
DATABASE
SYSTEMS
GROUP

Knowledge Discovery and Data Mining 1

Knowledge Discovery in Databases II
Summer Term 2018

Ludwig-Maximilians-Universität München
Institut für Informatik
Lehr- und Forschungseinheit für Datenbanksysteme

Lecture 5:
Graphs

Lectures : Prof. Dr. Peer Kröger, Yifeng Lu
Tutorials: Yifeng Lu

Script © 2015, 2017 Eirini Ntoutsi, Matthias Schubert, Arthur Zimek, Peer Kröger, Yifeng Lu

http://www.dbs.ifi.lmu.de/cms/studium_lehre/lehre_master/kdd218

DATABASE
SYSTEMS
GROUP

Outline

• Graph Introduction
– Basic Definitions

• Graph Similarity
– Exact Graph Matching

– Error-tolerant Graph Matching

• Frequent Subgraph Mining

High Dimensional Data Mining: Distances 2

DATABASE
SYSTEMS
GROUP

Introduction

• Graphs, graphs everywhere!
– Chemical data analysis, proteins

– Biological pathways/networks

– Program control flow, traffic flow, work flow analysis

– XML, Web, social network analysis

• Graphs form a complex and expressive data type
– Trees, lattices, sequences, and items are degenerated graphs

– Different applications result in different kinds of graphs and tasks
• Diversity of graphs and tasks  diversity of challenges

– Complexity of algorithms: many problems are of
high complexity (NP-complete or even P-SPACE!)

Introduction and Basics 3

Social Network Graph
(facebook, Dez 2010)

source: http://jchemed.chem.wisc.edu/
Yeast Protein
Interaction
Network

DATABASE
SYSTEMS
GROUP

Graph Data vs. Network Data

• Different applications result in different kinds of graphs and tasks
– E.g. chemical graphs: relatively small, repeating vertex labels

– E.g. large scale domains (web, computer networks, social networks): very
big, vertex labels are distinct

• Diversity of graphs and tasks  diversity of challenges

• Graph mining can be divided into two fundamental settings:
– Mining in a set of graphs, e.g.:

• Finding similar graphs

• Determining all frequent subgraphs

• Classification of graphs

– Mining in one single large graph, e.g.:
• How does the network ´behave´?

• Determine striking patterns,
e.g. homogeneous and connected components

Introduction and Basics 4

Social Network Graph
(facebook, Dez 2010)

DATABASE
SYSTEMS
GROUP

Basic Definitions

• Definition Directed, Simple Graph:
A directed, simple graph is a tuple g=(V,E) comprising a set V of vertices and a
set E of edges.

Edges are 2-element subsets of the vertices (ܧ ⊆ ܸ ൈ ܸ). The relation is
represented as ordered pair of the vertices (directed). Loops and multiple
edges are disallowed (simple).

– V(g) describes the set of vertices of the particular graph g.

– E(g) describes the set of edges of the particular graph g.

• Definition Undirected, Simple Graph:
An undirected, simple graph is a tuple g=(V,E) comprising a set V of vertices
and a set E of edges.

Edges are 2-element subsets of the vertices (ܧ ⊆ ܸ ൈ ܸ). The relation is
represented as unordered pair of the vertices (undirected). Loops and multiple
edges are disallowed.

Introduction and Basics 5

D
ef

au
lt

DATABASE
SYSTEMS
GROUP

Basic Definitions

• If not stated otherwise, we are dealing with undirected, unlabeled,
simple graphs!
– For simplicity we will write ݁ ൌ ሺݒ௜, ௝ሻݒ also for undirected edges!

• Definition Labeled Graph:
A labeled graph is a triplet g=(V,E,l) with a set of vertices V, a set of edges E,
and a label function l, which maps a vertex or an edge to the label set:

Σ (݈: ܸ ∪ ܧ → 	Σ).

• The (infinite) set of all graphs will be denoted as:

࣡ (࣡ ⊆ ࣪ሺԳሻ ൈ ࣪ሺԳ ൈ Գ))

Introduction and Basics 6

DATABASE
SYSTEMS
GROUP

Basic Definitions

• Walk/Path: A walk or a path in a graph ݃ is a sequence of vertices 	݌ ൌ
ሺݒଵ, ,ଶݒ … , ௞ሻݒ such that from each of its vertices there is an edge to the
next vertex in the sequence (∀1 ൑ ݅ ൑ ݇ െ 1: ,௜ݒ ௜ାଵݒ ∈ ሺ݃ሻܧ).
– The length ݈݁݊ ݌ of the walk/path is the number of edges traversed.

– The set of vertices traversed by path p is denoted by ܸ ݌ ൌ ሼݒଵ, … , ௞ሽݒ
– A walk/path is closed if its first and last vertices are the same, and open if

they are different.

– A simple walk/path is one where no vertices are repeated.

– The first vertex of a walk/path is called its start vertex. The last vertex of a
finite walk/path is called its end vertex. The intermediate vertices of the
walk/path are called internal vertices.

Introduction and Basics 7

DATABASE
SYSTEMS
GROUP

Basic Definitions

• Trail: A trail is a walk in which all the edges are distinct. A closed trail is
called tour.

• Label sequence: A label sequence in a labeled graph ݃ is a sequence of
vertex labels ݈ݏ ൌ ሺ݈ሺݒଵሻ, ݈ሺݒଶሻ, … , ݈ሺݒ௞ሻሻ such that from each of its
vertices there is an edge to the next vertex in the sequence (∀1 ൑ ݅ ൑ ݇
െ 1: ,௜ݒ ௜ାଵݒ ∈ ሺ݃ሻܧ).
– If also the edges are labeled, the label sequence expands to an alternating

sequence of vertex and edge labels ݈ݏ
ൌ ሺ݈ሺݒଵሻ, ݈ ݁ଵ , ݈ሺݒଶሻ, ݈ ݁ଶ , … , ݈ሺ݁௞ିଵሻ݈ሺݒ௞ሻሻ, s.t. ∀1 ൑ ݅ ൑ ݇ െ 1: ݁௜ ൌ ,௜ݒ ௜ାଵݒ
∈ .ሺ݃ሻܧ

• Shortest path: The shortest path between two vertices ݒ௜ and ݒ௝ in a
graph ݃ is the path witch traverses the minimal number of edges
,௜ݒ௠௜௡ሺ݌ ௝ሻݒ ൌ argmin

௣∈ሼ௣௔௧௛ୀሺ௩భ,…௩ೖሻ|௩భୀ௩೔∧௩ೖୀ௩ೕሽ
݈݁݊ሺ݌)

Introduction and Basics 8

DATABASE
SYSTEMS
GROUP

Basic Definitions

• The adjacency matrix of a simple graph ܯሺ݃ሻ is a ܸ ݃ ൈ |ܸ ݃ | matrix
with entries ܯሾ݅, ݆ሿ ൌ 1 or ܯሾ݅, ݆ሿ ൌ 0 according to whether ݒ௜, ௝ݒ
∈ ሺ݃ሻܧ or ݒ௜, ௝ݒ ∉ .ሺ݃ሻܧ

• The number of all paths of length n from ݒ௜ to ݒ௝ in a graph ݃ is the ሺ݅, ݆ሻ
entry of ܯ ݃ ௡

• Adjacent: Two vertices are adjacent if they are connected by an edge.

Introduction and Basics 9

0 1 0 1 1
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
1 0 0 1 0

3 0 2 1 1
0 2 0 2 1
2 0 2 0 1
1 2 0 3 1
1 1 1 1 2

2 5 1 6 4
5 0 4 1 2
1 4 0 5 2
6 1 5 2 4
4 2 2 4 2

g = M(g)= M(g)2= M(g)3=

DATABASE
SYSTEMS
GROUP

Basic Definitions

• If not stated otherwise, the size/cardinality of a graph is defined as:
݃ ൌ |ܸሺ݃ሻ|

• Complete graph: A complete graph or clique is a graph in which each
vertex is adjacent to every other vertex (∀ݒ௜, ௝ݒ ∈ ܸ ݃ : ,௜ݒ ௝ݒ ∈ .(ሺ݃ሻܧ
– A complete graph with n vertices is denoted by Kn.

• Connected: A graph is connected if there is a path connecting every pair
of vertices (∀ݒ௜, ௝ݒ ∈ ܸ ݃ : ݌∃ ൌ ,ଵݒ … , ௞ݒ ଵݒ	݄ݐ݅ݓ	 ൌ ௜ݒ 	∧ ௞ݒ ൌ (௝ݒ
– A graph that is not connected can be divided into

connected components (disjoint connected subgraphs).

Introduction and Basics 10

K5

DATABASE
SYSTEMS
GROUP

Basic Definitions

• Diameter: The diameter ݀ሺ݃ሻ	of a graph is its ‘longest shortest path‘,
i.e., the maximum among minimal paths between pairs of its vertices.
݀ ݃ ൌ maxሼ݈݁݊ሺ݌௠௜௡ሺݒ௜, ,௜ݒ|௝ሻݒ ௝ݒ ∈ ܸ ݃ ሻሽ	
– d ݃ ൌ 1 implies that ݃ is complete.

– ݀ ݃ ൌ ∞ implies that ݃ is not connected.

• K-degenerate graph (k-core graph): An undirected graph in which every
subgraph has a vertex of degree at most k is called a k-core graph.

Introduction and Basics 11

d(g)=1 d(g)=2 d(g)=2 d(g)= ∞

DATABASE
SYSTEMS
GROUP

Basic Definitions

• The degree of a vertex (݀݁݃	ሺݒሻ) is the number of edges incident to the
vertex.
– A vertex with degree 0 is called an isolated vertex.

– A vertex with degree 1 is called a leaf or end vertex.

• Indegree, Outdegree: For directed graphs it is useful to differentiate
between ingoing and outgoing edges:
– The indegree degା ݒ 	of a vertex is the number of head endpoints adjacent

to it:

degା ݒ ൌ |ሼ ,ݓ ݒ ∈ |ሺ݃ሻሽܧ
– The outdegree degି ݒ 	of a vertex is the number of tail endpoints adjacent

to it:

degି ݒ ൌ |ሼ ,ݒ ݓ ∈ |ሺ݃ሻሽܧ

Introduction and Basics 12

DATABASE
SYSTEMS
GROUP

Isomorphism & Subgraphs

• Definition Graph Isomorphism:
For two labeled graphs ݃ and ݃ᇱ, a graph isomorphism is a bijective function
݂: ܸ ݃ → ܸሺ݃ᇱሻ, such that:

1. ݒ∀ ∈ ܸ ݃ : 	݈ ݒ ൌ ݈ᇱ ݂ ݒ
2. ∀ ,ݑ ݒ ∈ ܧ ݃ : ݂ ݑ , ݂ ݒ ∈ ܧ ݃ᇱ and ݈ ,ݑ ݒ ൌ ݈ᇱ ݂ ݑ , ݂ ݒ
3. ∀ ,ݑ ݒ ∈ ܧ ݃′ : ݂ିଵ ݑ , ݂ିଵ ݒ ∈ ܧ ݃ and ݈′ ,ݑ ݒ ൌ ݈ ݂ିଵ ݑ , ݂ିଵ ݒ

• A graph ݃ is isomorphic to ݃‘ (݃ ≅ ݃′ሻ if there exists a graph
isomorphism from ݃ to ݃’

Introduction and Basics 13

ଵݒ → 1
ଶݒ → 3
ଷݒ → 4
ସݒ → 2
ହݒ → 5

DATABASE
SYSTEMS
GROUP

Isomorphism & Subgraphs

• Definition Subgraph Isomorphism:
For two labeled graphs ݃ and ݃ᇱ, a subgraph isomorphism is an injective
function
݂: ܸ ݃ → ܸሺ݃ᇱሻ, such that:

1. ݒ∀ ∈ ܸ ݃ , ݈ ݒ ൌ ݈ᇱ ݂ ݒ
2. ∀ ,ݑ ݒ ∈ ܧ ݃ , ݂ ݑ , ݂ ݒ ∈ ܧ ݃ᇱ and ݈ ,ݑ ݒ ൌ ݈ᇱ ݂ ݑ , ݂ ݒ

Where l and l‘ are the labeling functions of ݃ and ݃ᇱ respectively.

f is called an embedding of ݃ in ݃ᇱ.
• A graph ݃ is a subgraph of another graph ݃ᇱ	(݃ ⊆ ݃′) if there exists a

subgraph isomorphism from ݃ to ݃ᇱ.

Introduction and Basics 14

݁. ݃. : ଵݒ → 2
ଶݒ → 4
ଷݒ → 3
ସݒ → 1

DATABASE
SYSTEMS
GROUP

Induced Subgraphs

• Definition Induced Subgraph:
A subgraph ݃′ of a given graph ݃ is an induced subgraph (݃ᇱ ⊆௜௡ௗ ݃), iff
,௜ݒ∀ ௝ݒ ∈ ܸ ݃ᇱ : ,௜ݒ ௝ݒ ∈ ܧ ݃ ⟺ ,௜ݒ ௝ݒ ∈ ′݃ ሺ݃ᇱሻ. The graphܧ is called the
graph induced by the vertices ܸሺ݃ᇱሻ in ݃.

݃′ contains all the edges of ݃ that connect elements of the given subset of the
vertex set of ݃, and only those edges.

Introduction and Basics 15

V1 V4

V3

V6

V2

V5

V1 V4

V6

V2

V5

V1 V4

V6

V2

V5

induced subgraph not induced subgraphoriginal graph

DATABASE
SYSTEMS
GROUP

Literature and References

• References for each method are provided in the corresponding chapters

• An overview of the area is given by the textbook
Managing and Mining Graph Data
Charu C. Aggarwal, Haixun Wang
Springer, 2010

• The book is available in our „Handapparat“

Introduction and Basics 16

DATABASE
SYSTEMS
GROUP

Outline

• Graph Introduction
– Basic Definitions

• Graph Similarity
– Exact Graph Matching
– Error-tolerant Graph Matching

• Frequent Subgraph Mining

High Dimensional Data Mining: Distances 17

DATABASE
SYSTEMS
GROUP

Similarity between Graphs

• Similarity between objects basic requirement for mining and
exploration
– Retrieval, Clustering, Classification, …

• Many techniques (cf. Data Mining I) rely on similarity/distance measures

• Traditional vector data: several distance functions introduced
– Euclidean Distance, Cosine Distance, Mahalanobis Distance, …

• Similarity between graphs more complex
– Arbitrary permutation of nodes still results in same graph

→ Computing, e.g., Frobenius norm („entrywise“ Euclidean Distance) between
two adjacency matrices not meaningful

Graph Similarity 18

ଵܯ ൌ 	

0	1	1	0
1	0	1	1
1	1	0	0	
0	1	0	0	

ଶܯ ൌ 	

0	1	0	0	
1	0	1	1
0	1	0	1
0	1	1	0

݃ଵ ≅ ݃ଶ
but

ଵܯ െܯଶ ி=2
݃ଵ ݃ଶ

DATABASE
SYSTEMS
GROUP

Exact Graph Matching

• The most simple similarity measure: Isomorphism

– ,௜௦௢ሺ݃1ݐݏ݅݀ ݃2ሻ 	ൌ ቊ0, 	݂݅	݃1	 ≅ 	݃2
	1	, ݁ݏ݈݁														

– Obviously: too restrictive/sensitive, just binary decision
• graphs have to be completely identical

• Better solution: use of Maximum Common Subgraph
– Largest part of two graphs that is identical

– Common (induced) subgraphs ܿݏሺ݃1, ݃2ሻ ൌ ሼݔ ∈ ݔ|࣡ ⊆௜௡ௗ ݃1 ∧ ݔ ⊆௜௡ௗ ݃2ሽ
– Maximum common subgraph ݉ܿݏ ݃1, ݃2 ൌ argmax

௚∈௖௦ሺ௚ଵ,௚ଶሻ
|݃|

– Distance function: d୫ୡୱሺg1, g2ሻ ൌ 1 െ ሺ |௠௖௦ ௚ଵ,௚ଶ |
୫ୟ୶	ሺ ௚ଵ ,|௚ଶ|ሻ

ሻ

Graph Similarity 19

d୫ୡୱ gଵ, gଶ ൌ 1	 െ
3
5 ൌ

2
5

݃ଵ ݃ଶ
ݏܿ݉ ݃ଵ, ݃ଶ

DATABASE
SYSTEMS
GROUP

Exact Graph Matching

• Extension: Consider also the Minimum Common Supergraph
– Smallest supergraph that „contains“ both other graphs

– Common supergraphs: CS g1, g2 ൌ ሼݔ ∈ 1݃|ܩ ⊆௜௡ௗ ݔ ∧ ݃2 ⊆௜௡ௗ ሽݔ
– Minimum common supergraph ,ሺ݃1ܵܥܯ ݃2ሻ ൌ 	 argmin

௚∈஼ௌሺ௚ଵ,௚ଶሻ
|݃|

– Distance function: ݀ெெ஼ௌ ݃1, ݃2 ൌ ܵܥܯ ݃1, ݃2 െ ,ሺ݃1ݏܿ݉| ݃2ሻ|

Graph Similarity 20

d୑୑ୌ gଵ, gଶ ൌ 6 െ 3 ൌ 3

݃ଵ

݃ଶ

ݏܿ݉ ݃ଵ, ݃ଶ

MCS ݃ଵ, ݃ଶ

DATABASE
SYSTEMS
GROUP

Problems of Exact Graph Matching

• Problem of previous distance measures
– To obtain high similarity, a significant part of the topology and of the labels

need to be identical
– Just a few missing edges or slightly different labels lead to low similarity

• Real world data, however, is often noisy and contains some errors

– If labels are selected from continuous domains (e.g. Թ) very unlikely to
detect identical (sub)graphs

•  Error-tolerant graph matching

Graph Similarity 21

d୫ୡୱሺgଵ, gଶሻ ൌ 0.5

maximum
common
subgraph

݃ଵ ݃ଶ

DATABASE
SYSTEMS
GROUP

Error-tolerant Graph Matching

• Idea: Do not enforce identical patterns, but „just“ penalize deviations
– E.g. the more dissimilar the labels, the higher the penality

– E.g. two missing edges worse than one missing edge

• We briefly discuss two paradigms
– Vector space embeddings of graphs

– Graph Edit Distance

Graph Similarity 22

d୫ୡୱ g୧, g୨ ൌ ଷ
ସ
				∀݅ ് ݆ since ݃ସ is maximum common subgraph

However, intuitively ݃1 more similar to ݃2 than to ݃4

݃ଵ ݃ଶ ݃ଷ ݃ସ

DATABASE
SYSTEMS
GROUP

Vector Space Embeddings of Graphs

• Idea: Extract characteristic (and numerical) features of the graph
– E.g. number of nodes, number of edges, …

– In chemistry such features are called „topological indices“

• Each feature corresponds to one dimension in a vector space

• Similarity of graphs = similarity of vectors in feature space
– E.g. using Euclidean Distance, Dot Product, …

Graph Similarity 23

݂ሺ݃ଵሻ ൌ ሾ4,6ሿ ݂ሺ݃ଶሻ ൌ ሾ4,5ሿ 											݂ሺ݃ଷሻ ൌ ሾ4,4ሿ ݂ሺ݃ସሻ ൌ ሾ3,3ሿ

݃ଵ ݃ଶ ݃ଷ ݃ସ

Example for ݂ሺ݃ሻ ൌ ሾ	 ܸ ݃ 	, ܧ ݃ 	ሿ

DATABASE
SYSTEMS
GROUP

Multi-dimensional Features

• Previous indices „compress“ the graph to a single value

• Easy interpretation but potentially too rough for measuring similarity

•  Extract multi-dimensional features

• Label histogram
– Each bin of the histogram represents a label ݈ ∈ Σ and stores the number of

nodes with label ݈
– Feature space: ݄௟௔௕௘௟ ݃ ∈ Թ|ஊ|

– ݄௟௔௕௘௟ ݃ ݅ ൌ |ሼݒ ∈ ܸሺ݃ሻ|݈ ݒ ൌ ݈௜ሽ| with Σ ൌ ሼ݈ଵ, … , ݈ ஊ ሽ
– Limited to discrete label domains, i.e. finite Σ

Graph Similarity 24

A

B
DA

B A
݄௟௔௕௘௟ ݃ ൌ ሾ3,2,0,1ሿ with Σ ൌ ሼܣ, ,ܤ ,ܥ ሽܦ

DATABASE
SYSTEMS
GROUP

Graph Similarity based on Edit
Distance

• Previous approaches map graphs to vector spaces
– Similarity of graphs is distance in novel vector space

• Now: Try to transform graph g1 into graph g2
– „The smaller the transformation costs,

the similar the graphs“

– Idea: Adapt String Edit distance to Graph Edit Distance

• String Edit Distance:
– Minimal number of editing operations (insertions, deletions, substitutions)

for transforming sequence s into sequence q.

– Example: D(“TÜRSCHLOSS”, “ABSCHUSS”) = D(s,q)= 5
• two deletions () and three substitutions (:) are necessary.
• Five symbols are unmodified (|)

Graph Similarity 25

s = T Ü R S C H L O S S
 : : | | |  : | |

q = A B S C H U S S

DATABASE
SYSTEMS
GROUP

Graph Edit Distance

• Graph Edit Operators:
– Vertex insertion, deletion, substitution

– Edge insertion, deletion, substitution

– A list of operations edit one graph to another is a Edit Path ࣪ሺ݃ଵ, ݃ଶሻ

Node operations:
ሼݑଵ → ߶, ଶݑ → ,ଷݒ ଷݑ → ,ଶݒ ସݑ → ଵሽݒ

Edge operations:
ሼ ,ଵݑ ଶݑ → ߶, ,ଶݑ ଷݑ → ,ଷݒ ଶݒ , ,ଷݑ ସݑ → ,ଶݒ ଵݒ , ,ସݑ ଶݑ → ߶ሽ

• Graph Edit Distance:

ܦܧܩ ݃ଵ, ݃ଶ ൌ min
௘భ,௘మ,…,௘ೖ ∈࣪ሺ௚భ,௚మሻ

෍ܿሺ݁௜ሻ
௞

௜ୀଵ

High Dimensional Data Mining: Distances 26

DATABASE
SYSTEMS
GROUP

Graph Edit Distance

• All possible edit path form a edit tree

• Computing Graph Edit Distance is equivalent to finding the shortest
path in the tree (e.g.: A*-algorithm)

• Possible number of Edit Path grows exponentially (NP-hard)

High Dimensional Data Mining: Distances 27

DATABASE
SYSTEMS
GROUP

Summary

• Different approaches to measure similarity between graphs

• Exact graph matching
– Isomorphism, maximum common subgraph, …

• Error-tolerant graph matching
– Mapping of graphs to feature vectors (degree histogram, …)

– Graph Edit Distance

• Given a similarity/distance measure, many interesting mining tasks can
already be performed for graph data!
– e.g. Graph Clustering by using k-Medoid and Graph Edit Distance

Graph Similarity 28

DATABASE
SYSTEMS
GROUP

Outline

• Graph Introduction
– Basic Definitions

• Graph Similarity
– Exact Graph Matching

– Error-tolerant Graph Matching

• Frequent Subgraph Mining

High Dimensional Data Mining: Distances 29

DATABASE
SYSTEMS
GROUP

Introduction

• Input: collection of graphs ܤܦ	 ൌ 	 ሺ݃1	, …	, ݃݊ሻ	consisting of undirected,
labeled graphs ݃݅		 ൌ ሺ ௜ܸ, ,௜ܧ ݈௜ሻ,	where l is a labeling function mapping an
edge or a vertex to a label

• Aim: determine all connected graphs that occur as subgraph in at least a
given percentage (support) or number (frequency) of all graphs in DB

• Applications:
– As preprocessing: characterizing graph sets, discriminating different groups

of graphs, classifying graphs, clustering graphs, building graph indices,
facilitating similarity search

– Bioinformatics, computer vision, video indexing, chemical informatics

Frequent Subgraph Mining 30

E.g. frequent molecular fragments (e.g. in drug discovery)

DATABASE
SYSTEMS
GROUP

Basics

• Analogy to "traditional" frequent itemset mining:
– Each graph ݃௜ of the graph database ܤܦ represents a transaction

– Each subgraph represents an itemset

• Formal definitions:
– A graph ݃′	is a subgraph of another graph ݃ (݃′ ⊆ ݃) if there exists a

subgraph isomorphism from ݃′ to ݃

– ሺ݃′ሻݐݎ݋݌݌ݑݏ ൌ |஽೒ᇲ|
|஽஻|

, with supporting graphset D୥ᇱ ൌ ݃௜ ݃′ ⊆ ݃௜, ݃௜ ∈ 	ܤܦ .

– A subgraph ݃′	is frequent if its support is no less than a threshold ݉݅݊	_݌ݑݏ.
Example:

– Anti-Monotonicity: A size-k subgraph is only frequent if all of its subgraphs
are frequent.

Frequent Subgraph Mining 31

DATABASE
SYSTEMS
GROUP

General Approach

• Naive approach: test frequency of all possible subgraph patterns
– Frequency calculations require subgraph isomorphism test (NP-complete)

→ Try to early exclude some patterns from further considerations

• General (iterative) approach for discovering frequent subgraphs:
1st step: generate frequent subgraph candidates

2nd step: check the frequency of each candidate

→ Goal: try to keep the candidate set small!

• Two basic approaches (exploiting
the anti-monotonicity criterion):
– Apriori-based approach

– Pattern-growth approach

Frequent Subgraph Mining 32

DATABASE
SYSTEMS
GROUP

Apriori-based Approach

• Works analogously to Apriori-based frequent itemset mining

• Exploiting the anti-monotonicity in a bottom-up algorithm:
─ Start with small-size subgraphs (e.g. single nodes)

─ In each iteration:

Candidate generation:
─ Increase the size of new frequent subgraph candidates by one

─ Generate new candidates by joining two similar but slightly different frequent
subgraphs of the previous iteration

Check the frequency of the just built candidates

• How to join two graphs of size k to a graph of size k+1 ?
How is the size of a graph defined?
– typical approaches: AGM[IWM00], FSG[KK01], edge-disjoint path-join

method[VGS02]

Frequent Subgraph Mining 33

[IWM00] A. Inokuchi, T. Washio, H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In
PKDD'00, pp.13-23.
[KK01] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In ICDM'01, pp. 313-320.
[VGS02] N. Vanetik, E. Gudes, S.E. Shimony. Computing frequent graph patterns from semistructured data. In ICDM’02, pp. 458-465.

DATABASE
SYSTEMS
GROUP

AGM Candidate Generation

• AGM: vertex-based candidate generation:
– The "size" of a graph g is the number of vertices in V(g)
– 2 size-k subgraphs are joined iff they share the same size-(k-1) subgraph

Example:

• In each iteration potentially a large amount of candidates is generated
– AGM generates disconnected frequent subgraphs

– Joining two patterns always just generates 2 candidates, BUT:

– 1 pattern can have multiple representations
• Due to the representation of a graph by its adjacency matrix, the common

subgraph has no unique representation!

Frequent Subgraph Mining 34

DATABASE
SYSTEMS
GROUP

Apriori-based Approach – FSG
Candidate Generation

• FSG: edge-based candidate generation:
– The "size" of a graph g is the number of edges in E(g)
– 2 size-k patterns are joined iff they share the same subgraph having k-1

edges

Example:

Frequent Subgraph Mining 35

3 reasons for large
candidate sets

─ Still a potentially large
amount of candidates

─ But avoids
disconnected frequent
subgraphs

DATABASE
SYSTEMS
GROUP

Apriori-based Approach vs. Pattern
Growth Approach

Apriori-based approach:

• Join methods can be expensive

• Has considerable overhead when size-k patterns
are joined to generate patterns of size (k+1)

• Has to use a breadth-first search (BFS) strategy
because of level-wise candidate generation

Alternative: pattern growth approach (e.g. gSpan[YH02])

• Extends a frequent graph by directly adding a new edge; no expensive
joins

• More flexible: can use BFS or DFS

• Critical point: extension of a graph; how to avoid duplicates?

Frequent Subgraph Mining 36

[YH02] X. Yan, J. Han. gSpan: Graph-based substructure pattern mining. In ICDM'02, pp.721-724.

DATABASE
SYSTEMS
GROUP

Restricted Frequent Subgraphs

• Problem: the mining process often generates a huge number of patterns
– Anti-monotonicity: a frequent pattern with n edges has O(2n) frequent

subgraphs

• Solution: Restrict the frequent patterns based on objective functions
– Closed subgraphs, maximal subgraphs

– General constraints (e.g., geometric constraints, density, etc.)

– Significant graph patterns (e.g., information gain, p-value, G-score, etc.)

• Intuitively:

Frequent Subgraph Mining 37

DATABASE
SYSTEMS
GROUP

Summary

• Frequent Subgraph Mining
– Extension of traditional itemset mining to graph databases

– Apriori-Methods: Join step is expensive (many duplicates)

– Pattern-Growth method (gSpan): No duplicates due to DFS code

• Problem of redundancy
– Set of frequent subgraphs is exponentially large and

contains very many similar patterns

– Solution: Restrict the set of frequent subgraphs
• Closed, maximal subgraphs

• Representative subgraphs

Frequent Subgraph Mining 38

