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Sequence Data

• So far we dealt with mostly structured, “flat” data from relational
tables that provide a snapshot of the data at a particular moment

• OK, in streams, the data can be updated inducing an update of
patterns as well

• But very often, the world is different: just looking at a snapshot
cannot reveal important insights into the (dynamics of) data

• Rather, we need to look at a sequences of snapshots of data to e.g.
analyze:

• How patterns are changing/evolving from one snapshot to the other
• If certain patterns appear in sequential/periodical fashion
• If there are “sequential” patterns
• . . .
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Sequence Data

• Sequence Data allow for measuring/monitoring phenomena over
time (Time Series Data) or – more generally – in a given order (of
sequential events) without a concrete notion of time

• Examples:
• Sequence Data: Sequence of purchases

Sequential Pattern: Customers buying A are likely to buy B within the
next 4 transactions

• Time Series Data: Stock rates over time
Pattern: find stocks with similar behavior (over the entire time frame or
in a sub-interval of time)

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 4 – Sequential Data — 1. Intorduction 5/92



Kapitel 2: Sequences i

1. Intorduction to Sequential Data

2. Sequence Data

3. Time Series Data

4. Spatio-temporal Data

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 4 – Sequential Data — 2. Sequences 6/92



Sequence Data

Sequences

• A sequence S of length n is a mapping of the index set
In = {1,2, . . . ,n} into a domain O:

S : In→ O

• The set of all sequences of length n is On = OIn = {In→ O}
• The set of all sequences over domain O is O∗ = {In→ O |n ∈N0}
• Sequences can be classified by their domain O

• Categorical values (nominal values, alphabets, enumeration types)
• Continuous values (real numbers)
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Sequence Data

• Examples
• Text data {a, ...,Z ,0, ...,9, ...}∗

• Video data images∗

• Music data notes∗

• Protein sequences AminoAcids∗

• Gene sequences {C,G,A,T}∗

• ...

• Time series are of course special types of sequences
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Similarity Models for Sequences

• Very often, distance-based models are employed for sequence data

• The most important question: how to account for the sequential
nature of the data?

• We can use similarity models that do the job, e.g.:
• Hamming Distance

• Simple approach similar to the Euclidean Distance on vector data
• Naive alignment of sequences

• Edit Distance
• Transformation-based approach that measures the edit costs for

transforming one sequence into another
• Byproduct: (Optimal) alignment of sequences

• Longest Common Subsequences (LCSS)
• Utilization of a third common basis sequence
• Variant of the edit distance
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Hamming Distance

• Hamming Distance counts the number of positions with different
elements

• It thus accounts for the fact that objects are “sequences of some
symbols”

• Given two sequences Q = (q1, ...,qn) and S = (s1, ...,sn) of the
same length, the Hamming distance is defined as:

DHamming(Q,S) =
n

∑
i=1

δ (qi ,si )

with

δ (x ,y) =

{
0 if x = y
1 else

• Use artificial symbols as a fill-up for sequences of different length
(see example on the next slide)
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Hamming Distance

• Example:

Q = t h r e e (| = match, x = mismatch)
| x x | x

S = t r e e . DHamming(Q,S) = 3

• Observations
• Very strict matching similar to the Euclidean Distance
• Similar subsequences are not considered (aligned appropriately)

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 4 – Sequential Data — 2. Sequences 11/92



Hamming Distance

• Example of misaligned subsequences:

Q = T Ü R S C H L O S S
| x | | | | x x | x

S = T O R S C H U S S .

Q = T Ü R S C H L O S S
x x x x x x x x x x

R = A B S C H U S S . .

DHamming(Q,S) = 4 and DHamming(Q,R) = 10

• Similarity of subsequences SCHLOSS and SCHUSS is not
considered (the correct alignment in S is by chance)
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Edit Distance

• Idea: Dissimilarity between two sequences is defined as the minimal
number of edit operations (insertions, deletions, substitutions) for
transforming one sequence into another

• Example: Given the following two sequences Q and S, two deletions
(♦) and three substitutions (:) are necessary for the transformation
(five symbols are matches (|))

Q = T Ü R S C H L O S S
♦ : : | | | ♦ : | |

S = . A B S C H . U S S

DEdit (Q,S) = 5

• The mapping between elements is called optimal alignment and the
Edit Distance represents the alignment cost
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Edit Distance

• Formally: Given a sequence Q = (q1, ...,qn) let
start(Q) = (q1, ...,qn−1) denote the prefix of Q and last(Q) = qn the
last element of Q

• Given two sequences Q = (q1, ...,qn) and S = (s1, ...,sm), the Edit
Distance is defined as

DEdit (Q,S) =



n if m = 0

m if n = 0

DEdit (start(Q),start(S)) if last(Q) = last(S)

1+min


DEdit (start(Q),start(S)),

DEdit (Q,start(S)),
DEdit (start(Q),S)

else

• Remark: if no insertions or deletions occur, the Edit Distance is
equivalent to the Hamming Distance

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 4 – Sequential Data — 2. Sequences 14/92



Edit Distance

• Naive Computation:

• For sequences of lengths n and m this tree has O(3n+m) nodes
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Edit Distance

• Analysis:
• O(3n+m) function calls for sequences of lengths n and m
• But many calls appear repeatedly
• There are only (m + 1) · (n + 1) = O(m ·n) different recursive calls

• Solution
• Store results of all calls (which requires O(m ·n) space)
• Systematic evaluation with O(m ·n) operations
• Scheme is called dynamic programming

• Illustration of the acceleration (example m,n = 5,50,500)

5 ·5 = 25 instead of 310 = 59,049
50 ·50 = 2,500 instead of 3100 = 5,154 ·1017

500 ·500 = 250,000 instead of 31000 = 1,322 ·10477
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Edit Distance

Dynamic Programming calculation scheme

• Horizontal step: (i, j)→ (i−1, j)
Represents a deletion of the
current character qi in Q

• Vertical step: (i, j)→ (i, j−1)

Represents an insertion of
character si in Q at psoition i

• Diagonal step: (i, j)→ (i−1, j−1)

Represents a substitution or match
of the current character sqi in Q
and si in S
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Edit Distance

• Visualization of the Dynamic Programming scheme:
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Edit Distance

• All possible solutions, i.e. the Edit Distance on subsequences, can
be stored within a matrix, following the paradigm of dynamic
programming

• A cost minimal path through this matrix from (0,0) to (n,m) yields
the Edit Distance (alignment cost and optimal alignment)

• Note: there may be a non-determinism, i.e., there may be several
cost minimal paths/optimal alignments

• Optimal alignment is obtained by backward reconstruction of the
decisions made at every step along the optimal path (decisions can
be stored during matrix construction)
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Edit Distance

• Example: computation of the Edit Distance via dynamic
programming (one possible alignment path is highlighted)
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Weighted Edit Distance

• Weighting of edit operations via a ground distance allows to define
different costs for insertions, deletions, and substitutions

• Given two sequences Q = (q1, ...,qn) and S = (s1, ...,sm), the
weighted Edit Distance w.r.t. a ground distance δ is defined as

Dδ
Edit (Q,S)=



∑
n
i=1 δ(qi ,♦) if m = 0

∑
m
i=1 δ(♦,si ) if n = 0

Dδ
Edit (start(Q),start(S)) if last(Q) = last(S)

min


Dδ

Edit (start(Q),start(S))+δ(last(Q), last(S)),
Dδ

Edit (Q,start(S))+δ(♦, last(S)),
Dδ

Edit (start(Q),S)+δ(last(Q),♦)
else

• Remark: if no insertions or deletions occur, the Edit Distance is
equivalent to the Hamming Distance
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Edit Distance

Properties of the Edit Distance

• As mentioned before, the optimal alignment of two sequences is not
necessarily unique

B A N A N A
| | | : ♦ ♦

B A N D

B A N A N A
| ♦ ♦ | | :
B A N D

• Edit Distance is a metric

• Weighted Edit Distance is a metric if the ground distance is a metric

• Computation time complexity of a single Edit Distance computation
is in O(n ·m) for sequences of lengths n and m

• Common variant: First deletion of a symbol more expensive than
repeated deletion (important in Bioinformatics)
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Longest Common Subsequence (LCSS)

• Idea: Similarity between two sequences Q and S is defined as the
length of a third sequence Z which contains elements of Q and S

• The longer the sequence Z , the higher the similarity of Q and S and
vice versa (so, attention, this is a similarity measure rather than a
distance measure!)

• Example:

Q: ACCGGTCGAGTGCGCGAAGCCGGCCGAA
S: GTCGTTCGGAATGCCGTTGCTCTGTAA

One possible solution is

Z : GTCGTCGGAAGCCGGCCGAA
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Longest Common Subsequence (LCSS)

Formalization

• A sequence Z = (z1, ...,zk ) is a subsequence of sequence
Q = (q1, ...,qn) if there is a strictly increasing sequence i1, ..., ik of
indices of Q such that ∀j = 1, ...,k it holds that qij = zj

• Example:
• Let Q = (ABCBDAB)
• The sequence Z = (BCDB) is a subsequence of Q
• The corresponding index sequence1 is 2,3,5,7

• A sequence Z = (z1, ...,zk ) is a common subsequence of two
sequences Q = (q1, ...,qn) and S = (s1, ...,sm) if Z is a
subsequence of both Q and S

1Note: in our definition, the index starts at 1 not at 0
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Longest Common Subsequence (LCSS)

Formalization (cont.)

• Given two sequences Q = (q1, ...,qn) and S = (s1, ...,sn), the
longest common subsequence problem is to find a maximum-length
common subsequence Z = (z1, ...,zk ) of Q and S

• Example:
• Let Q = (ABCBDAB) and S = (BDCABA)
• The sequence Z = (BCA) is a common subsequence of Q and S but it

is not the longest one:
• Z ′ = (BCBA) or Z ′′ = (BDAB) are both the longest common

subsequences of Q and S
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Longest Common Subsequence (LCSS)

Formalization (cont.)

• Given two sequences Q = (q1, ...,qn) and S = (s1, ...,sm), the LCSS
similarity is defined as

LCSS(Q,S) =



0 if n = 0∨m = 0

LCSS(start(Q),start(S))+1 if last(Q) = last(S)

max

{
LCSS(Q,start(S)),
LCSS(start(Q),S)

else

• Properties
• Computation similar to that of the Edit

Distance
• Computation time complexity via

dynamic programming in O(n ·m)
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Variants of LCSS

• Downside: LCSS is not a distance measure and highly depends on
the length of the analyzed sequences

• Distance function based on LCSS between two sequences
Q = (q1, ...,qn) and S = (s1, ...,sm):

DLCSS(Q,S) = 1− LCSS(Q,S)

min(n,m)

• Generalization of LCSS
• Multiple alignment between

several sequences
• Complexity: O(2k nk ) for k

sequences and n is length of
the longest sequence
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Mining Sequence Data

• Distance-based data mining
• Views entire sequences as single objects/observations
• Use one of the distance measures from above (or variants, or . . . ) to

compare sequences
• Clustering, outlier detection, classification of sequence data
• Does not mine sequential patterns but only patterns of similar

sequences

• Sequential pattern mining
• Usually searches for frequently occuring sub-patterns within a set of

sequences
• Count the frequency of subsequences (sub-patterns) in the sequence

objects and report the frequent ones (sequential patterns)
• Generalization of frequent item set mining (now order of occurrence

matters)
• Algorithms very similar to frequent item set mining

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 4 – Sequential Data — 2. Sequences 28/92



Kapitel 3: Time Series i

1. Intorduction to Sequential Data

2. Sequence Data

3. Time Series Data

4. Spatio-temporal Data

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 4 – Sequential Data — 3. Time Series 29/92



Time Series Data

• Time series are a special type of sequences
• Typically, values that are recorded over time
• Index set In represents specific time points

• Univariate time series
• stock prices
• audio data
• temperature curves
• ECG
• amount of precipitation

• Multivariate time series
• trajectories (spatial positions)
• video data (e.g., color

histograms)
• combinations of sensor

readings
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Time Series Data Preprocessing

Data cleaning (removing artefacts, distortions, noise, ...)

• Offset Translation (aka “Shifting”)
• Time series are similar but have

different offsets
• Example: move each time series

by its mean M
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Time Series Data Preprocessing

Data cleaning (removing artefacts, distortions, noise, ...)

• (Amplitude) Scaling
• Time series have similar trends but have different amplitudes
• Example: move each time series by its mean M and normalize the

amplitude by its standard deviation S (this is also called
“normalization” = shifting + scaling)
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Time Series Data Preprocessing

Data cleaning (removing artefacts, distortions, noise, ...)

• (Linear) Trend Elimination
• Similar time series with different trends
• Determine regression line and move each time series by its regression

line
• Gets complex when an object features more than one trend
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Time Series Data Preprocessing

Data cleaning (removing artefacts, distortions, noise, ...)

• Noise Reduction
• Similar time series with large noise portion
• Smoothing: normalization over a range of values (sliding window), e.g.

replace i-th value vi with mean value of 2k adjacent values
[vi−k , . . . ,vi , . . . vi+k ]
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Time Series Data Preprocessing: Summary

• There are many more types of distortions that might be of interest to
be removed

• Application dependent

• Example:
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Time Series Similarity

• Some example similarity queries for time series databases
• Identify companies with similar pattern of growth
• Determine products with similar selling patterns
• Discover stocks with similar movement in stock prices
• Find if a musical score is similar to one of the copyrighted scores

• Different types of similarity notions
• Whole matching: time series are usually assumed to all have the same

length

Similarity = matching entire time series
• Subsequence matching: time series may have different lengths

Similarity = find the subsequence that has the best match
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Time Series Similarity

• Illustration of whole matching with a query template q
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Time Series Similarity

• Illustration of subsequence matching with a query template q

• Variant: the length of the (best matching) subsequence is fixed a
priori to some n

• Use a sliding window of width n (contents of each window can e.g.
be materialized)
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Time Series Similarity

Popular similarity measures (among others)

• Minkowski Distances

• Uniform Time Warping

• Dynamic Time Warping

• Longest Common Subsequences for Time Series

• Edit Distance on Real Sequence

• Edit Distance with Real Penalty

• Shape-based Distance
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Minkowski Distances for Time Series

• Idea: Representation of a time series X = (x1, ...,xn) as a
n-dimensional Euclidean vector

• Given two time series X and Y of the same length n use an Lp-norm
to compute the distance between the corresponding vectors

Lp(X ,Y ) = p

√
n

∑
i=1
|xi −yi |p

• Properties
• Each time slot in X is compared to the same time slot in Y
• Thus, sensitive w.r.t. variations on the time axis
• Limited to time series having the same baseline, scale, and length
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Minkowski Distances for Time Series

• If the two time series X and Y do not have the same length, they
could still be considered similar (they have different baselines or
amplitude scales)

• If we want to be invariant against some of those effects,
normalization of time series (see: “preprocessing” above) can help,
e.g.

• Shifting by the average value (offset translation)
• Scaling by the standard deviation (amplitude scaling)
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Scaling Time Series Along the Time Axis

• Until now: shifting and scaling is performed on the amplitude axis

• That still does not help for time series of different lengths

• For comparing time series with different lengths, we need the scaling
of a time series X along the time axis as follows

• Up-sampling (increase the resolution):
Every xi is repeated ω-times, i.e., Upω (x1, ...,xn) = (z1, ..,zn·ω ) where
zi = xdi/ωe and i = 1, ...,n ·ω

• Down-sampling (decrease the resolution):
Only multiples of ω are used, i.e., Downω (x1, ...,xn) = (z1, ..,zbn/ωc)

where zi = xiω and i = 1, ...,bn/ωc
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Uniform Time Warping (UTW)

• UIdea: Scale both time series along the time axis to the same length
and utilize the Euclidean Distance

• Given two time series X = (x1, ...,xn) and Y = (y1, ...,ym), the
(squared) Uniform Time Warping Distance is defined as:

D2
UTW =

L2
2(Upm(X ),Upn(Y )

m ·n

=
∑

n·m
i=1(xdi/me−ydi/ne)

2

m ·n

• Instead of up-sampling both X and Y with m and n, respectively, one
could also use their lowest common multiple
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Dynamic Time Warping (DTW)

• Idea: Allow local (=dynamic)
stretching of two time series in
order to minimize the distance
between them

• Allows comparison of time series of
different lengths

• Possible applications: comparison of hummed songs, handwritten
documents, biometric data, ...

• Comparison of the Euclidean Distance, which epitomizes a
point-to-point distance, and Dynamic Time Warping:
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DTW: Formal Definition

• Given two time series X = (x1, ...,xn) and Y = (y1, ...,ym) and a
ground distance δ , the Dynamic Time Warping Distance between X
and Y is recursively defined as:

Dδ
DTW ( /0, /0) = 0

Dδ
DTW (X , /0) = Dδ

DTW ( /0,Y ) = ∞ for X ,Y 6= /0

Dδ
DTW (X ,Y ) =

δ(Last(X),Last(y))p +

min


Dδ

DTW (Start(X),Start(Y ))

Dδ
DTW (X ,Start(Y ))

Dδ
DTW (Start(X),Y )


p

1/p

• Since time series are typically real-valued, the absolute difference
(Manhattan distance. L1) is often used as the ground distance δ :

δ (xi ,yj ) = |xi −yj |= L1(xi ,yj )

• One of the most prominent variant of DTW is using Manhattan as a
ground distance and p = 2
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DTW: Warping Path

• DTW computes the alignment two time series X = (x1, ...,xn) and
Y = (y1, ...,ym) represented by a warping path P of indices:

P = p1, ...,pL = (pX
1 ,p

Y
1 ), ...,(pX

L ,p
Y
L )

where pX
i ∈ [1,n] and pY

i ∈ [1,m] denote the indices within the time
series X and Y respectively

• Properties of a warping path P
• Boundary condition: p1 = (1,1), pL = (n,m)

• Monotonicity: pX
t −pX

t−1 ≥ 0 and pY
t −pY

t−1 ≥ 0
(no movement back in time)

• Continuousness: pX
t −pX

t−1 ≤ 1 and pY
t −pY

t−1 ≤ 0
(no time slot is missing in P)

• Length |P| bound: max(n,m)≤ |P| ≤ n + m + 1
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DTW: Warping Path

• Let P denote the set of all paths satisfying the four properties of a
warping path mentioned above

• The size of P is exponential in n + m

• Let the cost of a path P = p1, ...,pL = (pX
1 ,p

Y
1 ), ...,(pX

L ,p
Y
L ) between

two time series X = (x1, ...,xn) and Y = (y1, ...,ym) be defined as:

cost(P,X ,Y ) =
L

∑
i=1
|xpX

i
−ypY

i
|2

• D2
DTW unsing L1 as base distance and p = 2 can be defined by the

path with the minimal cost:

D2
DTW (X ,Y ) = min

P∈P
cost(P,X ,Y )

• For time series with the same length n, the warping path
P = (1,1), ...,(n,n) of length |P|= n yields the Euclidean Distance
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DTW: Warping Path

• Recursive computation of the DTW distance is again in O(3n+m)

• Looks familiar to the Edit Distance? Absolutely ...
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DTW: Warping Path

• Analogously, any path P between X and Y can be expressed as a
path in a |X |× |Y | matrix used for computing the DTW by Dynamic
Programming

• In the following example (0,0) is in the lower left corner, so the blue
time series is displayed from bottom to top rather than from top to
bottom
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DTW: Properties

• DTW is not a metric basically because it allows replication of
elements

• Example: no identity of indiscernibles
X: 1 2 2 2
Y: 1 1 1 2

DDTW (X ,Y ) = 0

• Example: no triangle inequality
X: 0 0 0 0
Y: 1 2 2 3
Z: 1 3 3 3

DDTW (X ,Z ) = 0 6≤ DDTW (X ,Z ) = 8 + DDTW (X ,Z ) = 1
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Comparison: DTW vs. Minkowski

• Comparison on time series that measure the daily network traffic of
a company, e.g.

• Minkowski

• DTW
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LCSS for Time Series

• LCSS is tolerant to gaps in the two compared time series

• Example: trajectories (time series of spatial locations) that contain
many outliers at start and end but share a long common route
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Feature Extraction in Time Series

• Instead of directly working with the entire time series, we can also
extract features from them

• Many feature extraction techniques exist that basically follow one of
the following two different purposes:

1. Many of them aim at representing time series in a compact way (e.g.
as a “shorter” approximation of the original time series) with minimum
loss of modelling error

• this is mostly done for performance considerations
• approach is closely related to dimensionality reduction/feature selection
• Examples covered here: DFT, DTW, SVD, APCA, PAA, PLA

2. Other model specific properties of the time series relevant to a given
application

• Example covered here: threshold-based modelling
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Compact Representations: Overview

• Aim: find a more compact representation (“dimensionality reduction”)
of the original time series without loosing too much information

• General approach: represent time series by a combination of base
functions
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Compact Representations: DFT

• Discrete Fourier Transformation (DFT) is used to describe a
periodical function as a weighted sum of periodical base functions
(sin and cos) with varying frequency

• Example:
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Compact Representations: DFT

• Fouriers Theorem says that any periodic function can be
represented by a sum of sin- and cos-functions of different frequency

• DFT originally finds a different equivalent representation

• DFT transforms a time series x = [xt ] (t = 0, ...,n−1) of length n
into X = [Xf ] of n complex numbers with frequencies f such that

Xf =
1√
n

n−1

∑
i=0

xt ·e
−j2π ft

n

=
1√
n

n−1

∑
i=0

xt cos(
2π ft

n
)︸ ︷︷ ︸

real part

−j · 1√
n

n−1

∑
i=0

xt sin(
2π ft

n
)︸ ︷︷ ︸

imaginary part

where j2 =−1

• So the real part is the portion of cosine in f where the imaginary part
is the portion of sinus
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Compact Representations: DFT

• DFT can be interpreted as a transformation of the basis vectors (like
e.g. PCA), the new basis is spanned by the frequencies

• But how does that help? So far, we transformed an n-dimensional
time series into an n-dimensional vector . . .

• First of all, it holds that the euclidean distance is preserved after
DFT, i.e. ‖x˘y‖2 = ‖X˘Y‖2

• This follows from Parseval’s theorem (and the linearity of DFT): the
energy of a sequence (= sum of squared amplitudes) is preserved
by DFT, i.e.: ∑t ‖xt‖2 = ∑f ‖Xf‖2
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Compact Representations: DFT

• Now comes the important trick: in practice, the low frequencies (first
components) have the highest impact, i.e. contain the most
information (similar to the first principle components computed by
PCA)

• Focusing on the first c coefficients is a good choice if we want to
reduce the “dimensionality” of a sequence

• Since ‖x˘y‖2 = ‖X˘Y‖2 holds, using only c components instead of
n yields a lower bounding approximation of the Euclidean Distance

• This approximation will be better when using c DFT componenents
instead of c original (arbitrary?) time stamps
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Compact Representations: DWT

• Discrete Wavelet Transformation (DWT) represents a time series as
a linear combination of Wavelet-functions (typically, Haar-Wavelets)

• Similar to DFT, DWT computes n components

• Properties
• The more stationary the time series is, the better is the approximation

with fewer c < n components
• Distance on DWT components also lower bounds Euclidean and DTW

distance on original time series
• Time series are restricted to be of length 2i (for any i)

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 4 – Sequential Data — 3. Time Series 59/92



Compact Representations: DWT

• Computing the DWT: for each odd index i , compute mean µ of pairs
xi and xi+1 and the offset xi −µ

• Repeat this for the means until there is only one mean value (the
mean of the original time series) left

• Example:

time series X 9 7 3 5 6 10 2 6
mean (1) 8 4 8 4
offset (1) 1 -1 -2 -2
mean (2) 6 6
offset (2) 2 2
mean (3) 6
offset (3) 0

• Keep “last” mean and the offsets in reverse order of computation:
DWT representation of X 6 0 2 2 1 -1 -2 -2
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Compact Representations: SVD

• SVD uses Eigen Waves instead of
sinus/cosine as base functions

• Properties:
• Minimizes the quadratic

approximation error (like PCA and
SVD on high dimensional data)

• The semantics of the components of
SVD depends on the actual data while
DFT (sin/cos base functions) and
DWT (constant base functions) are
not data dependent

• In text mining and Information
Retrieval, SVD as a feature extraction
technique is also know as “Latent
Semantic Indexing”
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Compact Representations: PAA

• Piecewise Aggregate Approximation
(PAA) transforms time series into a
sequence of box-functions

• Each box has the same length and
approximates the interval by the mean
of the corresponding values within this
interval (similar to down-sampling
using the mean as representative
value)

• Properties:
• Lower bounding property
• Time series may have arbitrary length
• Good if there are repeated intervals

with the same length each having
values with a similar amplitude
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Compact Representations: APCA

• Adaptive Piecewise Constant
Approximation (APCA) is an extension
to PAA

• Time series may have time intervals
with a small amount of details (small
amplitude) and intervals with a large
amount of details (large amplitude)

• In that case PAA cannot account for
varying amounts of detail

• APCA uses boxers of variable length
(each segment now requires 2
parameters, the mean and the length
of the interval)

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 4 – Sequential Data — 3. Time Series 63/92



Compact Representations: PLA

• Piecewise Linear Approximation (PLA)
is another extension to PAA

• It transforms a time series into a
sequence of line segments
s = (length,heightstart ,heightend )

• Two consecutive segments need not to
be connected

• PLA yields a richer approximation of
the intervals but requires more
parameters (accuracy of approximation
depends on óf segments)
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Application-specific Features

• An example of a specific feature transformation to model a special
notion of similarity of time series is “threshold-based similarity”2

• Basic Idea
• In some applications, only significant “events” that are defined by

certain amplitudes (or amplitude values) are interesting
• So far, the feature extraction extracts features modeling certain

properties of time intervals but not of amplitude intervals

2Assfalg, Kriegel, Kröger, Kunath, Pryakhin, Renz. Proc. 10th Int. Conf. on Extending
Database Technology (EDBT), 2006
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Threshold-based Similarity: Application

• Environmental Science: analyzing critical ozone concentrations?
• Find cluster of regions (time series) that exceed the allowed threshold

in similar time intervals

• Medical diagnosis: potential for cardiac infarction?
• Find clusters of heart rates by focusing on the relevant amplitude

intervals
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Threshold-based Similarity: Model

• Time series X = (x1, ...,xn) is transformed into a sequence of
intervals Sτ,X = (s1, ...sm), such that:

∀i = 1, ...,n : (∃sj ∈ Sτ,X : sj .l < i < sj .u)⇔ xi > τ

(sj .l denotes the start and sj .u denotes the end of sj , respectively)

• Similarity of time series = similarity of sequences of intervals
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Threshold-based Similarity: Model

• Similarity between sequences
of intervals is defined based on
a distance on pairs of single
intervals

• For single pairs of intervals, the
Euclidean distance on the start
and end points are used, i.e.

dint (si ,sj)=
√
(si .l−sj .l)2 +(si .u−sj .u)2

• Use the sum of minimum distances between two sequences of
intervals SX und SY (representing time series X and Y , resp.):

DTS(SX ,SY ) =
1
|SX | ∑

s∈SX

min
t∈SY

dint (s, t)︸ ︷︷ ︸
SX−→SY

+
1
|SY | ∑

t∈SY

min
s∈SX

dint (t ,s)︸ ︷︷ ︸
SX←−SY
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Kapitel 4: Spatio-temporal Data i

1. Intorduction to Sequential Data

2. Sequence Data

3. Time Series Data

4. Spatio-temporal Data
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Spatio-temporal Data

• Spatio-temporal data is a special case of time series where (one of)
the information recorded at each time point is the location of an
object

• A time series over spatial locations is also called “trajectory”

• Often, there is additional information on time slots (e.g. semantic
information on the location such as “museum” or “airport” . . . )

• The field of mining spatio-temporal data is wide so this lecture is just
a basic (incomplete) snapshot of this field

• However, in general, there are two major approaches to trajectory
mining described on the two next slides
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Mining Spatio-temporal Data

• Geometry-based methods (left) consider only geometrical properties
of trajectories, i.e., focus on “location-based” similarity

• Semantic-based methods (right) compute patterns based on the
semantics of the data, independent of the specific spatial locations

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 4 – Sequential Data — 4. Spatio-temporal Data 71/92



Geometry-based Trajectory Mining

• Laube et al. 2004 proposed five basic patterns based on location,
direction, and/or movement

• Several extensions of these patterns have been proposed over time

Convergence

At least m entities pass through the
same circular region of radius r
(regardless of time)

Recurrence

At least m entities visit a circular
region of radius r at least k times
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Geometry-based Trajectory Mining

Encounter

At least m entities are inside the
same circular region of radius r ,
assuming they move with the
same speed and direction (e.g.
traffic jam at some moment if
cars keep moving in the same
direction)

Leadership

At least m entities are within a
circular region of radius r , they
move in the same direction,
and at least one of the entities
(the leader) is heading in that
direction for at least t time
steps. (e.g. bird migration)

Flock pattern

At least m entities are within a
region of radius r and move in
the same direction during a time
interval ≥ s (e.g. a traffic jam)
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Geometry-based Trajectory Mining

• All these patterns are based on the idea of high frequency patterns
(and a kind of density-based notion: minim number of trajectories
come together in a region of a specific volume)

• Beside those basic patterns, other frequent patterns have been
proposed to be interesting, e.g. frequent followed paths/frequent
sequential patterns
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Geometry-based Trajectory Mining

Computing frequent sequential patterns (e.g. Cao 2005)

• Transforms each trajectory in a line with several segments

• A distance tolerance
measure is defined

• All trajectory points
inside this distance are
summarized in one
segment

• Similar segments are grouped
• Similarity is based on the angle and the spatial length of the segment

and, finally on a given distance threshold
• Each group is represented by a region around the medium segment

• Frequent sequences of regions are computed w.r.t. a minSup
threshold
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Geometry-based Trajectory Mining

Frequent mobile group patterns (Hwang 2005)

• A group pattern is a set of trajectories close to each other (with
distance less than a given minDist) for a minimal amount of time
(minTime)

• Direction is not considered

• Use Apriori algorithm to compute frequent groups
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Geometry-based Trajectory Mining

Trajectory Clustering (Han 2007)

• Algorithm TraClus: Group sub-trajectories using a density based
clustering algorithm

• Two-step approach
• Partition each trajectory in line segments with a user defined length L
• Cluster similar line segments based on spatial proximity of the time

points

• Similarity of line segments: Euclidean distance between segments
(sub-trajectories)

• Could be anything else, e.g. a measure that also considers time
(which is not covered here)
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Geometry-based Trajectory Mining

T-Patterns: Sequential Trajectory Pattern Mining (Giannotti 2007)

• Describes frequent behavior in terms of visited regions (ROIs)
considering both space and time

• General idea (three-step approach):

1. Compute region of
interests (ROIs)

2. Transform trajectory
into sequ. of ROIs

3. Compute T-Patterns,
i.e., sequences of
regions visited
during the same
time intervals
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Geometry-based Trajectory Mining

• Step 1: Compute regions of interest (ROIs), i.e., regions with many
trajectories (regardless of time)

• Step 2: Transform trajectory into a sequence of ROIs: select
trajectories intersecting at least with two regions in a sequence and
annotate the time traveled between regions

• Compute T-Patterns, i.e., sequences of regions visited during the
same time intervals
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Semantic-based Methods

A Conceptual View on Trajectories (Spaccapietra 2008)

• Trajectory is a spatio-temporal object that has generic features
(independent of the application) and semantic features (depend on
the application)

• Trajectory = travel in abstract space, e.g. 2D career space:
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Semantic-based Methods

Semantic trajectories

• Idea (Sketch):
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Semantic-based Methods

Semantic trajectories (cont.)

• Key challenge: differentiate between stops and moves

• STOPS
• Important parts of trajectories
• Where the moving object has stayed for a minimal amount of time
• Stops are application dependent
• Tourism application: Hotels, touristic places, airport, . . .
• Traffic Management Application: Traffic lights, roundabouts, big

events. . .

• MOVES
• Are the parts that are not stops
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Semantic-based Methods

Semantic trajectories (cont.)

• Stops and moves are independent of the application
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Semantic-based Methods

Geometric Patterns enriched by semantics (Bogorny 2008)

• Very little semantics in most trajectory mining approaches
(geometry-based approaches)

• Patterns are purely geometrical and hard to interpret

• Thus: enrich geometric patterns with semantic information

• This idea stimulated many approaches on how to add semantics to
trajectories
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Semantic-based Methods

• Example (semantic enrichment)
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Semantic-based Methods

Stop and Move computation: SMoT (Alvares 2007a)

• A candidate stop C is a tuple (RC ,∆C), where
• RC is the geometry of the candidate stop (spatial feature type)
• ∆C is the minimal time duration

Example: (Hotel, 3 hours)

• An application A is a finite set
A = {C1 = (RC1 ,DeltaC1 ), . . . ,CN = (RCN ,∆CN )} of candidate stops
with non-overlapping geometries RC1 , . . . ,RCN

Example: {(Hotel, 3 hours), (Museum, 1 hour)}
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Semantic-based Methods

• A stop of a trajectory T with respect to an application A is a tuple
(RCk , tj , tj+n), such that T intersects RCk at all time slots between tj
and tj+n and |tj+n˘tj | ≥∆Ck Ck

• A move of T with respect to A is
• a maximal contiguous subtrajectory of T , i.e.,

• between the starting point and the first stop of T OR
• between two consecutive stops of T OR
• between the last stop of T and the ending point of T

• or the trajectory T itself, if T has no stops
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Semantic-based Methods

Cluster-based-SMoT (Palma 2008)

• Cluster based: cluster trajectories based on speed

• “Low speed” is assumed to mean “important place”

• Algorithm similar to SMoT but clusters trajectory points first and
adds semantics to clusters
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