Ludwig-Maximilians-Universität München Institut für Informatik

Prof. Dr. Peer Kröger Yifeng Lu

Knowledge Discovery in Databases II SS 2019

Exercise 9: Sequential Data

Exercise 9-1 Manhattan Distance and Edit Distance

Given an alphabet $A=\{a_1,\ldots,a_n\}$, the histogram of a sequence $S=(s_1,\ldots,s_l)$ is defined as $H(S)=(h_1(S),\ldots,h_n(S))$ with $h_k(S)=|\{s_i|i\in\{1,\ldots,l\},s_i=a_k\}|$

Given two sequences $S=(s_1,\ldots,s_l)$ and $T=(t_1,\ldots,t_r)$, **prove** or **disprove**:

- (a) The Manhattan Distance $L_1(H(S), H(T))$ is a lower bound for the Edit Distance $D_{edit}(S, T)$.
- (b) The modified Manhattan Distance

$$D(H(S), H(T)) = \sum_{i=1}^{n} \begin{cases} h_i(S) - h_i(T) &, & if \ h_i(S) > h_i(T) \\ 0 &, & else \end{cases}$$

is a lower bound for the Edit Distance $D_{edit}(S, T)$.

Exercise 9-2 Edit Distance and LCSS

Given two sequences: **CLASSIFY** and **CLUSTER**, compute the edit distance and the longest common subsequence similarity using dynamic programming way.

		С	L	A	S	S	I	F	Y
	0								
С									
L									
U									
S									
T									
Е									
R									
		С	I.	Α	S	S	T	F	Y
	0	С	L	A	S	S	I	F	Y
C	0	С	L	A	S	S	I	F	Y
C	0	С	L	A	S	S	I	F	Y
L	0	С	L	A	S	S	I	F	Y
C L U	0	С	L	A	S	S	I	F	Y
L U	0	С	L	A	S	S	I	F	Y
L U S	0	C	L	A	S	S	I	F	Y