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« Graphs, graphs everywhere!
— Chemical data analysis, proteins
— Biological pathways/networks
— Program control flow, traffic flow, work flow analysis
— XML, Web, social network analysis

« Graphs form a complex and expressive data type
— Trees, lattices, sequences, and items are degenerated graphs

— Different applications result in different kinds of graphs and tasks
« Diversity of graphs and tasks = diversity of challenges

— Complexity of algorithms: many problems are of
high complexity (NP-complete or even P-SPACE!)
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source: http://jc(h)emed.chem.wisc.edu/

Social Network Graph
(facebook, Dez 2010)

Introduction and Basics



w

DATABASE G ra h D ata VS. N EtWO rk D ata 2
— p I-MU X o

SYSTEMS

« Different applications result in different kinds of graphs and tasks
— E.g. chemical graphs: relatively small, repeating vertex labels
— E.g. large scale domains (web, computer networks, social networks): very
big, vertex labels are distinct
« Diversity of graphs and tasks = diversity of challenges

« Graph mining can be divided into two fundamental settings:
— Mining in a set of graphs, e.g.:
« Finding similar graphs
« Determining all frequent subgraphs
« Classification of graphs

— Mining in one single large graph, e.qg.:
« How does the network ‘behave’?

« Determine striking patterns,
e.g. homogeneous and connected components

Social Network Graph
(facebook, Dez 2010)

Introduction and Basics
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Definition Directed, Simple Graph:

A directed, simple graph is a tuple g=(V,E) comprising a set V of vertices and a
set E of edges.

Edges are 2-element subsets of the vertices (E € V X V). The relation is
represented as ordered pair of the vertices (directed). Loops and multiple
edges are disallowed (simple).

— VI(g) describes the set of vertices of the particular graph g.
— E(g) describes the set of edges of the particular graph g.

Definition Undirected, Simple Graph:

An undirected, simple graph is a tuple g=(V,E) comprising a set V of vertices
and a set E of edges.

Edges are 2-element subsets of the vertices (E € V X V). The relation is
represented as unordered pair of the vertices (undirected). Loops and multiple

edges are disallowed. ? E

directed, simple graph  undirected, simple graph

Introduction and Basics



If not stated otherwise, we are dealing with undirected, unlabeled,
simple graphs!
— For simplicity we will write e = (v;, v;) also for undirected edges!

Definition Labeled Graph:

A labeled graph is a triplet g=(V,E,l) with a set of vertices V, a set of edges E,
and a label function I, which maps a vertex or an edge to the label set:

(LVUE - ).

The (infinite) set of all graphs will be denoted as:
G (G < P(N)xP(NxN))




« Walk/Path: A walk or a path in a graph g is a sequence of vertices p =
(vq, vy, ..., ;) such that from each of its vertices there is an edge to the
next vertex in the sequence (V1 <i <k —1:(v;,v;41) € E(g9) ).

The length len(p) of the walk/path is the number of edges traversed.
The set of vertices traversed by path p is denoted by V(p) = {v4, ..., v}

A walk/path is closed if its first and last vertices are the same, and open if
they are different.

A simple walk/path is one where no vertices are repeated.

The first vertex of a walk/path is called its start vertex. The last vertex of a
finite walk/path is called its end vertex. The intermediate vertices of the
walk/path are called internal vertices.



Trail: A trail is a walk in which all the edges are distinct. A closed trail is

called tour.
Label sequence: A label sequence in a labeled graph g is a sequence of

vertex labels Is = (I(v;), [(vy), ..., l(vy)) such that from each of its
vertices there is an edge to the next vertex in the sequence (V1 <i <k
—1: (v, vi41) €E(9) ).

If also the edges are labeled, the label sequence expands to an alternating

sequence of vertex and edge labels Is
= (l(vl), l(el), l(vz), l(ez), cee l(ek_l)l(vk)), st.Vi<i<k-1: e = (vi, vi+1)

€ E(g).
Shortest path: The shortest path between two vertices v; and v; in a

graph g is the path witch traverses the minimal number of edges

Pmin(Vi, V}) = argmin len(p)
pe{path=(vq,..Vg)|V1=ViAVE =V}
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The adjacency matrix of a simple graph M(g) is a |[V(g)| x |V(g)| matrix
with entries M[i,j] = 1 or M[i,j] = 0 according to whether (v;, v;)

€ E(g) or (vi,vj) € E(g).

01011 30211 2516 4
170100 02021 50412
M(g)={0 1 0 1 0 [M(g)°=|2 020 1|M(g)P3=|14052
17010 1 172031 61524
10010 11112 42242

The number of all paths of length n from v; to v; in a graph g is the (i, )
entry of M(g)"

Adjacent. Two vertices are adjacent if they are connected by an edge.



If not stated otherwise, the size/cardinality of a graph is defined as:

lgl =V (g)l
Complete graph: A complete graph or clique is a graph in which each
vertex is adjacent to every other vertex (Vv;, v; € V(g): (v;,vj) € E(g)).

— A complete graph with n vertices is denoted by K.. @
K5

Connected: A graph is connected if there is a path connecting every pair
of vertices (Vv;, v; € V(g):Ap = (vy, ..., v) With vy = v; Avg = v;)
— A graph that is not connected can be divided into
connected components (disjoint connected subgraphs).

3 connected
components




« Diameter: The diameter d(g) of a graph is its ‘longest shortest path’,
l.e., the maximum among minimal paths between pairs of its vertices.
d(g) = max{len(pmin (v, vj)|vy, v; € V(g))}

— d(g) = 1 implies that g is complete.
- d(g) = oo implies that g is not connected.

G 65 o o

dg)=1  d(g}=2  dlg)=2  dlg)=°

« K-degenerate graph (k-core graph). An undirected graph in which every
subgraph has a vertex of degree at most k is called a k-core graph.




« The degree of a vertex (deg(v)) is the number of edges incident to the
vertex.

— A vertex with degree 0 is called an isolated vertex.
— A vertex with degree 1 is called a leaf or end vertex.

« Indegree, Outdegree: For directed graphs it is useful to differentiate
between ingoing and outgoing edges:

— The indegree deg* (v) of a vertex is the number of head endpoints adjacent
to it:

deg*(v) = |[{(w,v) € E(9)}|

— The outdegree deg™(v) of a vertex is the number of tail endpoints adjacent
to it:

deg™(v) = |{(v,w) € E(9)}|



« Definition_Graph Isomorphism:

For two labeled graphs g and g’, a graph isomorphism is a bijective function
f:V(g) - V(g"), such that:
1. VveV(g): l(v) = l’(f(v))
2. V(w,v) €E(g):(f(w),f(v)) € E(g") and I(w,v) = I'(f(w), f(v))
3 V(u,v) € E(g):(f*(w),f'() € E(g) and I'(w,v) = I(f*(w), f'(v))
« A graph g is isomorphic to g (g = g") if there exists a graph
Isomorphism from g to g’

v —>1
v, > 3
V3 > 4
Vy > 2
vs =5




Definition Subgraph Isomorphism:

For two labeled graphs g and g’, a subgraph isomorphism is an injective

function
f:V(g) » V(g", such that:
1. VveV(g)lw) = l’(f(v))

2. Vu,v) € E(9), (f), f() € E(g" and I(u,v) =I'(f(w), f(v))

Where [ and /" are the labeling functions of g and g’ respectively.

fis called an embedding of g in g'.

« A graph g is a subgraph of another graph g’ (g € g') if there exists a

subgraph isomorphism from g to g'.

e.g.:vy > 2
v, > 4
v3 > 3
v, — 1
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« Definition Induced Subgraph:
A subgraph g’ of a given graph g is an induced subgraph (g’ S;,,4 9), iff
v, v € V(g": (v, v;) € E(g) © (vi,v;) € E(g"). The graph g’ is called the
graph induced by the vertices V(g') in g.

=/

original graph induced subgraph not induced subgraph

g’ contains all the edges of g that connect elements of the given subset of the
vertex set of g, and only those edges.

Introduction and Basics 15



» References for each method are provided in the corresponding chapters

« An overview of the area is given by the textbook
Managing and Mining Graph Data
Charu C. Aggarwal, Haixun Wang
Springer, 2010

« The book is available in our ,,Handapparat”



* Graph Introduction

— Basic Definitions
« Graph Similarity

— Exact Graph Matching

— Error-tolerant Graph Matching
* Frequent Subgraph Mining
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« Similarity between objects basic requirement for mining and
exploration

— Retrieval, Clustering, Classification, ...
« Many techniques (cf. Data Mining I) rely on similarity/distance measures
« Traditional vector data: several distance functions introduced
— FEuclidean Distance, Cosine Distance, Mahalanobis Distance, ...

« Similarity between graphs more complex
— Arbitrary permutation of nodes still results in same graph

— Computing, e.g., Frobenius norm (,,entrywise” Euclidean Distance) between
two adjacency matrices not meaningful

0110 0100 N
@'@ uo— [1011 @'@ _|1011 G
17 11100 g2 2= 10101

& ©® o100 & @ 010 iy ylle=2

Graph Similarity 18



* The most simple similarity measure: Isomorphism

if gl = g2

- distis0(91,92) = {1 else

— Obviously: too restrictive/sensitive, just binary decision
« graphs have to be completely identical
« Better solution: use of Maximum Common Subgraph
— Largest part of two graphs that is identical
— Common (induced) subgraphs cs(gl,g92) = {x € G|x Sijng 91 N X Sing 92}

— Maximum common subgraph mcs(g1, g2) = argmax |g|
gecs(g1,92)

ImCS(gl,gZ)I

— Distance function: dy(g1,82) =1 —(

max(|g1] Igzl)
mes(g1, 92) A
'y
mcs(glt 82) =1-=-=

5 E




« Extension: Consider also the Minimum Common Supergraph
— Smallest supergraph that ,,contains” both other graphs
— Common supergraphs: CS(gl1,g2) = {x € G|g1 Sijng X N g2 Sing x}

— Minimum common supergraph MCS(g1,g2) = argmin |g|
geCs(gl,g92)

— Distance function: dypcs(g1, g2) = [MCS(g1, g2)| — |mcs(g1, g2)|

91 mes(g1, g2)

dvmcs(g1,82) =6—3=3




« Problem of previous distance measures

— To obtain high similarity, a significant part of the topology and of the labels
need to be identical

— Just a few missing edges or slightly different labels lead to low similarity
« Real world data, however, is often noisy and contains some errors

— If labels are selected from continuous domains (e.g. R) very unlikely to
detect identical (sub)graphs

maximum
common
subgraph

(®)
dmes(g1,82) = 0.5

« = Error-tolerant graph matching




« lIdea: Do not enforce identical patterns, but ,,just” penalize deviations
— E.g. the more dissimilar the labels, the higher the penality
— E.g. two missing edges worse than one missing edge

dmcs(gi, g]-) =% Vi #j since g, IS maximum common subgraph

However, intuitively g1 more similar to g2 than to g4

* We briefly discuss two paradigms
— Vector space embeddings of graphs
— Graph Edit Distance




« ldea: Extract characteristic (and numerical) features of the graph
— E.g. number of nodes, number of edges, ...
— In chemistry such features are called ,topological indices”

« Each feature corresponds to one dimension in a vector space

« Similarity of graphs = similarity of vectors in feature space
— E.qg. using Euclidean Distance, Dot Product, ...

Example for f(g) = [ V(). |E(g)I]

f(g1) = [4.6] f(g2) = [4,5] f(g3) = [4.4] f(g4) = [3,3]




Previous indices ,,compress” the graph to a single value
Easy interpretation but potentially too rough for measuring similarity
—> Extract multi-dimensional features

Label histogram

— Each bin of the histogram represents a label [ € ¥ and stores the number of
nodes with label [

— Feature space: hygpe;(g) € RI!

- hapea (@il = {v e V(QIw) = [} with X ={l4, ..., iz}
— Limited to discrete label domains, i.e. finite X

ORECESC
" hlabel(g) = [3,2,0,1] with X = {A, B, C, D}
& —®
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« Previous approaches map graphs to vector spaces ) <
— Similarity of graphs is distance in novel vector space ,«—/ \\|
- - N
 Now: Try to transform graph g1 into graph g2 i ,/ ,' \1
— ,, The smaller the transformation costs, \ I

L § N ¥ o
the similar the graphs N /
— ldea: Adapt String Edit distance to Graph Edit Distance ™y /

« String Edit Distance:

— Minimal number of editing operations (insertions, deletions, substitutions)
for transforming sequence s into sequence q.
— Example: D("TURSCHLOSS"”, “ABSCHUSS") = D(s,q)=5
« two deletions (0) and three substitutions (:) are necessary.
« Five symbols are unmodified (])

s = TWU
<>-

w ' 0
n=—wm
o= 0O

q = A

Graph Similarity
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« Graph Edit Operators:
— Vertex insertion, deletion, substitution
— Edge insertion, deletion, substitution
— A list of operations edit one graph to another is a Edit Path P (g4, 9»)

qn > 92
MNU:; uzﬁua %Cﬁua %quz vs(i:vz v;;Q—Ivg
uy Ug Uy Uy Uuq v v
Node operations:

{u1 = ¢, uy = v3,u3 > vy, uy - v}
Edge operations:

{(ug, uz) = @, (U, uz) = (v3,v,), (U3, uy) = (v, V1), (Ug, Up) = @}

« Graph Edit Distance:
K

GED (g, = min Z c(e;
(91, 92) (e1,€2,.-,ex)EP(g1.92) 4 (e)

=1



« All possible edit path form a edit tree

« Computing Graph Edit Distance is equivalent to finding the shortest
path in the tree (e.qg.: A*-algorithm)

9 g2

ug‘u:; vz @—@v2
u1I [u,. Iu.

» Possible number of Edit Path grows exponentially (NP-hard)



Different approaches to measure similarity between graphs
Exact graph matching

— Isomorphism, maximum common subgraph, ...
Error-tolerant graph matching

— Mapping of graphs to feature vectors (degree histogram, ...)
— Graph Edit Distance

Given a similarity/distance measure, many interesting mining tasks can
already be performed for graph data!
— e.g. Graph Clustering by using k-Medoid and Graph Edit Distance



* Graph Introduction

— Basic Definitions
« Graph Similarity

— Exact Graph Matching

— Error-tolerant Graph Matching
« Frequent Subgraph Mining
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« Input: collection of graphs DB =
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,gn) consisting of undirected,

labeled graphs g, = (V;, E;, l;), where Tis a labeling function mapping an
edge or a vertex to a label

« Aim: determine all connected graphs that occur as subgraph in at least a
given percentage (support) or number (frequency) of all graphs in DB

« Applications:
— As preprocessing: characterizing graph sets, discriminating different groups

of graphs, classifying graphs, clustering graphs, building graph indices,
facilitating similarity search

— Bioinformatics, computer vision, video indexing, chemical informatics

E.g. frequent molecular fragments (e.g. in drug discovery)
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« Analogy to "traditional” frequent itemset mining:
— Each graph g; of the graph database DB represents a transaction
— Each subgraph represents an itemset

« Formal definitions:

— A graph g'is a subgraph of another graph g (g’ € g) if there exists a
subgraph isomorphism fromg' to g

- support(g') = IDBI Wlth supporting graphset Dg, = {g;|g" € gi,9: € DB }.

— A subgraph g’ is frequent if its support is no less than a threshold min _sup.
Example:

) ) © frer:rner;tu sulogr:;ghs ®O®0 @_@ I :
—sup=0. A © A—0O A—O ©
© B &—® O—® < —, )
‘ ‘ frequent subgraphs B) (O—B) (O—B) (O—B)
A——O AW —O A—0O AW——O : A l +
81 82 83 84 min_sup = 0.5

— Anti-Monotonicity: A size-k subgraph is only frequent if all of its subgraphs
are frequent.




Naive approach: test frequency of all possible subgraph patterns
— Frequency calculations require subgraph isomorphism test (NP-complete)

- Try to early exclude some patterns from further considerations

General (iterative) approach for discovering frequent subgraphs:
15t step: generate frequent subgraph candidates
2nd step: check the frequency of each candidate  start with simple patterns

. (bottom up)
- Goal: try to keep the candidate set small! l
Two basic approaches (exploiting candidates
the anti-monotonicity criterion):
— Apriori-b d h candidate
priori-based approac frequency generation
— Pattern-growth approach test based on
frequent

pattern

frequent
raphs
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« Works analogously to Apriori-based frequent itemset mining

« Exploiting the anti-monotonicity in a bottom-up algorithm:
— Start with small-size subgraphs (e.g. single nodes)
— In each iteration:
Candidate generation:

— Increase the size of new frequent subgraph candidates by one

— Generate new candidates by joining two similar but slightly different frequent
subgraphs of the previous iteration

Check the frequency of the just built candidates

« How to join two graphs of size k to a graph of size k+17?
How is the size of a graph defined?

— typical approaches: AGMUIWMOOI "ESGIKKOY “edge-disjoint path-join

[IWMO0O] A. Inokuchi, T. Washio, H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In
PKDD'00, pp.13-23.

[KKO11 M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In ICDM'01, pp. 313-320.

[VGS02] N. Vanetik, E. Gudes, S.E. Shimony. Computing frequent graph patterns from semistructured data. In ICDM’02, pp. 458-465.

Frequent Subgraph Mining 33



« AGM: vertex-based candidate generation:

— The "size" of a graph g is the number of vertices in V(g)

— 2 size-k subgraphs are joined iff they share the same size-(k-7) subgraph
Example:

frequent subgraphs of size =3 candidates of size =4

-~
I

©o0—® ® o—® ©O—B6
€ |'I:+ ll: N : ’ .
{< 4O A—©O B—C

common subgrapé;ze =2 2 candidates

In each iteration potentially a large amount of candidates is generated
— AGM generates disconnected frequent subgraphs

— Joining two patterns always just generates 2 candidates, BUT:
— 1 pattern can have multiple representations

« Due to the representation of a graph by its adjacency matrix, the common
subgraph has no unique representation!
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Apriori-based Approach — FSG
ssevs | Candidate Generation

 FSG: edge-based candidate generation:
— The "size" of a graph g is the number of edges in E(g)
— 2 size-k patterns are joined iff they share the same subgraph having k-7

edges
Example:

3 reasons for large
candidate sets

— Still a potentially large
amount of candidates

— But avoids
disconnected frequent
subgraphs

Frequent Subgraph Mining

equal vertex labeling:

3
o)
’ s
s A l—
I ~ I
7 | 7 |
( - ( -

2 potential common subgraphs
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Apriori-based Approach vs. Pattern
ssews | Growth Approach

Apriori-based approach: !
« Join methods can be expensive
» Has considerable overhead when size-k patterns

are joined to generate patterns of size (k+17)

» Has to use a breadth-first search (BFS) strategy
because of level-wise candidate generation

NP-complete
frequent
graphs

Alternative: pattern growth approach (e.g. gSpantYHo2l)

« Extends a frequent graph by directly adding a new edge; no expensive
joins

« More flexible: can use BFS or DFS

Critical point: extension of a graph; how to avoid duplicates?

[YHO02] X. Yan, J. Han. gSpan: Graph-based substructure pattern mining. In ICDM'02, pp.721-724.

Frequent Subgraph Mining 36



* Problem: the mining process often generates a huge number of patterns

— Anti-monotonicity: a frequent pattern with n edges has O(2") frequent
subgraphs

« Solution: Restrict the frequent patterns based on objective functions
— Closed subgraphs, maximal subgraphs
— General constraints (e.g., geometric constraints, density, etc.)
— Significant graph patterns (e.g., information gain, p-value, G-score, etc.)

« Intuitively:

interesting patterns

graph dataset
exponential pattern space



* Frequent Subgraph Mining
— Extension of traditional itemset mining to graph databases
— Apriori-Methods: Join step is expensive (many duplicates)
— Pattern-Growth method (gSpan): No duplicates due to DFS code

* Problem of redundancy

— Set of frequent subgraphs is exponentially large and
contains very many similar patterns
— Solution: Restrict the set of frequent subgraphs
« Closed, maximal subgraphs
« Representative subgraphs



