Exercise 5: High Dimensional Data Clustering

Exercise 5-1 Subspace vs Projected Clustering
Download the package ‘subspace’ in R and compare the results of CLIQUE, ProClus, SubClu with the given dataset provided in the package. You can also try out the package orclus.

Exercise 5-2 ProClus

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>651</td>
<td>308</td>
<td>543</td>
<td>246</td>
</tr>
<tr>
<td>51</td>
<td>649</td>
<td>496</td>
<td>536</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>655</td>
<td>578</td>
<td>535</td>
<td>253</td>
</tr>
<tr>
<td>46</td>
<td>657</td>
<td>228</td>
<td>533</td>
<td>251</td>
</tr>
<tr>
<td>53</td>
<td>653</td>
<td>617</td>
<td>535</td>
<td>244</td>
</tr>
<tr>
<td>46</td>
<td>646</td>
<td>516</td>
<td>531</td>
<td>253</td>
</tr>
<tr>
<td>48</td>
<td>650</td>
<td>679</td>
<td>540</td>
<td>249</td>
</tr>
<tr>
<td>41</td>
<td>648</td>
<td>86</td>
<td>536</td>
<td>253</td>
</tr>
<tr>
<td>51</td>
<td>645</td>
<td>718</td>
<td>547</td>
<td>248</td>
</tr>
<tr>
<td>54</td>
<td>653</td>
<td>548</td>
<td>528</td>
<td>250</td>
</tr>
</tbody>
</table>

Try to find two 3-dim Clusters using Proclus algorithm.

Exercise 5-3 Density-based Subspace-Clustering (SubClu)
Show that the following statement (monotonicity of the core point property) holds:
Let \(D \) be a set of \(d \)-dimensional feature vectors, \(A \) the set of all attributes (dimensions/features). Further let \(p \in D \) and \(S \subseteq A \) be a subspace (attribute subset).
Then the following holds for arbitrary \(\epsilon \in \mathbb{R}^+ \) and \(\text{minPts} \in \mathbb{N} \):
\[
\forall T \subseteq S : |N^S_\epsilon(p)| \geq \text{minPts} \Rightarrow |N^T_\epsilon(p)| \geq \text{minPts}
\]
with \(|N^S_\epsilon(p)| := \{ q \in D | L_P(\pi_S(p), \pi_S(q)) \leq \epsilon \} \).

Exercise 5-4 Density-based Projected-Clustering (PreDeCon)
The algorithm PreDeCon is closely related to 4C. Instead of the expensive PCA, it uses variance analysis and a weighted Euclidean distance function: For the points in a candidate’s \(\epsilon \)-neighborhood, each dimension whose variance is below \(\delta \) is weighted more heavily (\(\kappa \)).
Consider the 2D data set shown below. Assume the width of the grid to be 1 unit, use the Euclidean distance function to determine a point’s ϵ-neighborhood.

![Diagram of 2D data set]

Calculate, if p_3 and p_6 are core points. Assume the following parameter values: $\text{minPts} = 3, \epsilon = 1, \delta = 0.25, \lambda = 1, \kappa = 100$

Exercise 5-5 CASH: Hough-Transform

Consider the data set “cashDaten.txt”.

(To visualize the data space, use the following gnuplot command:)

```
plot [0:10][0:10] 'cashDaten.txt' title ''
```

![Plot of data space]

Determine the parameter space associated with this data space, i.e. for each point a parameter function of the following form:
\[f_p(\alpha_1, \ldots, \alpha_{d-1}) = \sum_{i=1}^{d} p_i \cdot \left(\prod_{j=1}^{i-1} \sin(\alpha_j) \right) \cdot \cos(\alpha_i) \]

(Note: \(\alpha_d = 0 \)).

Visualize the parameter functions. Where are dense regions located?