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Feature Transformation

Feature Transform

• Consider the following spaces:
• U denotes the universe of data objects
• F⊆Rn denotes an n-dimensional feature space

• A feature transformation is a mapping f :U→Rn of objects from U
to the feature space F.

Similarity Model

• A similarity model S :U×U→R is defined for all objects p,q ∈U
as

S(p,q) = sim(f (p), f (q))

where sim :Rn×Rn→R is a similarity measure or a dissimilarity
(distance) measure in F.
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Similarity versus Dissimilarity

Comments:

• Often, dissimilarity (distance) is measured instead of similarity

• This is a small but important difference!
• A similarity measure (sim) assigns high values to similar objects
• A dissimilarity measure (dist) assigns low values to similar objects

• The design of f and the definition of sim/dist are important
assumptions about the patterns we want to find later in the data

• As explained before, f and sim/dist can be derived manually (explicit
transformation and coding versus implicit Kernels) or automatically
(representation learning)
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Dissimilarity

• Dissimilarity measures follow the idea of the geometric approach
• objects are defined by their perceptual representations in a perceptual

space
• perceptual space = psychological space
• geometric distance between the perceptual representations defines

the (dis)similarity of objects

• Within the scope of Feature-based similarity
• perceptual space = feature space F or feature representation space
R

n

• geometric distance = distance function
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Distance Functions

• The distance measure dist is a distance function if it is reflexive,
non-negative, and symmetric

• A distance function dist is a metric if it additionally satisfies the
triangle inequality

• Comments:
• Sound mathematical interpretation
• Allow domain experts to model their notion of dissimilarity
• Metric distances allow to tune efficiency of data mining approaches
• Long-lasting discussion of whether the distance properties and in

particular the metric properties reflect the perceived dissimilarity
correctly, see the following contradicting example:
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Similarity versus Dissimilarity (again)

• Transformation
• Let F be a feature space and dist :F×F→R be a distance function
• Any monotonically decreasing function f :R→R defines a similarity

function s :F×F→R as follows

∀x ,y ∈F : s(x ,y) = f (dist(x ,y))

• Some prominent similarity functions (x ,y ∈F):
• exponential:

s(x ,y) = e(−dist(x ,y))

• logarithmic:
s(x ,y) = 1− log(1+dist(x ,y))

• linear: s(x ,y) = 1−dist(x ,y)
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Similarities: Examples (only very few)

• Dot-Product (x ,y ∈F⊆Rd )

x ·yT =
d

∑
i=1

xi ·yi = ‖x‖ · ‖y‖ · cos^(x ,y)

• Cosine (x ,y ∈F⊆Rd )
x ·yT

‖x‖ · ‖y‖
• Pearson Correlation (x ,y ∈F⊆Rd )

∑
d
i=1(xi − x̄i ) · (yi − ȳi )√

∑
d
i=1(xi − x̄i )2 ·

√
∑

d
i=1(yi − ȳi )2

where z̄i denotes the mean in attribute i over all data points

• Random-Walk Kernel (for graphs x ,y )

• Count common (random) walks in x and y
• Walks are sequences of nodes (connected by edges)
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Distances: Examples (only very few)

• Lp-norm (aka Minkowski metric) (x ,y ∈F⊆Rd )

Lp(x ,y) = p

√
d

∑
i=1
|xx −yi |p

where
• p < 1: fractional Minkowski distance
• p = 1: Manhattan distance
• p = 2: Euclidean distance
• p = ∞: Chebyshev/Maximum distance

• Malahanobis distance

• Hamming distance HammingDist(x ,y) = ∑
d
i=1

{
1 : xi 6= yi

0 : else
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A Motivating Example

• Let’s play the baby shapes game (truly motivating for students ...):
Group the items!!!

• What about grouping based on both shape and color?

• Lesson to learn: there may be different semantic concepts (and their
corresponding patterns) hidden in the data (here: shape and color)
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The More the Merrier or More is Less?

The good old days of data mining . . .

• Data generation and, to some extend, data storage was costly (hard
to imagine but those were the days ...)

• Domain experts carefully considered which features/variables to
measure before designing experiments/a feature transform/. . .

• Consequence: also data sets were well designed and potentially
contained only a small number of relevant features
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The More the Merrier or More is Less?

Nowadays, data science is also about integrating everything

• Generating and storing data is easy and cheap

• People tend to measure everything they can and even more
(including even more complex feature transformations)

• The Data Science mantra is often interpreted as “we can analyze
data from as many sources as (technically) possible, just record
anaything you can”

• Consequence: data sets are high-dimensional containing a large
number of features but the relevancy of each feature for the analysis
goal is not clear a priori
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High-dimensional Data is NOT a Myth

• Example: Image data
• Low-level image descriptors (color

histograms, textures, shape
information ...)

• Regional descriptors: between 16
and 1,000 features

• ...

• Example: Metabolome data
• Feature = concentration of one metabolite

(intermediates/results of metabolism)
• Bavaria newborn screening (for each baby, the

blood concentrations of 43 metabolites are
measured in the first 48 hours after birth)

• between 50 and 2,000 features
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More High-dimensional Data

• Example: Microarray data (deprecated)
• Features correspond to genes
• Up to 20,000 features
• Dimensionality is much higher than the

sample size

• Example: Text data
• Term frequency: features

correspond to words/terms
• Between 5,000 and 20,000

features (and even more)
• Often, esp. in social media:

abbreviations, colloquial
language, special words
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Problems with High-dimensional Data

Overview:

• Distances grow

• Contrast of distances diminish (concentration problem)

• Meaning of “neighborhood” concept

• Growing data space

• Growing hypothesis space

• Empty spaces and importance tails

• Different semantic layers

• ...

So let us have a closer look on these problems ...
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Distances Grow

The following example uses the Euclidean distance but holds for most
distance measures:

• Consider 2D vectors a = (1,2) and
b = (4,3)

• The Euclidean distance between a
and b is

L2(a,b) = L2((1,2),(4,4))

=
√

(1−4)2 + (2−3)2

=
√

10

which corresponds to the norm of the difference vector c = (3,1):

‖c‖2 =
√

32 + 12
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Distances Grow

With increasing dimensionality, distances grow, too:

• Example: L2((1,2),(4,3)) =
√

10

• Now double the feature vector length (double the original features):
L2((1,2,1,2),(4,3,4,3)) =

√
(32 + 12 + 32 + 12) =

√
20

• Effect seems not so important, values might be only in a larger
scale?

• NOPE:

Contrast of distances is lost in high dimensional data since
distances grow more and more alike!

This is know as the Concentration of Distances problem (see next)
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Concentration of Distances

Concentration Phenomenon

• As dimensionality grows, distance values grow, too, such that the
(numerical) contrast provided by usual measures decreases or even
diminishes

• In other words, the distribution of norms in a given distribution of
points tends to concentrate

• Example: Euclidean norm of vectors consisting of several variables
that are (assumed to be) independent and identically distributed

‖y‖2 =
√

y2
1 + y2

2 + . . . + y2
d

• In high dimensional spaces this norm behaves unexpectedly . . .
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Concentration of Distances

Theorem: Concentration of Distances

• Let y be a d-dimensional vector (y1, ...,yd ) where all components
yi (1≤ i ≤ d) are independent and identically distributed

• Then the mean and the variance of the Euclidean norm are:

µ‖y‖ =
√

a ·d−b +O(d−1) and σ‖y‖ = b +O(d−1/2)

where a and b are parameters depending only on the central
moments of order 1, 2, 3, 4.

Interpretation:
• The norm grows proportionally to

√
d , but the variance remains

approx. constant for large d (because limd→∞ d−const = 0)

• With growing dimensionality, the relative error made by taking µ‖y‖
instead of ‖y‖ becomes negligible

0John A Lee and Michel Verleysen: ”Nonlinear Dimensionality Reduction”. Springer, 2007.
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Neighborhood Concept Become Meaningless

Implications from the concentration of distances:

• A lot of data mining methods use distances and neighborhoods to
define patterns (e.g. kNN classifier, density-based clustering,
distance-based outlier detection, ...

• Using neighborhoods is based on a key assumption:
• Objects that are similar to an object o are in its neighborhood
• Object that are dissimilar to o are not in its neighborhood

• What if all objects are in the same neighborhood?
• Consider the above effect on distances: kNN distances are almost

equal to each other, i.e., the k nearest neighbors are random objects
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Neighborhood Concept Become Meaningless

Definition: Unstable Neighborhood

• A NN-query is unstable for a given ε

if the distance from the query point
to most data points is less than
(1 + ε) times the distance from the
query point to its nearest neighbor

• It can be shown that with growing
dimensionality, the probability that
a query is unstable converges to 1
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Neighborhood Concept Become Meaningless

• Consider a d-dimensional query point
q and n d-dimensional sample points
x1, ...xn (independent and identically
distributed)

• We define:
DMINd = min{L2(xi ,q)|1≤ i ≤ n} (dist to next neighbor)
DMAXd = max{L2(xi ,q)|1≤ i ≤ n} (dist to farthest neighbor)

Theorem

• If limd→∞(
VARL2(xi ,q)

µ2
L2(xi ,q)

) = 0

• Then ∀ε > 0 : limd→∞P(DMAXd ≤ (1 + ε)DMINd ) = 1

In other words: if the precondition holds, all points converge to the same
distance from the query!
0Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft: When is ”nearest neighbor” meaningful? In ICDT 1999.
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Neighborhood Concept Become Meaningless

Visually: Pairwise distances of a sample of 105 instances drawn from a
uniform [0,1] distribution, normalized (1/

√
d).
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Neighborhood Concept Become Meaningless

• Be clear about the precondition of the Theorem!!!

• Consider the feature space of d relevant features for a given
application (i.e., truly similar objects display small distances in most
features)

• Now add d ·c additional features being independent of the initial
feature space

• With increasing c the distance in the independent subspace will
dominate the distance in the complete feature space

• So the question is:
How many relevant features must be similar to indicate object
similarity?
(or: how many relevant features must be dissimilar to indicate
dissimilarity?)

• With increasing dimensionality the likelihood that two objects are
similar in every respect gets smaller.

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 2. Challenges 26/57



Growing Data Space

• OK, the data space grows with increasing dimensionality

• But what are the problems?

• In low dimensional spaces we have some (intuitive) assumptions on
the behavior of volumes (sphere, cube, etc.) and on the distribution
of data objects

• However, basic assumptions do not hold in high dimensional
spaces:

• Spaces become sparse or even empty and the probability of one
object inside a fixed range tends to become zero

• Distribution of data has a strange behavior e.g. a normal distribution
has only few objects in its center and the tails of distributions become
more important

We will have a closer look on these issues ...
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Growing Hypotheses Space

• The more features, the larger the hypothesis space

• The lower the hypothesis space is,
• the easier it is to find the correct hypothesis
• the less examples you need to properly test hypothesis
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Growing Hypotheses Space

• Consider f a unit multivariate normal distribution and normal kernel
(KDE)

• The aim is to find an estimate f̂ of f at the point 0

• The relative mean square error should be fairly small, e.g.
µ2

f̂ (0)−f (0)

f (0)2 < 0.1

Dim. Req. sample size to achieve 0.1 error estimate

1 4
2 19
5 768
8 43.700

10 842.000

Even with only 10 dimensions, we need nearly a million observations to
estimate a distribution with an error less than 0.1!!!
0B.W. Silverman: ”Density Estimation for Statistics and Data Analysis”. Chapman and Hall/CRC, 1986.
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Empty Spaces and Tails

• Consider a d-dimensional space with
partitions of constant size 1/m

• The number of cells N increases
exponentially in d : N = md

• Suppose x points are randomly placed
in this space

• In low-dimensional spaces there are
few empty partitions and many points
per partitions

• In high-dimensional spaces there are
far more partitions than points there
are many empty partitions
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Empty Spaces and Tails

Analogously:

• Consider a simple partitioning scheme, which splits the data in each
dimension in 2 halves

• For d dimensions we obtain 2d partitions

• Consider n = 106 samples in this space

• For d ≤ 10 such a partition may make sense

• For d = 100 there are around 1030 partitions, so most partitions are
empty (given the above 106 points)
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Empty Spaces and Tails

• Consider a hyper-cube range query
with length s in all dimensions, placed
arbitrarily in the data space [0,1]d

• E is the event that an arbitrary point
lies within the query cube

• The probability for E is P(E) = sd

⇒ with increasing
dimensionality, even very large
hyper-cube range queries are
not likely to contain a point
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Empty Spaces and Tails

• The same holds of course for a spherical range query (instead of a
cubical range query)

• Consequence: with increasing dimensionality the center of the
hyper-cube (or more generally: of the data space) becomes less
important and the volume of the data space concentrates in its
corners (i.e. randomly distributed points tend to be on the border of
the data space . . . )

• This seems to be a distortion of space compared to our 3D way of
thinking — and that is actually what it is ...
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Empty Spaces and Tails

And that also means, that the tails of a distribution become extremely
important

• Consider standard density
function f

• Consider f̂ with

f̂ (x) =

{
0 f (x) < 0.01

f (x) else

• Rescaling f̂ to a density function will make very little difference in 1D,
since very few data points occur in regions where f is very small

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 2. Challenges 34/57



Empty Spaces and Tails

But for high dimensional data:

• More than half of the data has less then 1/100 of the maximum
density f (0) (for µ = 0)

• Example: 10-dimensional Gaussian distribution X :

f (X )

f (0)
= e(− 1

2 XT X) ≈ e(− 1
2 χ2

10)

since the median of the χ2
10 distribution is 9.34, the median of f (X)

f (0) is

e
−9.34

2 = 0.0094

• Thus, most objects occur at the tails of the distribution

• In other words, in contrast to the low dimensional case, regions of
relatively very low density can be extremely important parts
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Empty Spaces and Tails

But for high dimensional data:
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Empty Spaces and Tails

Example: (µ = 0,σ = 1)

• 1D: 90% of the mass of the distribution lies between −1.6 and 1.6

• 10D: 99% of the mass of the distribution is at points whose distance from the origin is
greater than 1.6

• Thus, it is difficult to estimate the density, except for enormous samples becausein
very high dimensions virtually the entire sample will be in the tails
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Further Problems

• Patterns and models on high-dimensional data are often hard to
interpret, e.g. long decision rules

• Efficiency in high-dimensional spaces is often limited because e.g.
index structures degenerate and distance computations are much
more expensive

• There may be different semantic layers so pattern might only be
observable in subspaces or projected spaces (cf. the baby shape
game)

• Cliques of correlated features dominate the object description
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The Case Kröger versus Tresp

• Summarizing: the higher the dimensionality, the worse is the
expected outcome of the mining algorithm (i.e., dimensionality is a
curse, says Kröger)

• Well, not in general, the Kernel trick shows the opposite: through the
extension of the data space with new attributes, the mining algorithm
(e.g. a SVM classifier) gets more accurate (i.e., dimensionality is a
blessing, says Tresp in his ML course)

• So: Who is right???????? – Both – What????
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The Case Kröger versus Tresp

• Look at what we assumed for the curse: attributes are independent
(and often even uniformly distributed)

• These attributes are likely to be irrelevant for the mining task

• And the blessing: a Kernel (if it works) adds relevant attributes (even
more relevant than the original ones)

• Message: high-dimensional data is tricky and the curse can come by
as several problems

• Some are due to irrelevant attributes, so try to get rid of irrelevant
attributes and keep the relevant ones

• Some are instead of relevant attributes, so among the relevant
attributes, try to get rid of redundant ones
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Feature Selection

• A task to remove irrelevant and/or redundant features
• Irrelevant features:

• Not useful for a given task
• Probably decrease accuracy

• Redundant features:
• Strongly correlated with another relevant feature
• Does not drop the accuracy, but may drop efficiency, explainability, etc.

• Deleting irrelevant and redundant features can improve the quality
as well as the efficiency of the methods and the found patterns.

• New feature space: Delete all useless features from the original
feature space.

Keep in mind...
Feature selection 6= Dimensionality reduction
Feature selection 6= Feature extraction

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 3. Feature Selection 42/57



Irrelevant and Redundant Features (Unsupervised Case)

Irrelevance

Feature y is irrelevant, because if
we omit x , we have only one clus-
ter, which is uninteresting.

Redundancy

Features x and y are redundant,
because x provides (appr.) the sa-
me information as feature y with re-
gard to discriminating the two clus-
ters

0Source: Feature Selection for Unsupervised Learning, Dy and Brodley, Journal of Machine Learning Research 5 (2004)
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Irrelevant and Redundant Features (Supervised Case)

Irrelevance
Feature y separates well the two clas-
ses. Feature x is irrelevant. Its addition
“destroys” the class separation.

Redundancy

Features x1 and x2 are redundant.

Individually irrelevant
together relevant

0Source: http://www.kdnuggets.com/2014/03/machine-learning-7-pictures.html
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Problem Definition

• Input: Vector space F = d1×·· ·×dn, dimensions D = {d1, . . . ,dn}.
• Output: a minimal subspace M over dimensions D′ ⊆ D which is

optimal for a given data mining task.
• Minimality increases the efficiency, reduces the effects of the curse of

dimensionality and increases interpretability.

Challenges:
• Optimality depends on the given task.
• There are 2d possible solution spaces (exponential complexity)
• This search space is similar to the frequent itemset mining problem,

but:
• There is often no monotonicity in the quality of subspace (which is

important for efficient searching)
• Features might only be useful in combination with other certain

features.

⇒ For many popular criteria, feature selection is an exponential problem.

⇒ Most algorithms employ search heuristics.
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Two Main Components (Steps)

1. Feature subset generation
• Single dimensions
• Combinations of dimensions (subspaces)

2. Feature subset evaluation
• Importance scores like information gain, χ2

• Performance of a learning algorithm

⇒ How to select/evaluate features? How to traverse the search space?
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Feature Selection/Evaluation Methods

1. Filter methods
– Explores the general characteristics of the data, independent of the

learning algorithm.

2. Wrapper methods
– The learning algorithm is used for the evaluation of the subspace.

3. Embedded methods
– The feature selection is part of the learning algorithm.
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Feature Selection/Evaluation Methods

• Filter methods
– Basic idea: assign an “importance” score to each feature to filter out

useless ones
– Examples: information gain, χ2-statistic, TF-IDF for text...
– Disconnected from the learning algorithm.
– Pros:

◦ Fast and generic
◦ Simple to apply

– Cons:
◦ Doesn’t take into account interactions between features
◦ Individually irrelevant features, might be relevant together
◦ Too generic?
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Feature Selection/Evaluation Methods

• Wrapper methods
– A learning algorithm is employed and its performance is used to

determine the quality of selected features.
– Pros:

◦ take feature dependencies into account
◦ interaction between feature subset search and model selection

– Cons:
◦ higher risk of overfitting than filter techniques
◦ very computationally intensive, especially if building the classifier has a

high computational cost.
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Feature Selection/Evaluation Methods

• Embedded methods
– Such methods integrate the feature selection in model building
– Example: decision tree induction algorithm: at each decision node, a

feature has to be selected.
– Pros:

◦ less computationally intensive than wrapper methods.

– Cons:
◦ specific to a learning method
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Search Strategies in the Feature Space

• Forward selection
– Start with an empty feature space and add relevant features

• Backward selection
– Start with all features and remove irrelevant features

• Branch-and-bound
• Find the optimal subspace under the monotonicity assumption

• Randomized
– Randomized search for a k dimensional subspace

• ...
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