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Feature Transformation

Feature Transform

• Consider the following spaces:
• U denotes the universe of data objects
• F⊆Rn denotes an n-dimensional feature space

• A feature transformation is a mapping f :U→Rn of objects from U
to the feature space F.

Similarity Model

• A similarity model S :U×U→R is defined for all objects p,q ∈U
as

S(p,q) = sim(f (p), f (q))

where sim :Rn×Rn→R is a similarity measure or a dissimilarity
(distance) measure in F.
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Similarity versus Dissimilarity

Comments:

• Often, dissimilarity (distance) is measured instead of similarity

• This is a small but important difference!
• A similarity measure (sim) assigns high values to similar objects
• A dissimilarity measure (dist) assigns low values to similar objects

• The design of f and the definition of sim/dist are important
assumptions about the patterns we want to find later in the data

• As explained before, f and sim/dist can be derived manually (explicit
transformation and coding versus implicit Kernels) or automatically
(representation learning)
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Dissimilarity

• Dissimilarity measures follow the idea of the geometric approach
• objects are defined by their perceptual representations in a perceptual

space
• perceptual space = psychological space
• geometric distance between the perceptual representations defines

the (dis)similarity of objects

• Within the scope of Feature-based similarity
• perceptual space = feature space F or feature representation space
R

n

• geometric distance = distance function
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Distance Functions

• The distance measure dist is a distance function if it is reflexive,
non-negative, and symmetric

• A distance function dist is a metric if it additionally satisfies the
triangle inequality

• Comments:
• Sound mathematical interpretation
• Allow domain experts to model their notion of dissimilarity
• Metric distances allow to tune efficiency of data mining approaches
• Long-lasting discussion of whether the distance properties and in

particular the metric properties reflect the perceived dissimilarity
correctly, see the following contradicting example:
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Similarity versus Dissimilarity (again)

• Transformation
• Let F be a feature space and dist :F×F→R be a distance function
• Any monotonically decreasing function f :R→R defines a similarity

function s :F×F→R as follows

∀x ,y ∈F : s(x ,y) = f (dist(x ,y))

• Some prominent similarity functions (x ,y ∈F):
• exponential:

s(x ,y) = e(−dist(x ,y))

• logarithmic:
s(x ,y) = 1− log(1+dist(x ,y))

• linear: s(x ,y) = 1−dist(x ,y)
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Similarities: Examples (only very few)

• Dot-Product (x ,y ∈F⊆Rd )

x ·yT =
d

∑
i=1

xi ·yi = ‖x‖ · ‖y‖ · cos^(x ,y)

• Cosine (x ,y ∈F⊆Rd )
x ·yT

‖x‖ · ‖y‖
• Pearson Correlation (x ,y ∈F⊆Rd )

∑
d
i=1(xi − x̄i ) · (yi − ȳi )√

∑
d
i=1(xi − x̄i )2 ·

√
∑

d
i=1(yi − ȳi )2

where z̄i denotes the mean in attribute i over all data points

• Random-Walk Kernel (for graphs x ,y )

• Count common (random) walks in x and y
• Walks are sequences of nodes (connected by edges)
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Distances: Examples (only very few)

• Lp-norm (aka Minkowski metric) (x ,y ∈F⊆Rd )

Lp(x ,y) = p

√
d

∑
i=1
|xx −yi |p

where
• p < 1: fractional Minkowski distance
• p = 1: Manhattan distance
• p = 2: Euclidean distance
• p = ∞: Chebyshev/Maximum distance

• Malahanobis distance

• Hamming distance HammingDist(x ,y) = ∑
d
i=1

{
1 : xi 6= yi

0 : else
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A Motivating Example

• Let’s play the baby shapes game (truly motivating for students ...):
Group the items!!!

• What about grouping based on both shape and color?

• Lesson to learn: there may be different semantic concepts (and their
corresponding patterns) hidden in the data (here: shape and color)
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The More the Merrier or More is Less?

The good old days of data mining . . .

• Data generation and, to some extend, data storage was costly (hard
to imagine but those were the days ...)

• Domain experts carefully considered which features/variables to
measure before designing experiments/a feature transform/. . .

• Consequence: also data sets were well designed and potentially
contained only a small number of relevant features
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The More the Merrier or More is Less?

Nowadays, data science is also about integrating everything

• Generating and storing data is easy and cheap

• People tend to measure everything they can and even more
(including even more complex feature transformations)

• The Data Science mantra is often interpreted as “we can analyze
data from as many sources as (technically) possible, just record
anaything you can”

• Consequence: data sets are high-dimensional containing a large
number of features but the relevancy of each feature for the analysis
goal is not clear a priori
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High-dimensional Data is NOT a Myth

• Example: Image data
• Low-level image descriptors (color

histograms, textures, shape
information ...)

• Regional descriptors: between 16
and 1,000 features

• ...

• Example: Metabolome data
• Feature = concentration of one metabolite

(intermediates/results of metabolism)
• Bavaria newborn screening (for each baby, the

blood concentrations of 43 metabolites are
measured in the first 48 hours after birth)

• between 50 and 2,000 features
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More High-dimensional Data

• Example: Microarray data (deprecated)
• Features correspond to genes
• Up to 20,000 features
• Dimensionality is much higher than the

sample size

• Example: Text data
• Term frequency: features

correspond to words/terms
• Between 5,000 and 20,000

features (and even more)
• Often, esp. in social media:

abbreviations, colloquial
language, special words
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Problems with High-dimensional Data

Overview:

• Distances grow

• Contrast of distances diminish (concentration problem)

• Meaning of “neighborhood” concept

• Growing data space

• Growing hypothesis space

• Empty spaces and importance tails

• Different semantic layers

• ...

So let us have a closer look on these problems ...
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Distances Grow

The following example uses the Euclidean distance but holds for most
distance measures:

• Consider 2D vectors a = (1,2) and
b = (4,3)

• The Euclidean distance between a
and b is

L2(a,b) = L2((1,2),(4,4))

=
√

(1−4)2 + (2−3)2

=
√

10

which corresponds to the norm of the difference vector c = (3,1):

‖c‖2 =
√

32 + 12
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Distances Grow

With increasing dimensionality, distances grow, too:

• Example: L2((1,2),(4,3)) =
√

10

• Now double the feature vector length (double the original features):
L2((1,2,1,2),(4,3,4,3)) =

√
(32 + 12 + 32 + 12) =

√
20

• Effect seems not so important, values might be only in a larger
scale?

• NOPE:

Contrast of distances is lost in high dimensional data since
distances grow more and more alike!

This is know as the Concentration of Distances problem (see next)
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Concentration of Distances

Concentration Phenomenon

• As dimensionality grows, distance values grow, too, such that the
(numerical) contrast provided by usual measures decreases or even
diminishes

• In other words, the distribution of norms in a given distribution of
points tends to concentrate

• Example: Euclidean norm of vectors consisting of several variables
that are (assumed to be) independent and identically distributed

‖y‖2 =
√

y2
1 + y2

2 + . . . + y2
d

• In high dimensional spaces this norm behaves unexpectedly . . .
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Concentration of Distances

Theorem: Concentration of Distances

• Let y be a d-dimensional vector (y1, ...,yd ) where all components
yi (1≤ i ≤ d) are independent and identically distributed

• Then the mean and the variance of the Euclidean norm are:

µ‖y‖ =
√

a ·d−b +O(d−1) and σ‖y‖ = b +O(d−1/2)

where a and b are parameters depending only on the central
moments of order 1, 2, 3, 4.

Interpretation:
• The norm grows proportionally to

√
d , but the variance remains

approx. constant for large d (because limd→∞ d−const = 0)

• With growing dimensionality, the relative error made by taking µ‖y‖
instead of ‖y‖ becomes negligible

0John A Lee and Michel Verleysen: ”Nonlinear Dimensionality Reduction”. Springer, 2007.

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 2. Challenges 21/148



Neighborhood Concept Become Meaningless

Implications from the concentration of distances:

• A lot of data mining methods use distances and neighborhoods to
define patterns (e.g. kNN classifier, density-based clustering,
distance-based outlier detection, ...

• Using neighborhoods is based on a key assumption:
• Objects that are similar to an object o are in its neighborhood
• Object that are dissimilar to o are not in its neighborhood

• What if all objects are in the same neighborhood?
• Consider the above effect on distances: kNN distances are almost

equal to each other, i.e., the k nearest neighbors are random objects
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Neighborhood Concept Become Meaningless

Definition: Unstable Neighborhood

• A NN-query is unstable for a given ε

if the distance from the query point
to most data points is less than
(1 + ε) times the distance from the
query point to its nearest neighbor

• It can be shown that with growing
dimensionality, the probability that
a query is unstable converges to 1
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Neighborhood Concept Become Meaningless

• Consider a d-dimensional query point
q and n d-dimensional sample points
x1, ...xn (independent and identically
distributed)

• We define:
DMINd = min{L2(xi ,q)|1≤ i ≤ n} (dist to next neighbor)
DMAXd = max{L2(xi ,q)|1≤ i ≤ n} (dist to farthest neighbor)

Theorem

• If limd→∞(
VARL2(xi ,q)

µ2
L2(xi ,q)

) = 0

• Then ∀ε > 0 : limd→∞P(DMAXd ≤ (1 + ε)DMINd ) = 1

In other words: if the precondition holds, all points converge to the same
distance from the query!
0Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft: When is ”nearest neighbor” meaningful? In ICDT 1999.
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Neighborhood Concept Become Meaningless

Visually: Pairwise distances of a sample of 105 instances drawn from a
uniform [0,1] distribution, normalized (1/

√
d).
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Neighborhood Concept Become Meaningless

• Be clear about the precondition of the Theorem!!!

• Consider the feature space of d relevant features for a given
application (i.e., truly similar objects display small distances in most
features)

• Now add d ·c additional features being independent of the initial
feature space

• With increasing c the distance in the independent subspace will
dominate the distance in the complete feature space

• So the question is:
How many relevant features must be similar to indicate object
similarity?
(or: how many relevant features must be dissimilar to indicate
dissimilarity?)

• With increasing dimensionality the likelihood that two objects are
similar in every respect gets smaller.
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Growing Data Space

• OK, the data space grows with increasing dimensionality

• But what are the problems?

• In low dimensional spaces we have some (intuitive) assumptions on
the behavior of volumes (sphere, cube, etc.) and on the distribution
of data objects

• However, basic assumptions do not hold in high dimensional
spaces:

• Spaces become sparse or even empty and the probability of one
object inside a fixed range tends to become zero

• Distribution of data has a strange behavior e.g. a normal distribution
has only few objects in its center and the tails of distributions become
more important

We will have a closer look on these issues ...
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Growing Hypotheses Space

• The more features, the larger the hypothesis space

• The lower the hypothesis space is,
• the easier it is to find the correct hypothesis
• the less examples you need to properly test hypothesis
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Growing Hypotheses Space

• Consider f a unit multivariate normal distribution and normal kernel
(KDE)

• The aim is to find an estimate f̂ of f at the point 0

• The relative mean square error should be fairly small, e.g.
µ2

f̂ (0)−f (0)

f (0)2 < 0.1

Dim. Req. sample size to achieve 0.1 error estimate

1 4
2 19
5 768
8 43.700

10 842.000

Even with only 10 dimensions, we need nearly a million observations to
estimate a distribution with an error less than 0.1!!!
0B.W. Silverman: ”Density Estimation for Statistics and Data Analysis”. Chapman and Hall/CRC, 1986.
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Empty Spaces and Tails

• Consider a d-dimensional space with
partitions of constant size 1/m

• The number of cells N increases
exponentially in d : N = md

• Suppose x points are randomly placed
in this space

• In low-dimensional spaces there are
few empty partitions and many points
per partitions

• In high-dimensional spaces there are
far more partitions than points there
are many empty partitions
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Empty Spaces and Tails

Analogously:

• Consider a simple partitioning scheme, which splits the data in each
dimension in 2 halves

• For d dimensions we obtain 2d partitions

• Consider n = 106 samples in this space

• For d ≤ 10 such a partition may make sense

• For d = 100 there are around 1030 partitions, so most partitions are
empty (given the above 106 points)
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Empty Spaces and Tails

• Consider a hyper-cube range query
with length s in all dimensions, placed
arbitrarily in the data space [0,1]d

• E is the event that an arbitrary point
lies within the query cube

• The probability for E is P(E) = sd

⇒ with increasing
dimensionality, even very large
hyper-cube range queries are
not likely to contain a point
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Empty Spaces and Tails

• The same holds of course for a spherical range query (instead of a
cubical range query)

• Consequence: with increasing dimensionality the center of the
hyper-cube (or more generally: of the data space) becomes less
important and the volume of the data space concentrates in its
corners (i.e. randomly distributed points tend to be on the border of
the data space . . . )

• This seems to be a distortion of space compared to our 3D way of
thinking — and that is actually what it is ...
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Empty Spaces and Tails

And that also means, that the tails of a distribution become extremely
important

• Consider standard density
function f

• Consider f̂ with

f̂ (x) =

{
0 f (x) < 0.01

f (x) else

• Rescaling f̂ to a density function will make very little difference in 1D,
since very few data points occur in regions where f is very small
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Empty Spaces and Tails

But for high dimensional data:

• More than half of the data has less then 1/100 of the maximum
density f (0) (for µ = 0)

• Example: 10-dimensional Gaussian distribution X :

f (X )

f (0)
= e(− 1

2 XT X) ≈ e(− 1
2 χ2

10)

since the median of the χ2
10 distribution is 9.34, the median of f (X)

f (0) is

e
−9.34

2 = 0.0094

• Thus, most objects occur at the tails of the distribution

• In other words, in contrast to the low dimensional case, regions of
relatively very low density can be extremely important parts
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Empty Spaces and Tails

But for high dimensional data:

• More than half of the data has less then 1/100 of the maximum
density f (0) (for µ = 0)

• Example: 10-dimensional Gaussian distribution X :

f (X )

f (0)
= e(− 1

2 XT X) ≈ e(− 1
2 χ2

10)

since the median of the χ2
10) distribution is 9.34, the median of f (X)

f (0)

is e
−9.34

2 = 0.0094

• Thus, most objects occur at the tails of the distribution

• In other words, in contrast to the low dimensional case, regions of
relatively very low density can be extremely important parts
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Empty Spaces and Tails

Example: (µ = 0,σ = 1)

• 1D: 90% of the mass of the distribution lies between −1.6 and 1.6

• 10D: 99% of the mass of the distribution is at points whose distance from the origin is
greater than 1.6

• Thus, it is difficult to estimate the density, except for enormous samples becausein
very high dimensions virtually the entire sample will be in the tails
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Further Problems

• Patterns and models on high-dimensional data are often hard to
interpret, e.g. long decision rules

• Efficiency in high-dimensional spaces is often limited because e.g.
index structures degenerate and distance computations are much
more expensive

• There may be different semantic layers so pattern might only be
observable in subspaces or projected spaces (cf. the baby shape
game)

• Cliques of correlated features dominate the object description
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The Case Kröger versus Tresp

• Summarizing: the higher the dimensionality, the worse is the
expected outcome of the mining algorithm (i.e., dimensionality is a
curse, says Kröger)

• Well, not in general, the Kernel trick shows the opposite: through the
extension of the data space with new attributes, the mining algorithm
(e.g. a SVM classifier) gets more accurate (i.e., dimensionality is a
blessing, says Tresp in his ML course)

• So: Who is right???????? – Both – What????
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The Case Kröger versus Tresp

• Look at what we assumed for the curse: attributes are independent
(and often even uniformly distributed)

• These attributes are likely to be irrelevant for the mining task

• And the blessing: a Kernel (if it works) adds relevant attributes (even
more relevant than the original ones)

• Message: high-dimensional data is tricky and the curse can come by
as several problems

• Some are due to irrelevant attributes, so try to get rid of irrelevant
attributes and keep the relevant ones

• Some are instead of relevant attributes, so among the relevant
attributes, try to get rid of redundant ones
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Feature Selection

• A task to remove irrelevant and/or redundant features
• Irrelevant features:

• Not useful for a given task
• Probably decrease accuracy

• Redundant features:
• Strongly correlated with another relevant feature
• Does not drop the accuracy, but may drop efficiency, explainability, etc.

• Deleting irrelevant and redundant features can improve the quality
as well as the efficiency of the methods and the found patterns.

• New feature space: Delete all useless features from the original
feature space.

Keep in mind...
Feature selection 6= Dimensionality reduction
Feature selection 6= Feature extraction
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Irrelevant and Redundant Features (Unsupervised Case)

Irrelevance

Feature y is irrelevant, because if
we omit x , we have only one clus-
ter, which is uninteresting.

Redundancy

Features x and y are redundant,
because x provides (appr.) the sa-
me information as feature y with re-
gard to discriminating the two clus-
ters

0Source: Feature Selection for Unsupervised Learning, Dy and Brodley, Journal of Machine Learning Research 5 (2004)
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Irrelevant and Redundant Features (Supervised Case)

Irrelevance
Feature y separates well the two clas-
ses. Feature x is irrelevant. Its addition
“destroys” the class separation.

Redundancy

Features x1 and x2 are redundant.

Individually irrelevant
together relevant

0Source: http://www.kdnuggets.com/2014/03/machine-learning-7-pictures.html
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Problem Definition

• Input: Vector space F = d1×·· ·×dn, dimensions D = {d1, . . . ,dn}.
• Output: a minimal subspace M over dimensions D′ ⊆ D which is

optimal for a given data mining task.
• Minimality increases the efficiency, reduces the effects of the curse of

dimensionality and increases interpretability.

Challenges:
• Optimality depends on the given task.
• There are 2d possible solution spaces (exponential complexity)
• This search space is similar to the frequent itemset mining problem,

but:
• There is often no monotonicity in the quality of subspace (which is

important for efficient searching)
• Features might only be useful in combination with other certain

features.

⇒ For many popular criteria, feature selection is an exponential problem.

⇒ Most algorithms employ search heuristics.
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Two Main Components (Steps)

1. Feature subset generation
• Single dimensions
• Combinations of dimensions (subspaces)

2. Feature subset evaluation
• Importance scores like information gain, χ2

• Performance of a learning algorithm

⇒ How to select/evaluate features? How to traverse the search space?
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Feature Selection/Evaluation Methods

1. Filter methods
– Explores the general characteristics of the data, independent of the

learning algorithm.

2. Wrapper methods
– The learning algorithm is used for the evaluation of the subspace.

3. Embedded methods
– The feature selection is part of the learning algorithm.
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Feature Selection/Evaluation Methods

• Filter methods
– Basic idea: assign an “importance” score to each feature to filter out

useless ones
– Examples: information gain, χ2-statistic, TF-IDF for text...
– Disconnected from the learning algorithm.
– Pros:

◦ Fast and generic
◦ Simple to apply

– Cons:
◦ Doesn’t take into account interactions between features
◦ Individually irrelevant features, might be relevant together
◦ Too generic?
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Feature Selection/Evaluation Methods

• Wrapper methods
– A learning algorithm is employed and its performance is used to

determine the quality of selected features.
– Pros:

◦ take feature dependencies into account
◦ interaction between feature subset search and model selection

– Cons:
◦ higher risk of overfitting than filter techniques
◦ very computationally intensive, especially if building the classifier has a

high computational cost.
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Feature Selection/Evaluation Methods

• Embedded methods
– Such methods integrate the feature selection in model building
– Example: decision tree induction algorithm: at each decision node, a

feature has to be selected.
– Pros:

◦ less computationally intensive than wrapper methods.

– Cons:
◦ specific to a learning method
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Search Strategies in the Feature Space

• Forward selection
– Start with an empty feature space and add relevant features

• Backward selection
– Start with all features and remove irrelevant features

• Branch-and-bound
• Find the optimal subspace under the monotonicity assumption

• Randomized
– Randomized search for a k dimensional subspace

• ...
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General Idea

Input

• Target dimensionality k ≤ d

• Training set of n-dimensional feature vectors with features
d1,d2, . . . ,dn and target variable C

General Approach

• Compute the quality q(di ,C) for each dimension di ∈ {d1, ...,dn} to
predict the correlation to C

• Sort the dimensions d1, ...,dn w.r.t. q(di ,C)

• Select the bestk dimensions

Basic Assumption

• Attribute independence (no correlations between features)
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General Idea

Key Concept

• Quality of feature di : How suitable is the feature for predicting the
value of class attribute C?

• Statistical measures
• Rely on distributions over feature values and target values
• How strong is the correlation between both value distributions?
• How good does splitting the values in the feature space separate

values in the target dimension?
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Quality of Features

How to measure the distribution?

• For discrete values: determine probabilities for all value pairs.

• For real valued features:
• Discretize the value space (reduction to the case above)
• Use probability density functions (e.g. uniform, Gaussian,..)

• Example quality measures:
• Information Gain
• Chi-square χ2-statistics
• Mutual Information
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Quality of Features: Entropy

• Idea: Evaluate class discrimination in each dimension (Used in ID3
algorithm for decision trees)

• It uses entropy, a measure of pureness of the data set S w.r.t. the
class labels ci ∈ C

Entropy(S) = ∑
ci∈C
−pci · log2(pci )

where pci is the relative frequency of class ci in S
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Quality of Features: Entropy

Example

• Let S be a collection of positive and negative examples for a binary
classification problem, i.e., C = {+,−}

• Then Entropy(S) =−p+ log2(p+)−p− log2(p−)

• p+ is the percentage of positive examples in S
• p− is the percentage of negative examples in S

• Example splits:
• Let S : [9+,5−]: Entropy(S) =− 9

14 log2(
9

14 )−
5
14 log(

5
14 ) = 0.940

• Let S : [7+,7−]: Entropy(S) =− 7
14 log2(

7
14 )−

7
14 log(

7
14 ) = 1

• Let S : [14+,0−]: Entropy(S) =− 14
14 log2(

14
14 )−

0
14 log(

0
14 ) = 0

• Obviously: Entropy is 0, when all samples belong to the same class
while Entropy is 1, when there is an equal number of samples in all
splits
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Quality of Features: Information Gain

• The information gain Gain(S,di ) of a feature di relative to a training
set S measures the gain reduction in S due to splitting on di , i.e., the
entropy of the data set S before splitting minus the weighted sum of
the entropies of all splits Sj in a given feature di :

Gain(S,di ) = Entropy(S)−∑
Sj

|Sj |
|S|
·Entropy(Sj )

• For nominal attributes: use attribute values for splitting, i.e. each
possible value vj in di defines one split and Sj contains all objects
having vj in di

• For real valued attributes: Determine a splitting position v in the
value set and split e.g. into S1 containing all objects with values ≤ v
and S2 containing all objects with values > v in di
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Quality of Features: Information Gain

Example

• Which dimension, “Humidity” or “Wind”, is better?

• Larger values are better!
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Quality of Features: Chi-square Statistics

• Idea: Measures the independence of a feature d from the class
variable C

• Contingency table: divide data based on a split value s or based on
discrete values

• Example: Does “liking science fiction movies” imply “playing chess”?

• Chi-square χ2 test

χ
2 =

|C|

∑
i=1

|Values(d)|

∑
j=1

(oij −eij )
2

eij

oij : observed freq. of value j in class i
eij : expected freq. of value j in class i
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Quality of Features: Chi-square Statistics

Example

• Compute the χ2 values for the following table (numbers in
parenthesis are expected counts calculated based on the data
distribution in the two categories)

χ
2 =

(250−90)2

90
+

(50−210)2

210
+

(200−360)2

360
+

1000−840)2

840
= 507.93

• Smaller values are better!
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Quality of Features: Mutual Information

• In general, the Mutual Information (MI) between two variables x and
y measures how much knowing one of these variables reduces
uncertainty about the other

• In our case, it measures how much information a feature contributes
to making the correct classification decision, i.e., x is the dimension
di we want to evaluate and y is the class variable C.

• MI is based on probability distributions:
• p(x) and p(y) are the marginal probability distributions of x and y ,

respectively
• p(x ,y) is the joint probability distribution function
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Quality of Features: Mutual Information

• Discrete case

MI(x ,y) = ∑
xi∈x

∑
yi∈y

p(xi ,yi ) · log
p(xi ,yi )

p(xi )p(yi )

• Continuous case

MI(x ,y) =
∫

x

∫
y

p(x ,y) · log
p(x ,y)

p(x)p(y)
dxdy

• Interpretation: if x and y are statistically independent, then
• p(x ,y) = p(x) ·p(y) and, thus, log(1) = 0
• Or in other words: knowing x does not reveal anything about y
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Forward Selection and Feature Ranking: Discussion

Advantages

• Efficiency: it compares each feature {d1,d2, . . . ,dn} separately to
the class attribute C (and takes the best k ) instead of testing

(n
k

)
subspaces

• Works already for rather small sample sizes

Limitations

• Independency assumption: Classes and features must display a
direct correlation

• In case of correlated features: Always selects the features having
the strongest direct correlation to the class variable, even if the
features are strongly correlated with each other
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Backward Elimination: General Idea

General Approach

• Start with the complete feature space and delete redundant features

• Greedy Backward Elimination
1. Generate the subspaces R of the feature space F
2. Evaluate subspaces R with the quality measure q(R)

3. Select the best subspace R∗ w.r.t. q(R)

4. If R∗ has the target dimensionality, terminate else start backward
elimination on R∗.

Remarks

• Useful in supervised and unsupervised setting (in the latter scenario,
q(R) measures structural characteristics)

• Greedy search if there is no monotonicity on q(R); for monotonous
measures, branch and bound can be employed
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Supervised Quality Measure: Distance-based

• Idea: Subspace quality can be evaluated by the distance between
the within-class nearest neighbor and the between-classes nearest
neighbor

• Quality criterion: For each object o from the data set S, compute
distance to the closest object having the same class NNR

ci =C(o)(o)

(within-class nearest neighbor distance) in subspace R, and to the
closest object belonging to another class NNR

cj 6=C(o)(o)

(between-classes nearest neighbor distance), where C(o) denotes
the class label of object o in subspace R:

q(R) =
1
S
· ∑

o∈S

NNR
cj 6=C(o)(o)

NNR
ci =C(o)(o)

• Remark: q(R) is not monotonous: by deleting a dimension, the
quality can increase or decrease

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 3. Feature Selection 67/148



Supervised Quality Measure: Model-based

• Idea: Directly employ the data mining algorithm to evaluate the
subspace, e.g. by training a Naive Bayes classifier

• Practical aspects:
• Success of the data mining algorithm must be measurable (e.g. class

accuracy)
• Runtime for training and applying the classifier should be low
• The classifier parameterization should not be of great importance
• Test set should have a moderate number of instances
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Backward Elimination: Discussion

Advantages

• Considers complete subspaces (multiple dependencies are used)

• Can recognize and eliminate redundant features

Limitations

• Tests w.r.t. subspace quality usually requires much more effort

• All solutions employ heuristic greedy search which do not
necessarily find the optimal feature space
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Branch and Bound: General Idea

General Approach

• Given: A classification task over the feature space F

• Aim: Select the k best dimensions to learn the classifier

• Backward elimination approach “Branch and Bound” is guaranteed
to find the optimal feature subset under the monotonicity assumption

• The monotonicity assumption states that for two feature subsets
X ,Y ∈ F and a feature selection criterion J, if X ⊂ Y then

• J(X)≤ J(Y ) if J is maximized
• J(X)≥ J(Y ) if J is minimized

• Branch and Bound starts from the full set F and removes features
using a depth-first strategy

• Nodes whose objective function are smaller (greater) than the
current best are not explored since the monotonicity assumption
ensures that their children will not contain a better solution
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Branch and Bound: Example
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Branch and Bound: Example

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 3. Feature Selection 72/148



Branch and Bound: Example
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Branch and Bound: Example
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Branch and Bound: Example
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Branch and Bound: Example
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Branch and Bound: Quality Measures

Subspace Inconsistency (IC)

• Given a data set S (works best for categorical data)

• Idea: Having identical vectors u,v (ui = vi ,1≤ i ≤ d) in subspace R
but the class labels are different (C(u) 6= C(v)), this subspace
displays an inconsistent labeling

• Measuring the inconsistency of a subspace R
• XR(u): Amount of all identical vectors u in R
• X c

R(u): Amount of all identical vectors u in R having class label c ∈ C
• Inconsistency of u in R: ICR(u) = XR(u)−maxc∈C X c

R(u)

Then, inconsistency of subspace R is

IC(R) =
∑u∈S ICR(u)

|S|

• Monotonicity: R1 ⊂ R2⇒ IC(R1)≥ IC(R2)
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Backward Elimination: Discussion

Advantages

• Monotonicity allows efficient search for optimal solutions

• Well-suited for binary or discrete data (identical vectors are very
likely with decreasing dimensionality)

Limitations

• Useless without groups of identical features (real-valued vectors)

• Worse-case runtime complexity remains exponential in the number
of features d
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Random Subspace Selection: General Idea

General Approach

• Idea: Select n random subspaces having the target dimensionality k
out of the

(d
k

)
many possible subspaces and evaluate each of them

• Needs quality measures for complete subspaces

• Trade-off between quality and effort depends on n

• Good alternative to forward selection if quality measure is not
monotonic

• Different randomization approaches exist (see next subsection):
• Genetic algorithms
• k -medoids feature clustering
• ...
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Genetic Algorithms: General Idea

General Approach

• Idea: Randomized search through genetic algorithms

• Genetic Algorithms encode individual states in the search space as
bit-strings

• Population (of current solutions) is a subset of all possible
k -dimensional subspaces

• Fitness function: quality measure for a subspace

• Algorithmic schema to find the best solution in the search space by
mixing/changing the population in each iteration (stops e.g. if the
best solution of the current population is less fit than the best
solution in the previous population)

• Each iteration manages a specific population from which the next
population is obtained
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Genetic Algorithms: Population Generation

• Operators on the population (k -dim subspaces) to create candidates
for the next population:

• Mutation: dimension di in subspace R is replaced by dimension dj with
a likelihood of x%

• Crossover: combine two subspaces R1 and R2, i.e., unite the features
sets of R1 and R2 and delete random dimensions until dimensionality
is k again

• Selection for next population: All subspaces having at least a quality
of y% of the best fitness in the current generation are copied to the
next generation

• Free tickets: Additionally each subspace is copied into the next
generation with a probability of u%

• Remark: Many variants on the basic algorithmic schema, e.g.
different operations, efficient convergence by “Simulated Annealing”
(likelihood of free tickets decreases with the iterations), ...
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Genetic Algorithms: Discussion

Advantages

• Can escape from local optima during the search

• Often good approximations of the optimal solutions

Limitations

• Runtime ( is not bounded (in the original schema)

• Configuration depends on many parameters which have to be tuned
to achieve good quality results in efficient time
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Feature Clustering: General Idea

General Approach

• Given: A feature space F and an unsupervised data mining task

• Target: Reduce F to a subspace of k (original) dimensions while
reducing redundancy

• Idea: Cluster the features in the space of objects and select one
representative feature for each of the clusters (this is equivalent to
clustering in a transposed data matrix)

• Problem: often many more samples than features so transposed
data matrix has many more features than samples
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Feature Clustering: Example

• Typical example: item-based collaborative filtering

• E.g. features 3 and 4 are similar over all persons so they could be
“merged” to one feature
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Feature Clustering: Example

• Work around for the “many features” problem: specialized feature
similarity measures, e.g.

• Cosine similarity
• Pearson correlation

• Algorithmic schema
• Cluster features with a k -medoid clustering method based on

correlation
• Select the medoids to span the target data space

• Remark
• For group/cluster of dependent features there is one representative

feature
• Other clustering algorithms could be used as well, e.g. approximate

clustering methods for performance reasons
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Feature Clustering: Discussion

Advantages

• Depending on the clustering algorithm quite efficient

• Unsupervised method

Limitations

• Results are usually not deterministic (partitioning clustering results
depend on initialization)

• Representatives are usually unstable for different clustering methods
and parameters

• Method captures pairwise correlations and dependencies among
features but multiple dependencies are not considered
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Summary: Feature Selection

• Forward-Selection examines each dimension separately and selects
the k -best to span the target space

• Greedy Selection based on Information Gain, χ2 statistics or Mutual
Information

• Backward-Elimination start with the complete feature space and
successively remove the worst dimensions

• Greedy Elimination with model-based and nearest-neighbor based
approaches

• Branch and Bound Search (monotonicity required!) based on
inconsistency

• k -dimensional Projections directly search in the set of k -dimensional
subspaces for the best suited

• Genetic algorithms (any quality measures possible, e.g. those from
backward elimination)

• Feature clustering based on correlation
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Discussion: Feature Selection

• Many algorithms based on different heuristics

• There are two reason to delete features:
• Redundancy: Features can be expressed by other features
• Missing correlation to the target variable

• Often even approximate results are capable of increasing efficiency
and quality in a data mining tasks

• Caution: Selected features need not to have a causal connection to
the target variable, but both might depend on the same mechanisms
in the data space (hidden variables)

• Different indicators to consider in the comparison of before and after
selection performance, e.g. model performance, time,
dimensionality, ...
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Feature Selection — Further Readings

• I. Guyon, A. Elisseeff: An Introduction to Variable and Feature Selection, Journal of
Machine Learning Research 3, 2003.
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Overview

• Idea: Instead of removing features, try to find a low dimensional
feature space generating the original space as accurate as possible:

• Redundant features are summarized
• Irrelevant features are weighted by small values or are “erased” (in the

best case of course, the new feature space should contain no
irrelevant features anymore)

• Some sample methods (among lots of others):
• Reference point embedding
• Principal component analysis (PCA)
• Singular value decomposition (SVD)
• Fischer-Faces (FF) and Relevant Component Analysis(RCA)
• Large Margin Nearest Neighbor (LMNN)
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Feature Reduction Task

• Goal: Describe data with fewer features (reduce number of columns)

• Be clear: (like in feature selection) there will always be an
information loss

⇒

• There are supervised and unsupervised methods
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General Approach

• Idea: Describe the position of each object by their distances to a set
of reference points

• Given: Vector space F = D1× ...×Dn where D = {D1, ...,Dn}
• Target: A k -dimensional space R which yields optimal solutions for a

given data mining task

• Method: For each reference point R = {r1, ..., rk} and a distance
measure dist , transform vector x ∈ F as follows:

rR(x) =


dist(r1,x)

...
dist(rk ,x)


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Diskussion

• Distance measure is usually determined by the application

• Selection of reference points can be important (use centroids of the
classes or cluster-centroids, points on the margin of the data space,
use random samples, ...)

Advantages

• Simple approach which is easy to implement

• The transformed vectors yields lower and upper bounds of the exact
distances (What the hell is that good for???)

Disadvantages

• Even using d reference points does not reproduce a d-dimensional
feature space

• Selecting good reference points is important but very difficult
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Introduction

Motivation

• Consider the grades of students in Physics and Statistics

• If we want to compare among the students, which grade should be
more discriminative? Statistics or Physics?

Answer:
Physics because the variation along
that axis is larger

Source: http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Introduction

Motivation

• Suppose now the plot looks as below

• What is the best way to compare students now?

Answer:
We should take a linear combination
of the two grades (that represents
the direction of highest variance) to
get the best results

Source: http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Introduction

Motivation

• PCA returns two principal components

• The first gives the direction of the maximum spread of the data.

• The second gives the direction of maximum spread perpendicular to
the first

Source: http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Normalizing Data

A feature X can be normalized by substracting its values with the mean
X̄ and dividing by the standard deviation sX , e.g. X̃ = X−X̄

sX
.

Example:

Consider the following body heights measured in different units:

Person A Person B Person C mean sd
body height (cm) 180.00 172.00 175.00 175.67 4.04
body height (m) 1.80 1.72 1.75 1.76 0.04

body height (feet) 5.91 5.64 5.74 5.76 0.13

After normalizing, we always obtain the normalized body height (no
matter which unit we used):

Person A Person B Person C mean sd
normalized body height 1.07 -0.91 -0.16 0.00 1.00
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Normalizing Data

Normalizing all features in a data set, can have several advantages:

• It puts all features into comparable units, i.e., we make sure that all
normalized features have mean 0 and standard deviation of 1

• It can avoid numerical instabilites in several algorithms, e.g. if a
feature has very low / high values

• It helps in computing meaningful distances between observations

• Finally, if we want to find directions of highest variances, it might be
better to do this on normalized data

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 4. Feature Reduction and Metric Learning 103/148



Normalizing: Covariance vs. Correlation

• Sure, there are many ways to do normalization

• here, we will use the notion common in Statistics, where the
variance of a normalized feature is always 1, its mean is always 0

• The covariance of two normalized features X̃ = X−X̄
sX

and Ỹ = Y−Ȳ
sY

is the same as the correlation of the non-normalized features X
and Y .

• One can proof this with the help of

sX̃ Ỹ = 1
n−1

n

∑
i=1

(x̃i − ¯̃x)(ỹi − ¯̃y) = . . . = 1
n−1

n

∑
i=1

(xi−x̄)
sX

(yi−ȳ)
sY

= rXY .

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 4. Feature Reduction and Metric Learning 104/148



PCA Intuition

Example I:

• Feature x1 explains most of the variation

• Feature x2 has a lower variance than x1

• If we disregard x2 and project the points into the 1-dimensional
space of x1, we do not lose much information w.r.t. variability
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PCA Intuition

Example II:

• x1 and x2 are correlated and have similar variances.

• Find a new orthogonal axes (e.g. PC1 and PC2), where PC1
explains most of the variation

• Rotate the points and consider PC1 and PC2 as new coordinate
system (situation as in the previous example)

• We can now project points onto PC1 and disregard PC2 (hopefully
without losing much information)
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PCA Intuition

• PCA finds the optimal rotation such that the transformed data
explains the variability of the data best

• The new axis are the principal components (also called
“eigenvectors” because PCA is technically an
Eigen-Decomposition); for a d-dimensional data set we always get d
principal components

• The variance along each eigenvector (called “eigenvalue”) is
decreasing, i.e. the first eigenvector has the highest eigenvalue,
while the d-th eigenvector has the smallest eigenvalue

• This can be used for dimensionality reduction: if we pick the k -th first
eigenvectors as new axes and transform the d-dimensional data into
the new k -dimensional space, this transformation is optimal w.r.t.
loss of total variance
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PCA Procedure

General procedure

1. Rotate the original p-dimensional coordinate system until the first
PC that explains most of the variation is found

2. Fix the first PC and proceed with rotating the remaining p−1
coordinates until the second PC (which is orthogonal to the first PC)
is found that explains most of the remaining variation, etc.

3. We can reduce the dimensions by projecting the points onto the first,
say k < p, PC

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 4. Feature Reduction and Metric Learning 108/148



PCA Intuition: Find first PC

x1

x2
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PCA Intuition: Animation

Variance of projected points: 0.87
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 0.25
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 0.08
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 0.38
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 0.84
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 1.31
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 1.63
x1

x2

rotated coordinate system
original coordinate system
projected points

PC1

PC2
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PCA Intuition: Reduce dimensionality

Rotate the points and use PC1 and PC2 as new coordinate system.

Here, the PC1 axis explains most of the variance:

PC2

PC1
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PCA Intuition: Reduce dimensionality

Dimensionality can be reduced by projecting the points onto the PC1
(and by disregarding PC2). The hope is that we won’t lose much
information this way.

PC2

PC1
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PCA Intuition: Summary

Idea: Transform an original set of correlated metric features to a new set
of uncorrelated (orthogonal) metric features, called principal components
(PC), that explain the variability in the data.

• The objective is to investigate if only a few PC account for most of
the variability in the original data.

• If the objective is fulfilled, we can use fewer PCs to reduce the
dimensionality.

• The PCs remove collinearity of the input variables as they are
orthogonal to each other.
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PCA Intuition: Final Remarks

• PCA is used for dimensionality reduction by disregaring dimensions
with lower variability.

• There is always an information loss, especially for other criteria.

• Attention: dimensionality reduciton can worsen the classification
accuracy when the task is to classify two groups:
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Deriving the First PC Mathematically

Aim: Find a new set of features (PC scores, eigenvectors) pc1, . . . ,pcp

based on the original data X = [x1, . . . ,xp] so that

• each PC score pc1, . . . ,pcp is a linear combination of the original
metric features with coefficient weights (so-called loading vectors)
a1, . . . ,ap, i.e.

pcj = aj1x1 + aj2x2 + . . .+ ajpxp = Xaj .

• the set is mutually uncorrelated: Cov(pcj ,pck ) = 0, ∀j 6= k .

• the variances (eigenvalues) of the PC scores decrease:

λ1 > λ2 > .. . > λp, where λk := Var(pck ).
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Deriving the First PC Mathematically

We look for the loading vector a1 = (a11,a21, . . . ,ap1)> that maximizes
the variance of pc1:

max
a1

Var(pc1) = Var(Xa1) = a>1 Σa1

subject to the normalization constraint a>1 a1 = ∑
p
k=1 a2

k1 = 1.

The constraint is required for identifiability reasons, otherwise we could
maximize the variance by just increasing the values in a1.

Repeat this maximization step for the other PCs and additionally use the
orthogonality constraint, i.e. for the second PC:

a>2 a1 = 0.
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Example: The Olympic Heptathlon Data

The heptathlon data set (e.g. available in the R package HSAUR3)
contains the competition results of 25 athletes in 7 disciplines for the
Olympics held in Seoul in 1988.

• Aim: Rank the athletes according to their overall performance in all
7 disciplines.

• Idea: Use PCA to reduce the dimensionality (i.e., reduce the results
of the 7 disciplines to one dimension) and compare the scores of the
first PC with the official scores.
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Example: The Olympic Heptathlon Data

Features of the heptathlon data:

• hurdles: results 100m hurdles (in seconds).

• highjump: results high jump (in m).

• shot: results shot putt (in m).

• run200m: results 200m race (in seconds).

• longjump: results long jump (in m).

• javelin: results javelin (in m).

• run800m: results 800m race (in seconds).

• score: total score of the official scoring system.
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Example: The Olympic Heptathlon Data

The features hurdles, run200m and run800m are time
measurements, i.e. low values are better. For all other features high
values are better.

Results of the best and worst participant:

We use negative time measurements so that higher values are better and
therefore all features have the same direction:
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Scatter Plot Matrix

Corr:
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0.743
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0.00776
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0.00215
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0.269
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0.333
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0.0671
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Perform PCA

• If features are on very different scales, PCA should be carried out on
the correlation matrix (which is equivalent to the correlation matrix if
normalized features are used).

• As the features of the heptathlon data are on different scales, we
perform the PCA based on the correlation matrix.

• Alternatively, we could also perform the PCA based on the
covariance matrix but on the normalized heptathlon data.

• The result contains:
• The loadings a1, . . . ,ap,
• The PC scores pc1, . . . ,pcp and
• The variance λ1, . . . ,λp (or standard deviation) of the PC scores.
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Proportion of Explained Variance

• The total variance of the p PC scores is equal the total variance of
the original features, i.e.,

∑
p
j=1 λj = s2

1 + s2
2 + · · ·+ s2

p,

where λj is the variance of the j th PC and s2
j is the sample variance

of variable xj .

• The proportion of explained variance of the j-th PC is

λj

∑
p
j=1 λj

.

• The first k PCs account for a proportion

∑
k
j=1 λj

∑
p
j=1 λj

.
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Choosing the Number of PCs

Two simple rules of thumb for choosing the number of PCs:

1. Retain the first k components, which explain a large proportion of
the total variation, e.g., 80-90%.

2. Use a scree plot: Plot the component variances vs. the component
number and look for an elbow. For components after the elbow, the
variance decreases more slowly.
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PC Scores vs. Official Scores

The first PC explains 63,72% of the variation of the heptathlon, the
loadings of the first PC are:

hurdles highjump shot run200m longjump javelin run800m
0.4529 0.3772 0.3631 0.4079 0.4562 0.0754 0.3750

Dimensionality reduction:

• Project all 8 features onto the first PC.

• Compare the scores of the first PC with the official scores used to
rank the athletes.
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PC Scores vs. Official Scores

The scores of the first PC pc1 have a similar ranking as the scores of the
official scoring system:

Joyner−Kersee (USA)

John (GDR)

Behmer (GDR)

Sablovskaite (URS)

Choubenkova (URS)

Schulz (GDR)

Fleming (AUS)
Greiner (USA)

Lajbnerova (CZE)
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Dimitrova (BUL)
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Mulliner (GB)
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Hui−Ing (TAI)

Jeong−Mi (KOR)

Launa (PNG)
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Discussion

Advantage

• Considers arbitrary correlations between features

• Selected subspace is optimal w.r.t. loss of variance

Disadvantage

• Assumption: components with high variance are useful to discover
the desired patterns

• Considers only linear correlations (work-around: Kernel-PCA, see
later)
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Kapitel 4: Feature Reduction and Metric Learning

1. Intorduction to Feature Spaces

2. Challenges of High Dimensional Data

3. Supervised Feature Selection

4. Feature Reduction and Metric Learning

4.1 Reference Point Embedding

4.2 Principle Component Analysis (PCA)

4.3 Singular Value Decomposition (SVD)

4.4 Kernel PCA

4.5 Further Measures

5. Clustering High Dimensional Data
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Idea

• PCA is an eigenvalue decomposition of the d×d covariance matrix
Σ = DT D of the (normalized) data matrix D:

Σ = VEV T

such that
• V = (pc1, ...,pcd ), is a d×d matrix whose columns are the pairwise

independent unit vectors, the eigenvectors

• E =


λ1 . . . 0
...

. . .
...

0 . . . λd

 is a d×d diagonal matrix, the diagonal

elements are the eigenvalues of the corresponding eigenvectors

• The decomposition can be found e.g. based on numerical algorithms
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Compute the SVD

• SVD is a generalization of the eigenvalue decomposition

• Let D be the n×d data matrix (n objects, d dimensions) and let k be
its rank (max number of independent rows/ columns)

• We can decompose D into matrices O,S,A with D = OSAT or


x1,1 . . . x1,d

...
. . .

...
xn,1 . . . xn,d


︸ ︷︷ ︸

D

=


o1,1 . . . o1,k

...
. . .

...
on,1 . . . on,k


︸ ︷︷ ︸

O

·


λ1 . . . 0
...

. . .
...

0 . . . λk


︸ ︷︷ ︸

S

·


a1,1 . . . a1,d

...
. . .

...
ak ,1 . . . ak ,d


︸ ︷︷ ︸

AT

such that
• O is a n×k column-orthonormal matrix (each of its columns is a unit

vector and the dot product of any two columns is 0)
• S is a diagonal k ×k matrix
• A is a k ×d column-orthonormal matrix. Note that we always use A in

its transposed form, so it is the rows of AT that are orthonormal
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SVD: Example I

• D contains movie ratings by users
• The corresponding SVD shows two

concepts “science fiction” and
“romance”

• S shows the strength of these
concepts

• A relates movies to concepts



1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 0 0 4 4
0 0 0 5 5
0 0 0 2 2


︸ ︷︷ ︸

D

=



.14 0

.42 0

.56 0

.70 0
0 .60
0 .75
0 .30


︸ ︷︷ ︸

O

·
(

12.4 0
0 9.5

)
︸ ︷︷ ︸

S

·
(

.58 .58 .58 0 0
0 0 0 .71 .71

)
︸ ︷︷ ︸

AT

(Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf)
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SVD: Example II

• Now a slightly different D
• The corresponding SVD shows three

concepts “science fiction” and
“romance” and ???



1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 2 0 4 4
0 0 0 5 5
0 1 0 2 2


︸ ︷︷ ︸

D

=



.13 .02 −.01

.41 .07 −.03

.55 −09 −.04

.68 .11 −.05

.15 −.59 .65

.07 .−73 −.67

.07 −.29 .32


︸ ︷︷ ︸

O

·

 12.4 0 0
0 9.5 0
0 0 1.3


︸ ︷︷ ︸

S

·

 .56 .59 .56 .09 .09
.12 −.02 .12 −.69 −.69
.40 −.80 .40 .09 .09


︸ ︷︷ ︸

AT

(Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf)
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Dimensionality Reduction with SVD

• To reduce dimensionality, we can set the smallest singular values to
0 in S and eliminate the corresponding columns in O and rows in AT

(check previous examples)

• How Many Singular Values Should We Retain?
• Rule of thumb: retain enough singular values to make up 90% of the

energy in S
• Energy is defined in terms of the singular values (matrix S)
• In the previous example, the total energy is:
(12.4)2 +(9.5)2 +(1.3)2 = 245.70

• The retained energy is: (12.4)2 +(9.5)2 = 244.01 > 99%
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Connection between SVD and PCA

• PCA is applying SVD on the covariance matrix Σ = DT D

• SVD means: D = OSAT

• Thus:
Σ = DT D = (OSAT )T OSAT = AST (OT O)SAT

• Since O is an orthonormal matrix, OT O is the identity:

AST (OT O)SAT = A(ST S)AT

• S is a diagonal matrix, so transposing has no effect:

A(ST S)AT = AS2AT = A


λ 2

1 . . . 0
...

. . .
...

0 . . . λ 2
k

AT
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Connection between SVD and PCA

• Here: A is a matrix of eigenvectors

• Eigenvalues of the covariance matrix = squared singular values of D

• Conclusion: Eigenvalues and eigenvectors of the covariance matrix
S can be determined by the SVD of the data matrix D (or in other
words: SVD is a method to perform PCA)

• SVD is sometimes a better way to perform PCA (Large
dimensionalities e.g., text data)

• SVD can cope with dependent dimensions (k < d is an ordinary
case in SVD)
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Kapitel 4: Feature Reduction and Metric Learning

1. Intorduction to Feature Spaces

2. Challenges of High Dimensional Data

3. Supervised Feature Selection

4. Feature Reduction and Metric Learning

4.1 Reference Point Embedding

4.2 Principle Component Analysis (PCA)

4.3 Singular Value Decomposition (SVD)

4.4 Kernel PCA

4.5 Further Measures

5. Clustering High Dimensional Data
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Motivation

Consider the following scenarios:

• PCA will be effective since
data is linearly correlated

• PCA may find the orange
line as the first component
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Basic Idea

Recall: the solution of linear classifiers (e.g. SVMs) for non-linear
problems is “make them linear!” using a suitable feature mapping

• No linear separation of
classes possible

• Mapping R2→R3 with
(x1,x2) 7→ (x1,x2,x2

1 + x2
2 )
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Kernel Trick

• Since a high-dimensional mapping can still have negative impact,
the Kernel trick is used whenever possible (see KDD I lecture)

• Given the intended mapping Φ, the Kernel is usually defined as
K (x ,y) = Φ(x)T Φ(y)

• Example: Degree-d polynomials: K (x ,y) = (xT y + c)d with an
arbitrary constant c, e.g. for d = 2:

(Image source:

http://i.stack.imgur.com/qZV3s.png)
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Kernel PCA Using SVD

• Recall the SVD D = OSAT

• A is a k -dimensional basis of the eigenvectors of DDT (originally
d×d)

• Analogously, O is a k -dimensional basis of eigenvectors of DDT

• DDT is a Kernel matrix for the linear Kernel (i.e., no mapping made -
cf. KDD I) or any other Kernel

• A and O are related as follows:

D = OSAT ⇒ OT D = OT OSAT = SAT ⇒ S−1OT D = AT

i.e. each d-dimensional eigenvector in A is a linear combination of
vectors in D (original or mapped!) and the n k -dimensional
eigenvectors in OT (O is n×k )
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Kernel PCA Using SVD

• Let K (x ,y) = Φ(x)T Φ(y) be a kernel for the non-linear
transformation Φ

• Assume: K (x ,y) is known, but Φ(x) is not explicitly given

• Let K be the Kernel matrix of D w.r.t. K (x ,y), i.e.

K =


K (x1,x1) . . . K (x1,xn)

...
. . .

...
K (xn,x1) . . . K (xn,xn)


• The eigenvalue decomposition of K is K = VSV T where V is a

n-dimensional basis from eigenvectors of K

• Dimensionality Reduction through mapping of y ∈ D w.r.t V to

ŷ =


Φ(y)T (∑

n
i=1 vi,1Φ(xi ))

...
Φ(y)T (∑

n
i=1 vi,k Φ(xi ))

=


∑

n
i=1 vi,1(Φ(y)T Φ(xi ))

...
∑

n
i=1 vi,k (Φ(y)T Φ(xi ))

=


∑

n
i=1 vi,1K (y ,xi )

...
∑

n
i=1 vi,k K (y ,xi )


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Matrix Factorization as Optimization Task

• BTW, SVD (and, thus PCA) is a matrix decomposition that can be
formalized as optimization task

D = OSAT =

O


√

λ1 . . . 0
...

. . .
...

0 . . .
√

λk




︸ ︷︷ ︸
U



√

λ1 . . . 0
...

. . .
...

0 . . .
√

λk

AT


︸ ︷︷ ︸

V T

= UV T

• As an optimization problem: L(U,V ) = ‖D−UV T‖2
f

subject to ∀i 6=j : 〈vi ,vj〉= 0∧〈ui ,uj〉

using the squared Frobenius Norm of an n×m matrix M:
‖M‖2

f = ∑
n
i=1 ∑

m
i=1 |mi,j |2
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Kapitel 4: Feature Reduction and Metric Learning

1. Intorduction to Feature Spaces

2. Challenges of High Dimensional Data

3. Supervised Feature Selection

4. Feature Reduction and Metric Learning

4.1 Reference Point Embedding

4.2 Principle Component Analysis (PCA)

4.3 Singular Value Decomposition (SVD)

4.4 Kernel PCA

4.5 Further Measures

5. Clustering High Dimensional Data
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Fisher Faces

Fisher Faces

• Idea: Use examples from a training set (supervised!) to increase the
discriminative power of the target space

• Minimize the similarity between objects from different classes
(between class scatter matrix: σb)
Use covariance matrix of the class centroids for Σb

• Maximize similarity between objects belonging to the same class
(within class scatter matrix Σw )
Use average covariance matrix of all classes for Σw

• Determine new basis vectors bi by maximizing

bT
i Σbbi

bT
i Σw bi

subject to ∀i 6=j : 〈bi ,bj〉= 0
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Fisher Faces

Remarks on Fisher Faces

• The vector having the largest eigenvalue corresponds to the normal
vector of the separating hyper plane in linear discriminant analysis or
Fisher‘s discriminant analysis. (cf. KDD I)

• Fischer Faces are limited due to the assumption of mono-modal
classes: each class is assumed to follow one multivariate Gaussian

• Multi-modal or non-Gaussian distributions are not modeled well

• Many variants (e.g. Relevant Component Analysis (RCA), Large
Margin Nearest Neighbor (LMNN)
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Summary

• Linear basis transformation yield a rich framework to optimize
feature spaces

• Unsupervised methods delete low variant dimensions (PCA und
SVD)

• Kernel PCA allows to compute PCA in non-linear kernel spaces

• Basic assumption: direction of highest variance bear the most
relevant information

• Supervised methods try to minimize the within class distances while
maximizing between class distances (Fischer Faces and variants)
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Further Readings

• S. Deerwester, S. Dumais, R. Harshman: Indexing by Latent Semantic Analysis,
Journal of the American Society of Information Science, Vol. 41, 1990

• L. Yang and R. Jin. Distance metric learning: A comprehensive survey. Technical
report, Department of Computer Science and Engineering, Michigan State University,
2006.

• K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest
neighbor classication. Journal of Machine Learning Research, 10:207,244, 2009.

• P. Comon. Independent component analysis, a new concept? Signal Processing,
36(3):287-314, 1994.

• J. Davis, B. Kulis, S. Sra, and I. Dhillon. Information theoretic metric learning. In in
NIPS 2006 Workshop on Learning to Compare Examples, 2007.

• A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance functions
using equivalence relations. In Proceedings of the 20th International Conference on
Machine Learning (ICML), Washington, DC, USA, pages 11-18, 2003.
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Kapitel 5: Clustering High-dim Data i

1. Intorduction to Feature Spaces

2. Challenges of High Dimensional Data

3. Supervised Feature Selection

4. Feature Reduction and Metric Learning

5. Clustering High Dimensional Data
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Vorlesungsteam
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Vorlesungsteam
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