeration; runtime of the merge step is O(d)

- Output heavily depends on the accuracy of the merge step which is a 
rather simple heuristic and relies on three sensitive parameters

- Cluster model can be chosen by the user
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Bottom-up Algorithms

• DiSH [ABK+07a]
d• Idea:

- Not considered so far: lower dimensional clusters embedded in higher 
dimensional ones

2D cluster A

x
xx

x x 2D 2D

2D cluster B subspace cluster hierarchy

xx
x x

l l 2

x

x
x

x
x

x

x
x

x x

x
x

2D
cluster A

2D
cluster Bx

x

x

x

x
x

x

x

x

x
x

level 2

1D cluster C
x

x
xxx

x

x 1D
cluster C

x x

x x

x

1D
cluster D

1D cluster D level 1

- Now: find hierarchies of subspace clusters

1D cluster C
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- Integrate a proper distance function into hierarchical clustering

Bottom-up Algorithms

• Distance measure that captures subspace hierarchies assigns

1 if both points share a common 1D subspace cluster- 1 if both points share a common 1D subspace cluster

- 2 if both points share a common 2D subspace cluster
- …

• Sharing a common k-dimensional subspace cluster means

- Both points are associated to the same k-dimensional subspace cluster

B h i i d diff (k 1) di i l b- Both points are associated to different (k-1)-dimensional subspace 
clusters that intersect or are parallel (but not skew)

• This distance is based on the subspace dimensionality of each point pp y p p
representing the (highest dimensional) subspace in which p fits best

- Analyze the local ε-neighborhood of p along each attribute a

> if it t i th i t i i t ti f=> if it contains more than μ points: a is interesting for p

- Combine all interesting attributes such that the ε-neighborhood of p in the 
subspace spanned by this combination still contains at least μ points (e.g. 
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p p y μ p ( g
use APRIORI algorithm or best-first search)



Bottom-up Algorithms

• Discussion

Input: ε and μ specify the density threshold for computing the relevant- Input: ε and μ specify the density threshold for computing the relevant 
subspaces of a point

- Output: a hierarchy of subspace clusters displayed as a graph, clusters 
may overlap (but only w.r.t. the hierarchical structure!)

- Does not rely on a global density threshold

Complex but costly cluster model- Complex but costly cluster model
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Top-down Algorithms

• Rational:
Cl b d h• Cluster-based approach:

- Learn the subspace of a cluster in the entire d-dimensional feature space

- Start with full-dimensional clustersStart with full dimensional clusters

- Iteratively refine the cluster memberships of points and the subspaces of 
the cluster

• Instance-based approach:

- Learn for each point its subspace preference in the entire d-dimensional 
feature spacefeature space

- The subspace preference specifies the subspace in which each point 
“clusters best”

- Merge points having similar subspace preferences to generate the clusters
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Top-down Algorithms

• The key problem: How should we learn the subspace preference of 
l t i t?a cluster or a point?

• Most approaches rely on the so-called “locality assumption”

- The subspace is usually learned from the local neighborhood of clusterThe subspace is usually learned from the local neighborhood of cluster 
representatives/cluster members in the entire feature space:

Cluster-based approach: the local neighborhood of each cluster representative is 
evaluated in the d-dimensional space to learn the “correct” subspace of the clusterevaluated in the d-dimensional space to learn the correct  subspace of the cluster

Instance-based approach: the local neighborhood of each point is evaluated in the d-
dimensional space to learn the “correct” subspace preference of each point

The locality assumption: the subspace preference can be learned from the- The locality assumption: the subspace preference can be learned from the 
local neighborhood in the d-dimensional space

Oth h l th b f f l t i t f• Other approaches learn the subspace preference of a cluster or a point from 
randomly sampled points

124

Top-down Algorithms

• Discussion:
li i• Locality assumption

- Recall the effects of the curse of dimensionality on concepts like “local 
neighborhood”g

- The neighborhood will most likely contain a lot of noise points

• Random sampling

- The larger the number of total points compared to the number of cluster 
points is the lower the probability that cluster members are sampledpoints is, the lower the probability that cluster members are sampled

• Consequence for both approaches

h l i d i f i l d b h i i- The learning procedure is often misled by these noise points
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Top-down Algorithms

• Properties:
Si l h f h “b ” i i i f h d i d h• Simultaneous search for the “best” partitioning of the data points and the 
“best” subspace for each partition => disjoint partitioning

• Projected clustering algorithms usually rely on top-down subspace searchj g g y y p p

• Worst-case:

- Usually complete enumeration of all subspaces is avoided

- Worst-case costs are typically in O(d2)
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Top-down Algorithms

• PROCLUS [APW+99]
d id l d l• K-medoid cluster model

- Cluster is represented by its medoid

- To each cluster a subspace (of relevant attributes) is assignedTo each cluster a subspace (of relevant attributes) is assigned

- Each point is assigned to the nearest medoid (where the distance to each 
medoid is based on the corresponding subspaces of the medoids)

- Points that have a large distance

to its nearest medoid are

classified as noiseclassified as noise
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Top-down Algorithms

• 3-Phase Algorithm

Initialization of cluster medoids- Initialization of cluster medoids
A superset M of b.k medoids is computed from a sample of a.k data points such that 
these medoids are well separated

k d l h d id f M th i iti l l t t tik randomly chosen medoids from M are the initial cluster representatives

Input parameters a and b are introduced for performance reasons

- Iterative phase works similar to any k-medoid clustering
Approximate subspaces for each cluster C

» The locality of C includes all points that have a distance to the medoid 
of C less than the distance between the medoid of C and the medoid of 

locality of C2

mC3

the neighboring cluster

» Compute standard deviation of distances from the medoid of C to the 
points in the locality of C along each dimensionmC1

mC2

» Add the dimensions with the smallest standard deviation to the relevant 
dimensions of cluster C such that

- in summary k.l dimensions are assigned to all clusters

mC1

locality of C1
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in summary k l dimensions are assigned to all clusters

- each cluster has at least 2 dimensions assigned

locality of C1

Top-down Algorithms

Reassign points to clusters

» Compute for each point the distance to each medoid taking only the» Compute for each point the distance to each medoid taking only the 
relevant dimensions into account

» Assign points to a medoid minimizing these distances
Termination (criterion not really clearly specified in [APW+99])Termination (criterion not really clearly specified in [APW+99])

» Terminate if the clustering quality does not increase after a given 
number of current medoids have been exchanged with medoids from M

(it i t l if th i th hidd t i th t it i )(it is not clear, if there is another hidden parameter in that criterion)

- Refinement
Reassign subspaces to medoids as above (but use only the points assigned to each 
cluster rather than the locality of each cluster)

Reassign points to medoids; points that are not in the locality of their corresponding 
d id l ifi d imedoids are classified as noise
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Top-down Algorithms

• Discussion

Input:- Input:
Number of clusters k

Average dimensionality of clusters l

Factor a to determine the size of the sample in the initialization step

Factor b to determine the size of the candidate set for the medoids

- Output: partitioning of points into k disjoint clusters and noise, each 
cluster has a set of relevant attributes specifying its subspace

- Relies on cluster-based locality assumption: subspace of each cluster is 
learned from local neighborhood of its medoidlearned from local neighborhood of its medoid

- Biased to find l-dimensional subspace clusters

- Simple but efficient cluster model
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Top-down Algorithms

• PreDeCon [BKKK04]
Cl d l• Cluster model:

- Density-based cluster model of DBSCAN [EKSX96] adapted to 
projected clusteringp j g

For each point p a subspace preference indicating the subspace in which p clusters 
best is computed

ε-neighborhood of a point p is constrained by the subspace preference of pg p p y p p p

Core points have at least MinPts other points in their ε-neighborhood

Density connectivity is defined based on core points

Clusters are maximal sets of density connected pointsy p

- Subspace preference of a point p is d-dimensional vector wp=(w1,…,wd), 
entry wpi represents dimension i with

⎧ > δif ARV1 VAR ≤ δ

VARi is the variance of the ε-neighborhood of p in the entire d-

⎩
⎨
⎧

≤
>

=
δκ
δ

i

i
pi if

if
w

AR

AR

V

V1 VAR ≤ δ

131

VARi is the variance of the ε neighborhood of p in the entire d
dimensional space, δ and κ >> 1 are input parameters



Top-down Algorithms

• Algorithm

PreDeCon applies DBSCAN with a weighted Euclidean distance function- PreDeCon applies DBSCAN with a weighted Euclidean distance function

dist(p,q) = max {distp(p,q), distq(q,p)}

2
)(),( ∑ −⋅=

i
iipip qpwqpdist

(p,q) { p(p,q), q(q,p)}

- Instead of shifting spheres (full-dimensional Euclidean ε-neighborhoods), 
clusters are expanded by shifting axis-parallel ellipsoids (weighted 
Euclidean ε neighborhoods)Euclidean ε-neighborhoods)

- Note: In the subspace of the cluster (defined by the preference of its 
members), we shift spheres (but this intuition may be misleading)
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Top-down Algorithms

• Discussion

Input:- Input:
δ and κ to determine the subspace preference

λ specifies the maximal dimensionality of a subspace cluster

ε and MinPts specify the density threshold

- Output: a disjoint partitioning of data into clusters and noise

- Relies on instance-based locality assumption: subspace preference ofRelies on instance based locality assumption: subspace preference of 
each point is learned from its local neighborhood

- Advanced but costly cluster model
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Summary

• The big picture

• Basic assumption:

“subspace search space is limited to axis-parallel subspaces”

• Algorithmic view:

- Bottom-up subspace searchp p

- Top-down subspace search

P bl i t d i• Problem-oriented view:

- Subspace clustering (overlapping clusters)

- Projected clustering (disjoint partitioning)Projected clustering (disjoint partitioning)
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Summary

• How do both views relate?
S b l i l i h l i l• Subspace clustering algorithms compute overlapping clusters

- Many approaches compute all clusters in all subspaces
These methods usually implement a bottom-up search strategy á la itemset miningy p p gy g

These methods usually rely on global density thresholds to ensure the downward 
closure property

These methods usually do not rely on the locality assumptiony y y p

These methods usually have a worst case complexity of O(2d)

- Other focus on maximal dimensional subspace clusters
These methods usually implement a bottom-up search strategy based on simple butThese methods usually implement a bottom-up search strategy based on simple but 
efficient heuristics

These methods usually do not rely on the locality assumption

These methods usually have a worst case complexity of at most O(d2)These methods usually have a worst case complexity of at most O(d )
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Summary

• The big picture
j d l i l i h di j i i i i f h d• Projected clustering algorithms compute a disjoint partitioning of the data

- They usually implement a top-down search strategy

- They usually rely on the locality assumptionThey usually rely on the locality assumption

- They usually do not rely on global density thresholds

- They usually scale at most quadratic in the number of dimensions
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Outline: Pattern-based Clustering

• Challenges and Approaches, Basic Models for
• Constant Biclusters

• Biclusters with Constant Values in Rows or Columns

• Pattern-based Clustering: Biclusters with Coherent Values

• Biclusters with Coherent Evolutions

• Algorithms for
• Constant Biclusters

• Pattern-based Clustering: Biclusters with Coherent Values

• SummarySummary
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Challenges and Approaches, Basic Models

Pattern-based clustering relies on patterns in the data matrix.

• Simultaneous clustering of rows and columns of the data matrix 
(hence biclustering).

D t t i A (X Y) ith t f X d t f l Y• Data matrix A = (X,Y) with set of rows X and set of columns Y

• axy is the element in row x and column y.

• submatrix AIJ = (I,J) with subset of rows I ⊆ X and subset of columns J ⊆ Y IJ ( , ) ⊆ ⊆
contains those elements aij with i ∈ I und j ∈ J

Y

X

y j

i

AXY

A

J = {y,j}

X x AIJ
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axyI = {i,x}



Challenges and Approaches, Basic Models

General aim of biclustering approaches:

Find a set of submatrices {(I1,J1),(I2,J2),...,(Ik,Jk)} of the matrix 
A=(X,Y) (with Ii ⊆ X and Ji ⊆ Y for i = 1,...,k) where each 
submatrix (= bicluster) meets a given homogeneity criterionsubmatrix (= bicluster) meets a given homogeneity criterion.
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Challenges and Approaches, Basic Models

• Some values often used by bicluster 
models:models:

• mean of row i: 

∑1
• mean of all elements:

∑1∑
∈

=
Jj

ijiJ a
J

a ∑
∈∈

=
JjIi

ijIJ a
JI

a

1

1

,

• mean of column j:

∑= aa
1

∑
∈

=
Jj

Ija
J

1

∑
∈

=
Ii

ijIj a
I

a

∑
∈

=
Ii

iJa
I

1
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Challenges and Approaches, Basic Models

Different types of biclusters (cf. [MO04]):

• constant biclusters

• biclusters with
• constant values on columns

• constant values on rows

• biclusters with coherent values (aka pattern based clustering)• biclusters with coherent values (aka. pattern-based clustering)

• biclusters with coherent evolutions
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Challenges and Approaches, Basic Models

Constant biclusters
ll i h id i l l i l d ib• all points share identical value in selected attributes.

• The constant value μ is a typical value for the clusterThe constant value μ is a typical value for the cluster.

• Cluster model:

μ=ija

• Obviously a special case of an axis-parallel subspace cluster.
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Challenges and Approaches, Basic Models

• example – embedding 3-dimensional space:
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Challenges and Approaches, Basic Models

• example – 2-dimensional subspace:

• points located on the bisecting line of participating attributes

145



Challenges and Approaches, Basic Models

• example – transposed view of attributes:

• pattern: identical constant lines
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Challenges and Approaches, Basic Models

• real-world constant biclusters will not be perfect

• cluster model relaxes to:• cluster model relaxes to:

μ≈ija

• Optimization on matrix A = (X,Y) may lead to |X|·|Y| singularity-biclusters each 
i icontaining one entry.

• Challenge: Avoid this kind of overfitting.
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Challenges and Approaches, Basic Models

Biclusters with constant values on columns
Cl d l f A ( )• Cluster model for AIJ = (I,J):

ca jij += μ

JjIi

jj

∈∈∀ ,

• adjustment value cj for column j ∈ J

• results in axis-parallel subspace clusters
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Challenges and Approaches, Basic Models

• example – 3-dimensional embedding space:
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Challenges and Approaches, Basic Models

• example – 2-dimensional subspace:
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Challenges and Approaches, Basic Models

• example – transposed view of attributes:

• pattern: identical lines
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Challenges and Approaches, Basic Models

Biclusters with constant values on rows
Cl d l f A ( )• Cluster model for AIJ = (I,J):

ra iij += μ

JjIi

j

∈∈∀ ,

• adjustment value ri for row i ∈ I
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Challenges and Approaches, Basic Models

• example – 3-dimensional embedding space:

• in the embedding space, points build a sparse hyperplane parallel to 
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irrelevant axes



Challenges and Approaches, Basic Models

• example – 2-dimensional subspace:

• points are accommodated on the bisecting line of participating 

154

attributes

Challenges and Approaches, Basic Models

• example – transposed view of attributes:

• pattern: parallel constant lines
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Challenges and Approaches, Basic Models

Biclusters with coherent values

• based on a particular form of covariance between rows and 
columns

cra ++= μ

JjIi

cra jiij

∈∈∀

++=

,

μ

j,

• special cases:
• cj = 0 for all j constant values on rows

• ri = 0 for all i constant values on columns
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Challenges and Approaches, Basic Models

• embedding space: sparse hyperplane parallel to axes of irrelevant 
tt ib tattributes
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Challenges and Approaches, Basic Models

• subspace: increasing one-dimensional line
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Challenges and Approaches, Basic Models

• transposed view of attributes:

• pattern: parallel lines
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Challenges and Approaches, Basic Models

Biclusters with coherent evolutions

• for all rows, all pairs of attributes change simultaneously
• discretized attribute space: coherent state-transitions

• change in same direction irrespective of the quantity
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Challenges and Approaches, Basic Models

• Approaches with coherent state-transitions: [TSS02,MK03]

• reduces the problem to grid-based axis-parallel approach:
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Challenges and Approaches, Basic Models

pattern: all lines cross border between 

162

states (in the same direction)

Challenges and Approaches, Basic Models

• change in same direction – general idea: find a subset of rows and 
l h t ti f th t f l i t h th tcolumns, where a permutation of the set of columns exists such that 

the values in every row are increasing

• clusters do not form a subspace but rather half spaces• clusters do not form a subspace but rather half-spaces

• related approaches:
• quantitative association rule mining [Web01 RRK04 GRRK05]• quantitative association rule mining [Web01,RRK04,GRRK05]

• adaptation of formal concept analysis [GW99] to numeric data [Pfa07]
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Challenges and Approaches, Basic Models

• example – 3-dimensional embedding space
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Challenges and Approaches, Basic Models

• example – 2-dimensional subspace
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Challenges and Approaches, Basic Models

• example – transposed view of attributes

• pattern: all lines increasing
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Challenges and Approaches, Basic Models

Matrix-Pattern Spatial PatternBicluster Model

Constant Bicluster

re ci
al

iz
ed no change of values

axis-parallel, located
on bisecting line

i ll l

Constant Columns Constant Rows

m
or

sp
ec change of values

only on
columns

axis-parallel

axis-parallel sparse

ra
li

ty

Constant Columns Constant Rows
or only
on rows

hyperplane – projected
space: bisecting line

axis-parallel sparse hyperplane – de
r 

of
 g

en
er

Coherent Values
change of values
by same quantity
(shifted pattern)

axis parallel sparse hyperplane 
projected space: increasing line
(positive correlation)

i i

no
 o

rd

Coherent Evolutions

m
or

e
ge

ne
ra

l

change of values
in same direction

state-transitions:
grid-based axis-parallel

change in same direction:
h lf ( l i l
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in same direction half-spaces (no classical
cluster-pattern)



Algorithms for Constant Biclusters

• classical problem statement by Hartigan [Har72]• classical problem statement by Hartigan [Har72]

• quality measure for a bicluster: variance of the submatrix AIJ:

( ) ( )2∑
∈∈

−=
JjIi

IJijIJ aaAVAR

• avoids partitioning into |X| |Y| singularity biclusters (optimizing the sum of

, ∈∈ JjIi

• avoids partitioning into |X|·|Y| singularity-biclusters (optimizing the sum of 
squares) by comparing the reduction with the reduction expected by chance

• recursive split of data matrix into two partitions

• each split chooses the maximal reduction in the overall sum of squares for all 
biclusters
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Biclusters with Constant Values in Rows or Columns

• simple approach: normalization to transform the biclusters into 
t t bi l t d f ll th fi t h ( [GLD00])constant biclusters and follow the first approach (e.g. [GLD00])

• some application-driven approaches with special assumptions in the 
bioinformatics community (e g [CST00 SMD03 STG+01])bioinformatics community (e.g. [CST00,SMD03,STG+01])

• constant values on columns: general axis-parallel 
subspace/projected clusteringsubspace/projected clustering

• constant values on rows: special case of general correlation 
clusteringclustering

• both cases special case of approaches to biclusters with coherent 
values
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Algorithms for Biclusters with Coherent Values

classical approach: Cheng&Church [CC00] 
i d d h bi l i l i f i d• introduced the term biclustering to analysis of gene expression data

• quality of a bicluster: mean squared residue value H

( ) ( )21( ) ( )∑
∈∈

+−−=
JjIi

IJIjiJij aaaa
JI

JIH
,

21
,

b i (I J) i id d bi l if H(I J) δ• submatrix (I,J) is considered a bicluster, if H(I,J) < δ
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Algorithms for Biclusters with Coherent Values

• δ =0 perfect bicluster:
• each row and column exhibits absolutely consistent bias• each row and column exhibits absolutely consistent bias

• bias of row i w.r.t. other rows: 

IJiJ aa −

• the model for a perfect bicluster predicts value aij by a row-constant, a column-
constant and an overall cluster constant:

IJiJ

constant, and an overall cluster-constant:

IJIjiJij aaaa −+=

IJaIjajcIJaiJairIJa −=−==μ ,,c

jiij cra ++= μ
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Algorithms for Biclusters with Coherent Values

• for a non-perfect bicluster, the prediction of the model deviates from the true 
value by a residue:value by a residue:

IJIjiJijij aaaaa −++= )res(

aaaaa +=)res(

c

IJIjiJijij aaaaa +−−=)res(

• This residue is the optimization criterion:

( ) ( )∑ += aaaaJIH 21( ) ( )∑
∈∈

+−−=
JjIi

IJIjiJij aaaa
JI

JIH
,

,
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Algorithms for Biclusters with Coherent Values

• The optimization is also possible for the row-residue of row i or 
th l id f l jthe column-residue of column j.

• Algorithm:
1 fi d δ bi l t d h b i th l ( th t1. find a δ -bicluster: greedy search by removing the row or column (or the set 

of rows/columns) with maximal mean squared residue until the remaining 
submatrix (I,J) satisfies H(I,J)< δ.

2. find a maximal δ -bicluster by adding rows and columns to (I,J) unless this 
would increase H.

3 replace the values of the found bicluster by random numbers and repeat the3. replace the values of the found bicluster by random numbers and repeat the 
procedure until k δ -biclusters are found.
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Algorithms for Biclusters with Coherent Values

Weak points in the approach of Cheng&Church:

1. One cluster at a time is found, the cluster needs to be masked in 
order to find a second cluster.

2 Thi d b i ffi i t f2. This procedure bears an inefficient performance.

3. The masking may lead to less accurate results.

4 Th ki i hibi i l l i f d4. The masking inhibits simultaneous overlapping of rows and 
columns.

5 Mi i l t b d lt ith5. Missing values cannot be dealt with.

6. The user must specify the number of clusters beforehand.
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Algorithms for Biclusters with Coherent Values

p-cluster model [WWYY02]

• p-cluster model: deterministic approachp pp

• specializes δ -bicluster-property to a pairwise property of two 
objects in two attributes:

( ) ( )( ) ( ) δ≤−−−   
22122111 jijijiji aaaa

• submatrix (I,J) is a δ -p-cluster if this property is fulfilled for any 
2x2 submatrix ({i1, i2}, {j1, j2}) where {i1, i2} ∈ I  and {j1, j2} ∈J.
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Algorithms for Biclusters with Coherent Values

Algorithm:
1. create maximal set of attributes for each pair of objects forming a 

δ l tδ -p-cluster
2. create maximal set of objects for each pair of attributes forming a 

δ -p-clusterδ p cluster
3. pruning-step
4. search in the set of submatrices

Problem: complete enumeration approach
Addressed issues:

1. multiple clusters simultaneously
4 ll f l i d l4. allows for overlapping rows and columns
6. allows for arbitrary number of clusters

Related approaches: FLOC [YWWY02],
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Related approaches: FLOC [YWWY02],
MaPle [PZC+03]

Summary

• Biclustering models do not fit exactly into the spatial intuition 
b hi d b j t d l ti l t ibehind subspace, projected, or correlation clustering.

• Models make sense in view of a data matrix.

St i t th d l ll d t l th l lit• Strong point: the models generally do not rely on the locality 
assumption.

• Models differ substantially fair comparison is a non trivial task• Models differ substantially fair comparison is a non-trivial task.

• Comparison of five methods: [PBZ+06]

R th i li d t k i i b d t t• Rather specialized task – comparison in a broad context 
(subspace/projected/correlation clustering) is desirable.

• Biclustering performs generally well on microarray data for a• Biclustering performs generally well on microarray data – for a 
wealth of approaches see [MO04].
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Outline: Arbitrarily-oriented Subspace Clustering

• Challenges and Approaches

• Correlation Clustering Algorithms

S d P ti• Summary and Perspectives
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Challenges and Approaches

• Pattern-based approaches find simple positive correlations

• negative correlations: no additive pattern
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Challenges and Approaches

• more complex correlations: out of scope of pattern-based 
happroaches

a1 – 2·a2 + a3 = 0
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Challenges and Approaches

• Pattern-based approaches find simple positive correlations

• More general approach: oriented clustering aka. generalized 
subspace/projected clustering aka. correlation clustering

N t diff t ti f “C l ti Cl t i ” i hi l i• Note: different notion of “Correlation Clustering” in machine learning 
community, e.g. cf. [BBC04]

• Assumption: any cluster is located in an arbitrarily oriented affine p y y
subspace S+a of Rd

S+a S+a

a a

182

a a

Challenges and Approaches

• Affine subspace S+a, S ⊂ Rd, affinity a∈Rd is interesting if a 
t f i t l t ithi thi bset of points clusters within this subspace

• Points may exhibit high variance in perpendicular subspace 
(Rd \ S)+a(Rd \ S)+a

S+a S+a

a a
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Challenges and Approaches

• high variance in perpendicular subspace (Rd \ S)+a   points form 
h l ithi Rd l t d i thi b (Rd \ S)+a hyperplane within Rd located in this subspace (Rd \ S)+a

• Points on a hyperplane appear to follow linear dependencies among 
the attributes participating in the description of the hyperplanethe attributes participating in the description of the hyperplane

a a
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Challenges and Approaches

• Directions of high/low variance: PCA (local application)

• locality assumption: local selection of points sufficiently reflects 
the hyperplane accommodating the points

l h b ild i i Σ f l i D f• general approach: build covariance matrix ΣD for a selection D of 
points (e.g. k nearest neighbors of a point)

1 ( ) ( )T 
1

D
Dx

DD xxxx
D

−−=Σ ∑
∈

xD: centroid of D properties of ΣD:D properties of ΣD:
• d x d
• symmetric
• positive semidefinite• positive semidefinite
• (value at row i, column j) = covariance
between dimensions i and j

i i i h di i

ijDσ
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• = variance in ith dimension
iiDσ



Challenges and Approaches

• decomposition of ΣD to eigenvalue matrix ED and eigenvector 
t i Vmatrix VD:

E di l i h ldi i l f Σ i d i d

T
DDDD VEV=Σ

• ED : diagonal matrix, holding eigenvalues of ΣD in decreasing order 
in its diagonal elements

• V : orthonormal matrix with eigenvectors of Σ ordered• VD : orthonormal matrix with eigenvectors of ΣD ordered 
correspondingly to the eigenvalues in ED

• VD : new basis, first eigenvector = direction 
of highest variance

• ED : covariance matrix of D when 
represented in new axis system VD
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Challenges and Approaches

• points forming λ-dimensional hyperplane hyperplane is 
d b th fi t λ i t ( ll d “ t ” i tspanned by the first λ eigenvectors (called “strong” eigenvectors 

– notation:     )

• subspace where the points cluster densely is spanned by the
DV
(

• subspace where the points cluster densely is spanned by the 
remaining d-λ eigenvectors (called “weak” eigenvectors –
notation:     )V̂ )

for the eigensystem, the sum of the 

DV

∑
d

smallest d-λ eigenvalues

is minimal under all possible 
t f ti i t l t ti ll

∑
+=i

Dii
e

1λ

transformations points cluster optimally 
dense in this subspace
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Challenges and Approaches

model for correlation clusters [ABK+06]:

• λ-dimensional hyperplane accommodating the points of a 
correlation cluster C⊂ Rd is defined by an equation system of d-λ
equations for d variables and the affinity (e g the mean point x ofequations for d variables and the affinity (e.g. the mean point xC of 
all cluster members):

CCC xVxV TT ˆˆ =

• equation system approximately fulfilled for all points x∈C

• quantitative model for the cluster allowing for probabilistic

CCC

• quantitative model for the cluster allowing for probabilistic 
prediction (classification)

• Note: correlations are observable, linear dependencies are merelyNote: correlations are observable, linear dependencies are merely 
an assumption to explain the observations – predictive model 
allows for evaluation of assumptions and experimental refinements
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Correlation Clustering Algorithms

ORCLUS [AY00]:

first approach to generalized projected clustering

• similar ideas to PROCLUS [APW+99]

• k-means like approach

• start with kc > k seeds

• assign cluster members according to distance function based on the 
eigensystem of the current cluster (starting with axes of data space, 
i E lid di t )i.e. Euclidean distance)

• reduce kc in each iteration by merging best-fitting cluster pairs
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Correlation Clustering Algorithms

• best fitting pair of clusters: least average distance in the projected 
d b k i t f th d l tspace spanned by weak eigenvectors of the merged clusters

• assess average distance in all merged pairs of clusters and 
finally merge the best fitting pair
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finally merge the best fitting pair

Correlation Clustering Algorithms

• adapt eigensystem to the updated cluster

• new iteration: assign points according to updated eigensystems 
(distance along weak eigenvectors)

di i lit d ll d d t ifi d l l• dimensionality gradually reduced to a user-specified value l

• initially exclude only eigenvectors with very high variance
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Correlation Clustering Algorithms

properties:

• finds k correlation clusters (user-specified)

• higher initial kc higher runtime, probably better results

• biased to average dimensionality l of correlation clusters (user 
specified)

l b d l li i b f h l i• cluster-based locality assumption: subspace of each cluster is 
learned from its current members (starting in the full dimensional 
space)space)
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Correlation Clustering Algorithms

4C [BKKZ04]

• density-based cluster-paradigm (cf. DBSCAN [EKSX96])

• extend a cluster from a seed as long as a density-criterion is 
f lfill d th i i k th d l ll d t b bj tfulfilled – otherwise pick another seed unless all data base objects 
are assigned to a cluster or noise

• density criterion: minimal required number of points in the• density criterion: minimal required number of points in the 
neighborhood of a point

• neighborhood: distance between two points ascertained based on• neighborhood: distance between two points ascertained based on 
the eigensystems of both compared points
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Correlation Clustering Algorithms

• eigensystem of a point p based on its ε-neighborhood in Euclidean 
space

• threshold δ discerns large from small eigenvalues

i i l t i E l l i l b 1 ll• in eigenvalue matrix Ep replace large eigenvalues by 1, small 
eigenvalues by κ>>1

• adapted eigenvalue matrix yields a correlation similarity matrix for• adapted eigenvalue matrix yields a correlation similarity matrix for 
point p:

TVEV ′ ppp VEV
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Correlation Clustering Algorithms

• effect on distance measure:

κ
ε

p

ε

• distance of p and q w.r.t. p: ( ) ( )TT qpVEVqp ppp −⋅⋅′⋅⋅−

• distance of p and q w.r.t. q: ( ) ( )TT pqVEVpq qqq −⋅⋅′⋅⋅−
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Correlation Clustering Algorithms

• symmetry of distance measure by choosing the maximum:

p
q

p
q

• p and q are correlation-neighbors if

( ) ( )
ε≤⎪⎬

⎫
⎪
⎨
⎧ −⋅⋅′⋅⋅− TT ,

max
qpVEVqp ppp

( ) ( )
ε≤

⎪⎭
⎬

⎪⎩
⎨

−⋅⋅′⋅⋅− TT
max

pqVEVpq qqq

196

Correlation Clustering Algorithms

properties:
fi d bit b f l t• finds arbitrary number of clusters

• requires specification of density-thresholds
• μ (minimum number of points): rather intuitiveμ (minimum number of points): rather intuitive
• ε (radius of neighborhood): hard to guess

• biased to maximal dimensionality λ of correlation clusters (user 
specified)

• instance-based locality assumption: correlation distance measure 
specifying the subspace is learned from local neighborhood of eachspecifying the subspace is learned from local neighborhood of each 
point in the d-dimensional space

enhancements also based on PCA:e a ce e s a so based o C :
• COPAC [ABK+07c] and
• ERiC [ABK+07b]
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Correlation Clustering Algorithms

different correlation primitive: Hough-transform

• points in data space are mapped to functions in the parameter spacep p pp p p

( ) ( ) ( )
id

pnpf αααα cossin
1

⎟⎟
⎞

⎜⎜
⎛
∏∑
−

• functions in the parameter space define all lines possibly crossing

( ) ( ) ( )i
j

j
i

idp pnpf αααα cossin,,,
11

11 ⋅⎟⎟
⎠

⎜⎜
⎝
⋅== ∏∑

==
−K
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• functions in the parameter space define all lines possibly crossing 
the point in the data space

Correlation Clustering Algorithms

• Properties of the transformation
• Point in the data space = sinusoidal curve in parameter space

• Point in parameter space = hyper-plane in data space

• Points on a common hyper-plane in data space = sinusoidal curves through a 
common point in parameter spacep p p

• Intersections of sinusoidal curves in parameter space = hyper-plane through the 
corresponding points in data space
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Correlation Clustering Algorithms

Algorithm based on the Hough-transform: CASH [ABD+08]

dense regions in parameter space correspond to linear structures in 
data space
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Correlation Clustering Algorithms

Idea: find dense regions in parameter space

• construct a grid by recursively splitting the parameter space (best-
first-search)

id tif d id ll i t t d b t i ti• identify dense grid cells as intersected by many parametrization 
functions

• dense grid represents (d 1) dimensional linear structure• dense grid represents (d-1)-dimensional linear structure

• transform corresponding data objects in corresponding (d-1)-
dimensional space and repeat the search recursivelydimensional space and repeat the search recursively

201



Correlation Clustering Algorithms

properties:

• finds arbitrary number of clusters

• requires specification of depth of search (number of splits per axis)

• requires minimum density threshold for a grid cell

• Note: this minimum density does not relate to the locality 
i CASH i l b l h l i l iassumption: CASH is a global approach to correlation clustering

• search heuristic: linear in number of points, but ~ d4

• But: complete enumeration in worst case (exponential in d)
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Summary and Perspectives

• PCA: mature technique, allows construction of a broad range of 
i il it f l l l ti f tt ib tsimilarity measures for local correlation of attributes

• drawback: all approaches suffer from locality assumption

f ll l i PCA i l ti l t i i “ ll ”• successfully employing PCA in correlation clustering in “really” 
high-dimensional data requires more effort henceforth

• new approach based on Hough transform:• new approach based on Hough-transform:
• does not rely on locality assumption

• but worst case again complete enumerationbut worst case again complete enumeration
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Summary and Perspectives

• some preliminary approaches base on concept of self-similarity 
(i t i i di i lit f t l di i )(intrinsic dimensionality, fractal dimension): 
[BC00,PTTF02,GHPT05]

• interesting idea provides quite a different basis to grasp• interesting idea, provides quite a different basis to grasp 
correlations in addition to PCA

• drawback: self-similarity assumes locality of patterns even bydrawback: self similarity assumes locality of patterns even by 
definition
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Summary and Perspectives

comparison: correlation clustering – biclustering:

• model for correlation clusters more general and meaningful

• models for biclusters rather specialized

• in general, biclustering approaches do not rely on locality 
assumption

l l h d i li i f d l k• non-local approach and specialization of models may make 
biclustering successful in many applications

l ti l t i i th l h b t th• correlation clustering is the more general approach but the 
approaches proposed so far are rather a first draft to tackle the 
complex problemcomplex problem
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Summary

• Let’s take a global view:
di i l l i i hi h di i l i lik l i l• Traditional clustering in high dimensional spaces is most likely meaningless 

with increasing dimensionality (curse of dimensionality)

• Clusters may be found in (generally arbitrarily oriented) subspaces of the data y (g y y ) p
space

• So the general problem of clustering high dimensional data is:

“fi d i i i f h d h h l i i i“find a partitioning of the data where each cluster may exist in its own 
subspace”

- The partitioning need not be unique (clusters may overlap)

- The subspaces may be axis-parallel or arbitrarily oriented

• Analysis of this general problem:
A ï l ti ld i ll ibl b t l k f l t- A naïve solution would examine all possible subspaces to look for clusters

- The search space of all possible arbitrarily oriented subspaces is infinite

- We need assumptions and heuristics to develop a feasible solution
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Summary

• What assumptions did we get to know here?
The search space is restricted to certain subspaces- The search space is restricted to certain subspaces

- A clustering criterion that implements the downward closure property enables 
efficient search heuristics

h l li i bl ffi i h h i i- The locality assumption enables efficient search heuristics

- Assuming simple additive models (“patterns”) enables efficient search heuristics

- …

• Remember: also the clustering model may rely on further assumptions that 
have nothing to do with the infinite search space

Number of clusters need to be specified- Number of clusters need to be specified

- Results are not deterministic e.g. due to randomized procedures

- …

• We can classify the existing approaches according to the assumptions they 
made to conquer the infinite search space
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Summary

• The global view
Subspace clustering/projected clustering:- Subspace clustering/projected clustering:

The search space is restricted to axis-parallel subspaces

A clustering criterion that implements the downward closure property is  defined 
(usually based on a global density threshold)(usually based on a global density threshold)

The locality assumption enables efficient search heuristics

- Bi-clustering/pattern-based clustering:
Th h i t i t d t i l f d l ti f b h lfThe search space is restricted to special forms and locations of subspaces or half-
spaces

Over-optimization (e.g. singularity clusters) is avoided by assuming a predefined 
number of clustersnumber of clusters

- Correlation clustering:
The locality assumption enables efficient search heuristics

• Any of the proposed methods is based on at least one assumption because 
otherwise, it would not be applicable
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Summary

• The global view
S b l t i / j t d l t i- Subspace clustering/projected clustering:

Search space restricted to axis-parallel subspaces

Clustering criterion implementing the downward closure property (usually based on 
l b l d it th h ld)a global density threshold)

Locality assumption

…
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Summary

• The global view

Bi l i / b d l i- Bi-clustering/pattern-based clustering:
Search space restricted to special forms and locations of subspaces or half-spaces

Greedy-search heuristics based on statistical assumptions
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Summary

• The global view

C l i l i- Correlation clustering:
Locality assumption

Greedy-search heuristics

a1 – 2·a2 + a3 = 0a1 2 a2 + a3  0
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Summary

• The global view

Subspace / Projected

Matrix-Pattern Spatial Pattern

Constant values 
in columns, Axis-parallel

Problem

p j
Clustering

,
change of values 
only on rows

From constant

Axis parallel 
hyperplanes

Pattern-based / Bi-
Cl t i

From constant 
values in rows 
and columns (no 
change of values)
to arbitrary

Special cases 
of axis-parallel 
to special 
cases of Clusteringto arbitrary 

change of values 
in common 
direction

cases of 
arbitrarily 
oriented 
hyperplanes

CorrelationNo particular 
tt

Arbitrarily 
oriented 
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