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Introduction

• Graphs, graphs everywhere!
– Chemical data analysis, proteins

– Biological pathways/networks

– Program control flow, traffic flow, work flow analysis

– XML, Web, social network analysis

• Graphs form a complex and expressive data type
– Trees, lattices, sequences, and items are degenerated graphs

– Different applications result in different kinds of graphs and tasks
• Diversity of graphs and tasks  diversity of challenges

– Complexity of algorithms: many problems are of 
high complexity (NP-complete or even P-SPACE!)
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Graph Data vs. Network Data

• Different applications result in different kinds of graphs and tasks
– E.g. chemical graphs: relatively small, repeating vertex labels

– E.g. large scale domains (web, computer networks, social networks): very 
big, vertex labels are distinct

• Diversity of graphs and tasks  diversity of challenges

• Graph mining can be divided into two fundamental settings:
– Mining in a set of graphs, e.g.:

• Finding similar graphs

• Determining all frequent subgraphs

• Classification of graphs

– Mining in one single large graph, e.g.:
• How does the network ´behave´?

• Determine striking patterns, 
e.g. homogeneous and connected components

Introduction and Basics 4
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Basic Definitions

• Definition Directed, Simple Graph:
A directed, simple graph is a tuple g=(V,E) comprising a set V of vertices and a 
set E of edges. 

Edges are 2-element subsets of the vertices (ܧ ⊆ ܸ ൈ ܸ). The relation is 
represented as ordered pair of the vertices (directed). Loops and multiple 
edges are disallowed (simple).

– V(g) describes the set of vertices of the particular graph g.

– E(g) describes the set of edges of the particular graph g.

• Definition Undirected, Simple Graph:
An undirected, simple graph is a tuple g=(V,E) comprising a set V of vertices 
and a set E of edges. 

Edges are 2-element subsets of the vertices (ܧ ⊆ ܸ ൈ ܸ). The relation is 
represented as unordered pair of the vertices (undirected). Loops and multiple 
edges are disallowed.
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Basic Definitions

• If not stated otherwise, we are dealing with undirected, unlabeled, 
simple graphs!
– For simplicity we will write ݁ ൌ ሺݒ௜, ௝ሻݒ also for undirected edges!

• Definition Labeled Graph:
A labeled graph is a triplet g=(V,E,l) with a set of vertices V, a set of edges E, 
and a label function l, which maps a vertex or an edge to the label set: 

Σ (݈: ܸ ∪ ܧ → 	Σ).

• The (infinite) set of all graphs will be denoted as:

࣡ (࣡ ⊆ ࣪ሺԳሻ ൈ ࣪ሺԳ ൈ Գ))

Introduction and Basics 6
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Basic Definitions

• Walk/Path: A walk or a path in a graph ݃ is a sequence of vertices 	݌ ൌ
ሺݒଵ, ,ଶݒ … , ௞ሻݒ such that from each of its vertices there is an edge to the 
next vertex in the sequence ( ∀1 ൑ ݅ ൑ ݇ െ 1: ,௜ݒ ௜ାଵݒ ∈ ሺ݃ሻܧ ). 
– The length ݈݁݊ ݌ of the walk/path is the number of edges traversed.

– The set of vertices traversed  by path p is denoted by ܸ ݌ ൌ ሼݒଵ, … , ௞ሽݒ
– A walk/path is closed if its first and last vertices are the same, and open if 

they are different.

– A simple walk/path is one where no vertices are repeated.

– The first vertex of a walk/path is called its start vertex. The last vertex of a 
finite walk/path is called its end vertex. The intermediate vertices of the 
walk/path are called internal vertices.

Introduction and Basics 7
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Basic Definitions

• Trail: A trail is a walk in which all the edges are distinct. A closed trail is 
called tour.

• Label sequence: A label sequence in a labeled graph ݃ is a sequence of 
vertex labels ݈ݏ ൌ ሺ݈ሺݒଵሻ, ݈ሺݒଶሻ, … , ݈ሺݒ௞ሻሻ such that from each of its 
vertices there is an edge to the next vertex in the sequence ( ∀1 ൑ ݅ ൑ ݇
െ 1: ,௜ݒ ௜ାଵݒ ∈ ሺ݃ሻܧ ). 
– If also the edges are labeled, the label sequence expands to an alternating 

sequence of vertex and edge labels  ݈ݏ
ൌ ሺ݈ሺݒଵሻ, ݈ ݁ଵ , ݈ሺݒଶሻ, ݈ ݁ଶ , … , ݈ሺ݁௞ିଵሻ݈ሺݒ௞ሻሻ, s.t. ∀1 ൑ ݅ ൑ ݇ െ 1: ݁௜ ൌ ,௜ݒ ௜ାଵݒ
∈  .ሺ݃ሻܧ

• Shortest path: The shortest path between two vertices ݒ௜ and ݒ௝ in a 
graph ݃ is the path witch traverses the minimal number of edges 
,௜ݒ௠௜௡ሺ݌ ௝ሻݒ ൌ argmin

௣∈ሼ௣௔௧௛ୀሺ௩భ,…௩ೖሻ|௩భୀ௩೔∧௩ೖୀ௩ೕሽ
݈݁݊ሺ݌) 

Introduction and Basics 8
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Basic Definitions

• The adjacency matrix of a simple graph ܯሺ݃ሻ is a ܸ ݃ ൈ |ܸ ݃ | matrix 
with entries ܯሾ݅, ݆ሿ ൌ 1 or ܯሾ݅, ݆ሿ ൌ 0 according to whether ݒ௜, ௝ݒ
∈ ሺ݃ሻܧ or ݒ௜, ௝ݒ ∉  .ሺ݃ሻܧ

• The number of all paths of length n from ݒ௜ to ݒ௝ in a graph ݃ is the ሺ݅, ݆ሻ
entry of ܯ ݃ ௡

• Adjacent: Two vertices are adjacent if they are connected by an edge.

Introduction and Basics 9

0 1 0 1 1
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
1 0 0 1 0

3 0 2 1 1
0 2 0 2 1
2 0 2 0 1
1 2 0 3 1
1 1 1 1 2

2 5 1 6 4
5 0 4 1 2
1 4 0 5 2
6 1 5 2 4
4 2 2 4 2

g  = M(g)= M(g)2= M(g)3=
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Basic Definitions

• If not stated otherwise, the size/cardinality of a graph is defined as: 
݃ ൌ |ܸሺ݃ሻ|

• Complete graph: A complete graph or clique is a graph in which each 
vertex is adjacent to every other vertex (∀ݒ௜, ௝ݒ ∈ ܸ ݃ : ,௜ݒ ௝ݒ ∈         .(ሺ݃ሻܧ
– A complete graph with n vertices is denoted by Kn.

• Connected: A graph is connected if there is a path connecting every pair 
of vertices (∀ݒ௜, ௝ݒ ∈ ܸ ݃ : ݌∃ ൌ ,ଵݒ … , ௞ݒ ଵݒ	݄ݐ݅ݓ	 ൌ ௜ݒ 	∧ ௞ݒ ൌ (	௝ݒ
– A graph that is not connected can be divided into 

connected components (disjoint connected subgraphs). 

Introduction and Basics 10
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Basic Definitions

• Diameter: The diameter ݀ሺ݃ሻ	of a graph is its ‘longest shortest path‘, 
i.e., the maximum among minimal paths between pairs of its vertices. 
݀ ݃ ൌ maxሼ݈݁݊ሺ݌௠௜௡ሺݒ௜, ,௜ݒ|௝ሻݒ ௝ݒ ∈ ܸ ݃ ሻሽ	
– d ݃ ൌ 1 implies that ݃ is complete.

– ݀ ݃ ൌ ∞ implies that ݃ is not connected.

• K-degenerate graph (k-core graph): An undirected graph in which every 
subgraph has a vertex of degree at most k is called a k-core graph.

Introduction and Basics 11
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Basic Definitions

• The degree of a vertex (݀݁݃	ሺݒሻ) is the number of edges incident to the 
vertex.
– A vertex with degree 0 is called an isolated vertex.

– A vertex with degree 1 is called a leaf or end vertex.

• Indegree, Outdegree: For directed graphs it is useful to differentiate 
between ingoing and outgoing edges:
– The indegree degା ݒ 	of a vertex is the number of head endpoints adjacent 

to it:

degା ݒ ൌ |ሼ ,ݓ ݒ ∈ |ሺ݃ሻሽܧ
– The outdegree degି ݒ 	of a vertex is the number of tail endpoints adjacent 

to it:

degି ݒ ൌ |ሼ ,ݒ ݓ ∈ |ሺ݃ሻሽܧ

Introduction and Basics 12
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Isomorphism & Subgraphs

• Definition Graph Isomorphism:
For two labeled graphs ݃ and ݃ᇱ, a graph isomorphism is a bijective function 
݂: ܸ ݃ → ܸሺ݃ᇱሻ, such that:

1. ݒ∀ ∈ ܸ ݃ : 	݈ ݒ ൌ ݈ᇱ ݂ ݒ
2. ∀ ,ݑ ݒ ∈ ܧ ݃ : ݂ ݑ , ݂ ݒ ∈ ܧ ݃ᇱ and  ݈ ,ݑ ݒ ൌ ݈ᇱ ݂ ݑ , ݂ ݒ
3. ∀ ,ݑ ݒ ∈ ܧ ݃′ : ݂ିଵ ݑ , ݂ିଵ ݒ ∈ ܧ ݃ and  ݈′ ,ݑ ݒ ൌ ݈ ݂ିଵ ݑ , ݂ିଵ ݒ

• A graph ݃ is isomorphic to ݃‘ (݃ ≅ ݃′ሻ if there exists a graph 
isomorphism from ݃ to ݃’

Introduction and Basics 13

ଵݒ → 1
ଶݒ → 3
ଷݒ → 4
ସݒ → 2
ହݒ → 5
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Isomorphism & Subgraphs

• Definition Subgraph Isomorphism:
For two labeled graphs ݃ and ݃ᇱ, a subgraph isomorphism is an injective 
function 
݂: ܸ ݃ → ܸሺ݃ᇱሻ, such that:

1. ݒ∀ ∈ ܸ ݃ , ݈ ݒ ൌ ݈ᇱ ݂ ݒ
2. ∀ ,ݑ ݒ ∈ ܧ ݃ , ݂ ݑ , ݂ ݒ ∈ ܧ ݃ᇱ and  ݈ ,ݑ ݒ ൌ ݈ᇱ ݂ ݑ , ݂ ݒ

Where l and l‘ are the labeling functions of ݃ and ݃ᇱ respectively.

f is called an embedding of ݃ in ݃ᇱ. 
• A graph ݃ is a subgraph of another graph ݃ᇱ	(݃ ⊆ ݃′) if there exists a 

subgraph isomorphism from ݃ to ݃ᇱ.

Introduction and Basics 14
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ଶݒ → 4
ଷݒ → 3
ସݒ → 1
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Induced Subgraphs

• Definition Induced Subgraph:
A subgraph ݃′ of a given graph ݃ is an induced subgraph (݃ᇱ ⊆௜௡ௗ ݃), iff
,௜ݒ∀ ௝ݒ ∈ ܸ ݃ᇱ : ,௜ݒ ௝ݒ ∈ ܧ ݃ ⟺ ,௜ݒ ௝ݒ ∈ ′݃ ሺ݃ᇱሻ. The graphܧ is called the 
graph induced by the vertices ܸሺ݃ᇱሻ in ݃.

݃′ contains all the edges of ݃ that connect elements of the given subset of the 
vertex set of ݃, and only those edges.

Introduction and Basics 15
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Literature and References

• References for each method are provided in the corresponding chapters

• An overview of the area is given by the textbook
Managing and Mining Graph Data
Charu C. Aggarwal, Haixun Wang
Springer, 2010

• The book is available in our „Handapparat“

Introduction and Basics 16
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Outline

• Graph Introduction
– Basic Definitions

• Graph Similarity
– Exact Graph Matching
– Error-tolerant Graph Matching

• Frequent Subgraph Mining
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Similarity between Graphs

• Similarity between objects basic requirement for mining and 
exploration
– Retrieval, Clustering, Classification, …

• Many techniques (cf. Data Mining I) rely on similarity/distance measures

• Traditional vector data: several distance functions introduced
– Euclidean Distance, Cosine Distance, Mahalanobis Distance, …

• Similarity between graphs more complex
– Arbitrary permutation of nodes still results in same graph

→ Computing, e.g., Frobenius norm („entrywise“ Euclidean Distance) between 
two adjacency matrices not meaningful 

Graph Similarity 18

ଵܯ ൌ 	

0	1	1	0
1	0	1	1
1	1	0	0	
0	1	0	0	

ଶܯ ൌ 	

0	1	0	0	
1	0	1	1
0	1	0	1
0	1	1	0

݃ଵ ≅ ݃ଶ
but

ଵܯ െܯଶ ி=2
݃ଵ ݃ଶ
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Exact Graph Matching

• The most simple similarity measure: Isomorphism

– ,௜௦௢ሺ݃1ݐݏ݅݀ ݃2ሻ 	ൌ ቊ0, 	݂݅	݃1	 ≅ 	݃2
	1	, ݁ݏ݈݁														

– Obviously: too restrictive/sensitive, just binary decision
• graphs have to be completely identical 

• Better solution: use of Maximum Common Subgraph
– Largest part of two graphs that is identical

– Common (induced) subgraphs ܿݏሺ݃1, ݃2ሻ ൌ ሼݔ ∈ ݔ|࣡ ⊆௜௡ௗ ݃1 ∧ ݔ ⊆௜௡ௗ ݃2ሽ
– Maximum common subgraph ݉ܿݏ ݃1, ݃2 ൌ argmax

௚∈௖௦ሺ௚ଵ,௚ଶሻ
|݃|

– Distance function:  d୫ୡୱሺg1, g2ሻ ൌ 1 െ ሺ |௠௖௦ ௚ଵ,௚ଶ |
୫ୟ୶	ሺ ௚ଵ ,|௚ଶ|ሻ

ሻ

Graph Similarity 19

d୫ୡୱ gଵ, gଶ ൌ 1	 െ
3
5 ൌ

2
5

݃ଵ ݃ଶ
ݏܿ݉ ݃ଵ, ݃ଶ
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Exact Graph Matching

• Extension: Consider also the Minimum Common Supergraph
– Smallest supergraph that „contains“ both other graphs

– Common supergraphs: CS g1, g2 ൌ ሼݔ ∈ 1݃|ܩ ⊆௜௡ௗ ݔ ∧ ݃2 ⊆௜௡ௗ ሽݔ
– Minimum common supergraph ,ሺ݃1ܵܥܯ ݃2ሻ ൌ 	 argmin

௚∈஼ௌሺ௚ଵ,௚ଶሻ
|݃|

– Distance function: ݀ெெ஼ௌ ݃1, ݃2 ൌ ܵܥܯ ݃1, ݃2 െ ,ሺ݃1ݏܿ݉| ݃2ሻ|

Graph Similarity 20

d୑୑ୌ gଵ, gଶ ൌ 6 െ 3 ൌ 3

݃ଵ

݃ଶ

ݏܿ݉ ݃ଵ, ݃ଶ

MCS ݃ଵ, ݃ଶ
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Problems of Exact Graph Matching

• Problem of previous distance measures
– To obtain high similarity, a significant part of the topology and of the labels 

need to be identical 
– Just a few missing edges or slightly different labels lead to low similarity

• Real world data, however, is often noisy and contains some errors 

– If labels are selected from continuous domains (e.g. Թ) very unlikely to 
detect identical (sub)graphs

•  Error-tolerant graph matching 

Graph Similarity 21

d୫ୡୱሺgଵ, gଶሻ ൌ 0.5

maximum
common
subgraph

݃ଵ ݃ଶ
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Error-tolerant Graph Matching

• Idea: Do not enforce identical patterns, but „just“ penalize deviations
– E.g. the more dissimilar the labels, the higher the penality

– E.g. two missing edges worse than one missing edge

• We briefly discuss two paradigms
– Vector space embeddings of graphs

– Graph Edit Distance

Graph Similarity 22

d୫ୡୱ g୧, g୨ ൌ ଷ
ସ
				∀݅ ് ݆ since ݃ସ is maximum common subgraph

However, intuitively ݃1 more similar to ݃2 than to ݃4

݃ଵ ݃ଶ ݃ଷ ݃ସ
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Vector Space Embeddings of Graphs

• Idea: Extract characteristic (and numerical) features of the graph
– E.g. number of nodes, number of edges, …

– In chemistry such features are called „topological indices“

• Each feature corresponds to one dimension in a vector space

• Similarity of graphs = similarity of vectors in feature space
– E.g. using Euclidean Distance, Dot Product, …

Graph Similarity 23

݂ሺ݃ଵሻ ൌ ሾ4,6ሿ ݂ሺ݃ଶሻ ൌ ሾ4,5ሿ 											݂ሺ݃ଷሻ ൌ ሾ4,4ሿ ݂ሺ݃ସሻ ൌ ሾ3,3ሿ

݃ଵ ݃ଶ ݃ଷ ݃ସ

Example for ݂ሺ݃ሻ ൌ ሾ	 ܸ ݃ 	, ܧ ݃ 	ሿ
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Multi-dimensional Features

• Previous indices „compress“ the graph to a single value

• Easy interpretation but potentially too rough for measuring similarity

•  Extract multi-dimensional features

• Label histogram
– Each bin of the histogram represents a label ݈ ∈ Σ and stores the number of 

nodes with label ݈
– Feature space: ݄௟௔௕௘௟ ݃ ∈ Թ|ஊ|

– ݄௟௔௕௘௟ ݃ ݅ ൌ |ሼݒ ∈ ܸሺ݃ሻ|݈ ݒ ൌ ݈௜ሽ| with Σ ൌ ሼ݈ଵ, … , ݈ ஊ ሽ
– Limited to discrete label domains, i.e. finite Σ

Graph Similarity 24

A

B
DA

B A
݄௟௔௕௘௟ ݃ ൌ ሾ3,2,0,1ሿ with Σ ൌ ሼܣ, ,ܤ ,ܥ ሽܦ
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Graph Similarity based on Edit 
Distance

• Previous approaches map graphs to vector spaces
– Similarity of graphs is distance in novel vector space

• Now: Try to transform graph g1 into graph g2
– „The smaller the transformation costs, 

the similar the graphs“

– Idea: Adapt String Edit distance to Graph Edit Distance

• String Edit Distance:
– Minimal number of editing operations (insertions, deletions, substitutions) 

for transforming sequence s into sequence q.

– Example: D(“TÜRSCHLOSS”, “ABSCHUSS”) = D(s,q)= 5
• two deletions () and three substitutions (:) are necessary.
• Five symbols are unmodified (|)

Graph Similarity 25

s  =  T Ü R S C H L O S S
 : : | | |  : | |

q  =    A B S C H   U S S
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Graph Edit Distance

• Graph Edit Operators:
– Vertex insertion, deletion, substitution

– Edge insertion, deletion, substitution

– A list of operations edit one graph to another is a Edit Path ࣪ሺ݃ଵ, ݃ଶሻ

Node operations: 
ሼݑଵ → ߶, ଶݑ → ,ଷݒ ଷݑ → ,ଶݒ ସݑ → ଵሽݒ

Edge operations: 
ሼ ,ଵݑ ଶݑ → ߶, ,ଶݑ ଷݑ → ,ଷݒ ଶݒ , ,ଷݑ ସݑ → ,ଶݒ ଵݒ , ,ସݑ ଶݑ → ߶ሽ

• Graph Edit Distance:

ܦܧܩ ݃ଵ, ݃ଶ ൌ min
௘భ,௘మ,…,௘ೖ ∈࣪ሺ௚భ,௚మሻ

෍ܿሺ݁௜ሻ
௞

௜ୀଵ

High Dimensional Data Mining: Distances 26
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Graph Edit Distance

• All possible edit path form a edit tree

• Computing Graph Edit Distance is equivalent to finding the shortest 
path in the tree (e.g.: A*-algorithm)

• Possible number of Edit Path grows exponentially (NP-hard)

High Dimensional Data Mining: Distances 27
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Summary

• Different approaches to measure similarity between graphs

• Exact graph matching
– Isomorphism, maximum common subgraph, …

• Error-tolerant graph matching
– Mapping of graphs to feature vectors (degree histogram, …)

– Graph Edit Distance

• Given a similarity/distance measure, many interesting mining tasks can 
already be performed for graph data!
– e.g. Graph Clustering by using k-Medoid and Graph Edit Distance

Graph Similarity 28
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Outline

• Graph Introduction
– Basic Definitions

• Graph Similarity
– Exact Graph Matching

– Error-tolerant Graph Matching
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Introduction

• Input: collection of graphs ܤܦ	 ൌ 	 ሺ݃1	, …	, ݃݊ሻ	consisting of undirected, 
labeled graphs ݃݅		 ൌ ሺ ௜ܸ, ,௜ܧ ݈௜ሻ,	where l is a labeling function mapping an 
edge or a vertex to a label

• Aim: determine all connected graphs that occur as subgraph in at least a 
given percentage (support) or number (frequency) of all graphs in DB

• Applications: 
– As preprocessing: characterizing graph sets, discriminating different groups 

of graphs, classifying graphs, clustering graphs, building graph indices, 
facilitating similarity search

– Bioinformatics, computer vision, video indexing, chemical informatics

Frequent Subgraph Mining 30

E.g. frequent molecular fragments (e.g. in drug discovery)
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Basics

• Analogy to "traditional" frequent itemset mining:
– Each graph ݃௜ of the graph database ܤܦ represents a transaction

– Each subgraph represents an itemset

• Formal definitions:
– A graph ݃′	is a subgraph of another graph ݃ (݃′ ⊆ ݃) if there exists a 

subgraph isomorphism from ݃′ to ݃

– ሺ݃′ሻݐݎ݋݌݌ݑݏ ൌ |஽೒ᇲ|
|஽஻|

, with supporting graphset D୥ᇱ ൌ ݃௜ ݃′ ⊆ ݃௜, ݃௜ ∈ 	ܤܦ . 

– A subgraph ݃′	is frequent if its support is no less than a threshold ݉݅݊	_݌ݑݏ.
Example:

– Anti-Monotonicity: A size-k subgraph is only frequent if all of its subgraphs 
are frequent.

Frequent Subgraph Mining 31
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General Approach

• Naive approach: test frequency of all possible subgraph patterns 
– Frequency calculations require subgraph isomorphism test (NP-complete)

→ Try to early exclude some patterns from further considerations

• General (iterative) approach for discovering frequent subgraphs:
1st step: generate frequent subgraph candidates

2nd step: check the frequency of each candidate

→ Goal: try to keep the candidate set small!

• Two basic approaches (exploiting
the anti-monotonicity criterion):
– Apriori-based approach

– Pattern-growth approach

Frequent Subgraph Mining 32
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Apriori-based Approach

• Works analogously to Apriori-based frequent itemset mining

• Exploiting the anti-monotonicity in a bottom-up algorithm:
─ Start with small-size subgraphs (e.g. single nodes)

─ In each iteration:

Candidate generation:
─ Increase the size of new frequent subgraph candidates by one 

─ Generate new candidates by joining two similar but slightly different frequent 
subgraphs of the previous iteration

Check the frequency of the just built candidates

• How to join two graphs of size k to a graph of size k+1 ?                               
How is the size of a graph defined?
– typical approaches: AGM[IWM00], FSG[KK01], edge-disjoint path-join 

method[VGS02]

Frequent Subgraph Mining 33

[IWM00] A. Inokuchi, T. Washio, H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In 
PKDD'00, pp.13-23.
[KK01] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In ICDM'01, pp. 313-320. 
[VGS02] N. Vanetik, E. Gudes, S.E. Shimony. Computing frequent graph patterns from semistructured data. In ICDM’02, pp. 458-465.
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AGM Candidate Generation

• AGM: vertex-based candidate generation: 
– The "size" of a graph g is the number of vertices in V(g)
– 2 size-k subgraphs are joined iff they share the same size-(k-1) subgraph

Example:

• In each iteration potentially a large amount of candidates is generated
– AGM generates disconnected frequent subgraphs

– Joining two patterns always just generates 2 candidates, BUT:

– 1 pattern can have multiple representations 
• Due to the representation of a graph by its adjacency matrix, the common 

subgraph has no unique representation!
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Apriori-based Approach – FSG 
Candidate Generation

• FSG: edge-based candidate generation:
– The "size" of a graph g is the number of edges in E(g)
– 2 size-k patterns are joined iff they share the same subgraph having k-1

edges

Example:
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3 reasons for large 
candidate  sets

─ Still a potentially large 
amount of candidates 

─ But avoids 
disconnected frequent 
subgraphs
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Apriori-based Approach vs. Pattern 
Growth Approach

Apriori-based approach:

• Join methods can be expensive

• Has considerable overhead when size-k patterns                                           
are joined to generate patterns of size (k+1)

• Has to use a breadth-first search (BFS) strategy 
because of level-wise candidate generation

Alternative: pattern growth approach (e.g. gSpan[YH02])

• Extends a frequent graph by directly adding a new edge; no expensive 
joins

• More flexible: can use BFS or DFS

• Critical point: extension of a graph; how to avoid duplicates?
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Restricted Frequent Subgraphs

• Problem: the mining process often generates a huge number of patterns
– Anti-monotonicity: a frequent pattern with n edges has O(2n) frequent 

subgraphs

• Solution: Restrict the frequent patterns based on objective functions
– Closed subgraphs, maximal subgraphs

– General constraints (e.g., geometric constraints, density, etc. )

– Significant graph patterns (e.g., information gain, p-value, G-score, etc.)

• Intuitively:
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Summary

• Frequent Subgraph Mining
– Extension of traditional itemset mining to graph databases

– Apriori-Methods: Join step is expensive (many duplicates)

– Pattern-Growth method (gSpan): No duplicates due to DFS code

• Problem of redundancy
– Set of frequent subgraphs is exponentially large and 

contains very many similar patterns

– Solution: Restrict the set of frequent subgraphs
• Closed, maximal subgraphs

• Representative subgraphs
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