Outline

1. Introduction and challenges of high dimensionality

2. Feature Selection

3. Feature Reduction and Metric Learning

4. Clustering in High-Dimensional Data
Introduction

Idea: Instead of removing features, try to find a *low dimensional feature space* generating the original space as accurate as possible:

- Redundant features are summarized
- Irrelevant features are weighted by small values or are “erased”

=> actually, the new feature space should contain no “irrelevant” features anymore

Some sample methods (among lots of others):

- Reference point embedding
- Principal component analysis (PCA)
- Singular value decomposition (SVD)
- Fischer-Faces (FF) and Relevant Component Analysis (RCA)
- Large Margin Nearest Neighbor (LMNN)
Idea: Describe the position of each object by their *distances* to a set of *reference points*.

Given: Vector space $F = D_1 \times \ldots \times D_n$ where $D = \{D_1, \ldots, D_n\}$.

Target: A k-dimensional space R which yields optimal solutions for a given data mining task.

Method: For each reference point $R = \{r_1, \ldots, r_k\}$ and a distance measure $d(\bullet, \bullet)$:

Transform vector $x \in F$:

$$r_R(x) = \begin{pmatrix}
 d(r_1, x) \\
 \vdots \\
 d(r_k, x)
\end{pmatrix}$$
• Distance measure is usually determined by the application.

• Selection of reference points:
 – use centroids of the classes or cluster-centroids
 – using points on the margin of the data space
 – use random sample

Advantages:

• Simple approach which is easy to implement

• The transformed vectors yields lower and upper bounds of the exact distances
 (What the hell is that good for???)

Disadvantages:

• Even using d reference points does not reproduce a d-dimensional feature space

• Selecting good reference points is important but very difficult
Principal Component Analysis (PCA): A simple example 1/3

- Consider the grades of students in Physics and Statistics.
- If we want to compare among the students, which grade should be more discriminative? Statistics or Physics?

Physics since the variation along that axis is larger.

Based on:
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
Principal Component Analysis (PCA):
A simple example 2/3

• Suppose now the plot looks as below.
• What is the best way to compare students now?

We should take a linear combination of the two grades to get the best results.

Here the direction of maximum variance is clear.

In general \rightarrow PCA

Based on:
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
Principal Component Analysis (PCA):
A simple example 3/3

- PCA returns two principal components
 - The first gives the direction of the maximum spread of the data.
 - The second gives the direction of maximum spread perpendicular to the first

Based on:
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
The data starts off with some amount of variance/information in it. We would like to choose a direction u so that if we were to approximate the data as lying in the direction/subspace corresponding to u, as much as possible of this variance is still retained.

Idea: Choose the direction that maximizes the variance of the projected data (here: Dir. 1)
Principal Component Analysis (PCA)

- PCA computes the most meaningful basis to re-express a noisy, garbled data set.
- Think of PCA as choosing a new coordinate system for the data, the principal components being the unit vectors along the axes
- PCA asks: *Is there another basis, which is a linear combination of the original basis, that best expresses our dataset?*
- General form: \(PX = Y \)
 where \(P \) is a linear transformation, \(X \) is the original dataset and \(Y \) the new representation of this dataset.
 - \(P \) is a matrix that transforms \(X \) into \(Y \)
 - Geometrically, \(P \) is a *rotation* and a *stretch* of \(X \) to get \(Y \)
 - The eigenvectors are the rotations to the new axes
 - The eigenvalues are the amount of stretching that needs to be done
- The \(p \)'s are the principal components
 - Directions with the largest variance ... those are the most important, most *principal*.
Principal Component Analysis (PCA)

Idea: Rotate the data space in a way that the principal components are placed along the main axis of the data space

=> Variance analysis based on principal components

- Rotate the data space in a way that the direction with the largest variance is placed on an axis of the data space
- Rotation is equivalent to a basis transformation by an orthonormal basis
 - Mapping is equal of angle and preserves distances:
 \[x \cdot B = x \cdot (b_{*,1}, \ldots, b_{*,a}) = (\langle x, b_{*,1} \rangle, \ldots, \langle x, b_{*,a} \rangle) \text{ mit } \forall_{i \neq j} \langle b_i, b_j \rangle = 0 \land \forall_{1 \leq i \leq d} \|b_i\| = 1 \]
- \(B \) is built from the largest variant direction which is orthogonal to all previously selected vectors in \(B \).
What do we need to know for PCA

• Basics of statistical measures:
 – variance
 – covariance

• Basics of linear algebra:
 – Matrices
 – Vector space
 – Basis
 – Eigenvectors, eigenvalues
Variance

- A measure of the spread of the data

\[VAR(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \]

- Variance refers to a single dimension, e.g., height
Covariance

- A measure of how much two random variables vary together

\[
COV(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)
\]

- What the values mean
 - Positive values: both dimensions move together (increase or decrease)
 - Negative values: while one dimension increases the other decreases
 - Zero value: the dimensions are independent of each other.
Covariance matrix

- Describes the variance of all features and the pairwise correlations between them (given the \(n \) data points)

\[
\Sigma_D = \begin{pmatrix}
VAR(X_1) & \cdots & COV(X_1, X_d) \\
\vdots & \ddots & \vdots \\
COV(X_d, X_1) & \cdots & VAR(X_d)
\end{pmatrix}
\]

\[
VAR(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \\
COV(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)
\]

- Properties:
 - For \(d \)-dimensional data, \(d \times d \) covariance matrix
 - Symmetric matrix as \(COV(X, Y) = COV(Y, X) \)
• Given \(n \) vectors \(v_i \in \mathbb{IR}^d \), the \(n \times d \) matrix

\[
D = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} v_{1,1} & \cdots & v_{1,d} \\ \vdots & \ddots & \vdots \\ v_{n,1} & \cdots & v_{n,d} \end{pmatrix}
\]

is called data matrix

• Centroid/mean vector of \(D \):

\[
\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} v_i
\]

• Centered data matrix:

\[
D_{cent} = \begin{pmatrix} v_1 - \hat{\mu} \\ \vdots \\ v_n - \hat{\mu} \end{pmatrix}
\]
Covariance matrix and centered data matrix

- The covariance matrix can be expressed in terms of the centered data matrix as follows:

\[
\Sigma_D = \begin{pmatrix}
VAR(X_1) & \cdots & COV(X_1, X_d) \\
\vdots & \ddots & \vdots \\
COV(X_d, X_1) & \cdots & VAR(X_d)
\end{pmatrix} = \frac{1}{n} D_{cent}^T D_{cent}
\]
Vector/ Matrix basics

- **Inner (dot) product of vectors** \(x, y\):
 \[
 x \cdot y = x^T \cdot y = (x_1 \ldots x_d) \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = \langle x, y \rangle = \sum_{i=1}^{d} x_i \cdot y_i
 \]

- **Outer product of vectors** \(x, y\):
 \[
 x \otimes y = x \cdot y^T = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \cdot \begin{pmatrix} y_1 & \cdots & y_d \end{pmatrix} = \begin{pmatrix} x_1 y_1 & \cdots & x_1 y_d \\ \vdots & \ddots & \vdots \\ x_d y_1 & \cdots & x_d y_d \end{pmatrix}
 \]

- **Matrix multiplication**:
 \[
 A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times p} \quad \text{and} \quad B = \begin{bmatrix} b_{ij} \end{bmatrix}_{p \times n}
 \]
 then
 \[
 AB = C = \begin{bmatrix} c_{ij} \end{bmatrix}_{m \times n} \quad \text{where} \quad c_{ij} = row_i(A) \cdot col_j(B)
 \]

- **Length of a vector**

 - **Unit vector**: if \(\|a\| = 1\) where
 \[
 \|a\| = \sqrt{a^T \cdot a} = \sqrt{\sum_{i=1}^{n} a_i^2}
 \]
Variance Analysis for feature selection

- Which attributes are the most important to the distance?
 => attributes with strongly varying value differences $|x_i - y_i|$
 => distance to the mean value is large $|x_i - \mu_i|$
 => variance is large: $\frac{1}{n}\sum_{i=1}^{n}(x_i - \mu_i)^2$

Idea: Variance Analysis (= unsupervised feature selection)
- Attributes with large variance allow strong distinction between objects
- Attributes with small variance: difference between objects are negligible
- Method:
 - Determine the variance between the values in each dimension
 - Sort all features w.r.t. to the variance
 - Select k features having the strongest variance

Beware: Even linear correlation can distribute one strong feature over arbitrarily many other dimension!!!
Eigenvectors and eigenvalues

- Let D be $d \times d$ square matrix.
- A non zero vector v_i is called an eigenvector of D if and only if there exists a scalar λ_i such that: $Dv_i = \lambda_i v_i$.
 - λ_i is called an eigenvalue of D.

- How to find the eigenvalues/eigenvectors of D?
 - By solving the equation: $\det(D - \lambda I_{d \times d}) = 0$ we get the eigenvalues
 - $I_{d \times d}$ is the identity matrix
 - For each eigenvalue λ_i, we find its eigenvector by solving $(D - \lambda_i)v_i = 0$
Eigenvectors decomposition

- Let \(D \) be \(d \times d \) square matrix.
- Eigenvalue decomposition of the data matrix in two \(d \times d \) matrices

\[
D = VEV^T
\]

such that:

- \(V = (v_1 \ldots v_d) \) such that \(\forall_i \neq j \langle v_i, v_j \rangle = 0 \) and \(\forall_1 \leq i \leq d \| v_i \| = 1 \)
- \(E = \begin{pmatrix} \lambda_1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_d \end{pmatrix} \)

\(E \) is diagonal

The corresponding eigenvalues

i.e.:
- The columns of \(V \) are the eigenvectors of \(D \)
- The diagonal elements of \(E \) are the eigenvalues of \(D \)
Feature reduction using PCA

1. Compute the covariance matrix Σ
2. Compute the eigenvalues and the corresponding eigenvectors of Σ
3. Select the k biggest eigenvalues and their eigenvectors (V')
4. The k selected eigenvectors represent an orthogonal basis
5. Transform the original $n \times d$ data matrix D with the $d \times k$ basis V':

$$D \cdot V' = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \begin{pmatrix} v'_1 \\ \vdots \\ v'_k \end{pmatrix} = \begin{pmatrix} \langle x_1, v'_1 \rangle & \cdots & \langle x_1, v'_k \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, v'_1 \rangle & \cdots & \langle x_n, v'_k \rangle \end{pmatrix}$$
Example of transformation

- Original

- Transformed data

\[
\begin{bmatrix}
1 & 2 \\
2 & 1 \\
3 & 4 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
1/\sqrt{2} & -1/\sqrt{2} \\
1/\sqrt{2} & 1/\sqrt{2}
\end{bmatrix}
= \begin{bmatrix}
3/\sqrt{2} & 1/\sqrt{2} \\
3/\sqrt{2} & -1/\sqrt{2} \\
7/\sqrt{2} & 1/\sqrt{2} \\
7/\sqrt{2} & -1/\sqrt{2}
\end{bmatrix}
\]

- Eigenvectors

- In the rotated coordinate system

\[
\begin{bmatrix}
1/\sqrt{2} \\
-1/\sqrt{2}
\end{bmatrix}
\begin{bmatrix}
-1/\sqrt{2} \\
1/\sqrt{2}
\end{bmatrix}
\]

• Let k be the number of top eigenvalues out of d (d is the number of dimensions in our dataset)
• The percentage of variance in the dataset explained by the k selected eigenvalues is:
 \[
 \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{d} \lambda_i}
 \]
• Similarly, you can find the variance explained by each principal component
• Rule of thumb: keep enough to explain (at least) 85% of the variation
PCA results interpretation

- Example: iris dataset (d=4), results from R
- 4 principal components

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepal.Length</td>
<td>0.5038236</td>
<td>-0.45499872</td>
<td>0.7088547</td>
<td>0.19147575</td>
</tr>
<tr>
<td>Sepal.Width</td>
<td>-0.3023682</td>
<td>-0.88914419</td>
<td>-0.3311628</td>
<td>-0.09125405</td>
</tr>
<tr>
<td>Petal.Length</td>
<td>0.5767881</td>
<td>-0.03378802</td>
<td>-0.2192793</td>
<td>-0.78618732</td>
</tr>
<tr>
<td>Petal.Width</td>
<td>0.5674952</td>
<td>-0.03545628</td>
<td>-0.5829003</td>
<td>0.58044745</td>
</tr>
</tbody>
</table>

Importance of components:

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of Variance</td>
<td>0.7331</td>
<td>0.2268</td>
<td>0.03325</td>
<td>0.00686</td>
</tr>
<tr>
<td>Cumulative Proportion</td>
<td>0.7331</td>
<td>0.9599</td>
<td>0.99314</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

=> Choose PC1 and PC2 explaining appr. 96% of the total variance
Singular Value Decomposition (SVD)

Generalization of the eigenvalue decomposition

Let $D_{n\times n}$ be the data matrix and let k be its rank (max number of independent rows/ columns). We can decompose D into matrices O, S, A as follows $D = OSA^T$ with

$$
\begin{pmatrix}
 x_{1,1} & \cdots & x_{1,d} \\
 \vdots & \ddots & \vdots \\
 x_{n,1} & \cdots & x_{n,d}
\end{pmatrix} =
\begin{pmatrix}
 o_{1,1} & \cdots & o_{1,k} \\
 \vdots & \ddots & \vdots \\
 o_{n,1} & \cdots & o_{n,k}
\end{pmatrix} \cdot
\begin{pmatrix}
 \lambda_1 & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & \lambda_k
\end{pmatrix} \cdot
\begin{pmatrix}
 a_{1,1} & \cdots & a_{1,d} \\
 \vdots & \ddots & \vdots \\
 a_{k,1} & \cdots & a_{k,d}
\end{pmatrix}
$$

such that:

- O is an $n \times k$ column-orthonormal matrix; that is, each of its columns is a unit vector and the dot product of any two columns is 0.
- S is a diagonal $k \times k$ matrix; that is, all elements not on the main diagonal are 0. The elements of S are called the \textit{singular values} of D.
- A is a $k \times d$ column-orthonormal matrix. Note that we always use A in its transposed form, so it is the rows of A^T that are orthonormal.

The decomposition can be found e.g. based on numerical algorithms.
Example 1

- D: ratings of movies by users
- The corresponding SVD

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 0 & 2 & 2 \\
\end{bmatrix}
\begin{bmatrix}
.14 & 0 \\
.42 & 0 \\
.56 & 0 \\
.70 & 0 \\
0 & .60 \\
0 & .75 \\
0 & .30 \\
\end{bmatrix}
=
\begin{bmatrix}
12.4 & 0 \\
0 & 9.5 \\
\end{bmatrix}
\begin{bmatrix}
.58 & .58 & .58 & 0 & 0 \\
0 & 0 & 0 & .71 & .71 \\
\end{bmatrix}
\]

- Interpretation of SVD
 - O shows two concepts “science fiction” and “romance”
 - S shows the strength of these concepts
 - A relates movies to concepts

Example 2

- A slightly different D
- The corresponding SVD

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{bmatrix}
= \begin{bmatrix}
.13 & .02 & -.01 \\
.41 & .07 & -.03 \\
.55 & .09 & -.04 \\
.68 & .11 & -.05 \\
.15 & -.59 & .65 \\
.07 & -.73 & .67 \\
.07 & -.29 & .32
\end{bmatrix}
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3
\end{bmatrix}
\begin{bmatrix}
.56 & .59 & .56 & .09 & .09 \\
.12 & -.02 & .12 & -.69 & -.69 \\
.40 & -.80 & .40 & .09 & .09
\end{bmatrix}
\]

- Interpretation of SVD
 - O shows three concepts “science fiction” and “romance” and “”?
 - S shows the strength of these concepts
 - A relates movies to concepts

• To reduce dimensionality, we can set the smallest singular values to 0 in \(S \) and eliminate the corresponding column in \(O \) and row in \(A^T \)

 – Check previous example

• How Many Singular Values Should We Retain?

 – Rule of thumb: retain enough singular values to make up 90% of the energy in \(S \)

 – Energy defined in terms of the singular values (matrix \(S \))

 – In previous example, total energy is: \((12.4)^2 + (9.5)^2 + (1.3)^2 = 245.70\)

 – The retained energy is: \((12.4)^2 + (9.5)^2 = 244.01 > 99\%\)
Apply SVD to the covariance data:

\[\Sigma_D = \frac{1}{n} D_{cent}^T D_{cent} \]
\[D_{cent} = O S A^T \]
\[\Sigma_D = (O S A^T)^T O S A^T = A S^T (O^T O) S A^T = A (S^T S) A^T = A \begin{pmatrix} \lambda_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_k^2 \end{pmatrix} A^T \]

Recall O is orthonormal matrix, so \(O^T O \) is the identity matrix
Recall S is a diagonal matrix, transposing has no effect

Here: A is a matrix of eigenvectors
Eigenvalues of the covariance matrix = squared singular values of D

Conclusion: Eigenvalues and eigenvectors of the covariance matrix \(\Sigma \) can be determined by the SVD of the data matrix D.

\(\Rightarrow \) SVD is sometimes a better way to perform PCA (Large dimensionalities e.g., text data)
\(\Rightarrow \) SVD can cope with dependent dimensions (\(k<d \) is an ordinary case in SVD)
Kernel PCA

An extension of PCA using techniques of kernel methods.

Left figure displays a 2D example in which PCA is effective because data lie near a linear subspace. In the right figure though, PCA is ineffective, because data the data lie near a parabola. In this case, the PCA compression of the data might project all points onto the orange line, which is far from ideal.
Basic idea (see Kernels and SVMs)

- Project the data into a higher dimensional space

These classes are linearly inseparable in the input space.

We can make the problem linearly separable by a simple mapping

\[\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \]

\[(x_1, x_2) \mapsto (x_1, x_2, x_1^2 + x_2^2) \]
Basic idea (see Kernels and SVMs)

- Wait a minute! Seriously? You suggest to pump up the feature space to get a better discriminability of points?

And how does that compare to the curse of dimensionality?

- Well: look at all that stuff we did a little closer.
- Results on (un)stability of distances and neighborhoods are based on the assumption that you add features that are
 - Independent
 - Randomly distributed
- Using a Kernel, you do a (completely) different thing
 - You add „relevant“ features that are combinations of others (i.e. not independent and probably not random)
 - In fact, there is a curse AND a blessing in high dimensions

\[\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \]
\[(x_1, x_2) \mapsto (x_1, x_2, x_1^2 + x_2^2) \]
Kernel trick

• But: high-dimensional mapping can seriously increase computation time.
• Can we get around this problem and still get the benefit of high dimensions?
• Yes! Kernel Trick

\[K(x_i, x_j) = \phi(x_i)^T \phi(x_j) \]

• Different types of kernels
 – Polynomial
 – Gaussian
 – ...
Example: Polynomial kernel

- For degree-\(d\) polynomials, the polynomial kernel is defined as
 \[
 K(x, y) = (x^\top y + c)^d
 \]
- Example:

 \[
 \Phi : R^2 \rightarrow R^3

 (x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2}x_1x_2, x_2^2)
 \]

Image from: http://i.stack.imgur.com/qZV3s.png
Kernel PCA

Connection between the orthonormal basis O und A:

\[D = OSA^T \]

- A is a k-dimensional basis of eigenvectors of $D^T \cdot D$
 (cf. previous slide)
- **Analogously:** O is a k-dimension basis of Eigenvectors $D \cdot D^T$
 - $D \cdot D^T$ is a kernel matrix for the linear kernel $\langle x, y \rangle$ (cf. SVMs in KDD I)
 - The vectors of A and O are connected in the following way:
 \[D_{\text{cent}} = OSA^T \implies O^T D_{\text{cent}} = O^T OSA^T = SA^T \implies S^{-1} O^T D_{\text{cent}} = A^T \]
 \[\implies a_j = \sum_{i=1}^{n} o_{i,j} x_i \]
 The j^{th} d-dimensional eigenvector in A is a linear combination of the vectors in D based on k-dimensional j^{th} eigenvectors as weighting vector (the i^{th} values is the weight for vector d_i)

\implies A basis in vector space corresponds to a basis in the kernel space

\implies A PCA can be computed for any kernel space based on the kernel matrix
 (Kernel PCA allows PCA in a non-linear transformation of the original data)
Let \(K(x, y) = \langle \Phi(x), \Phi(y) \rangle \) be a kernel for the non-linear transformation \(\Phi(x) \).

Assume: \(K(x, y) \) is known, but \(\Phi(x) \) is not explicitly given.

- Let \(K \) be the kernel matrix of \(D \) w.r.t. \(K(x, y) \):
 \[
 K = \begin{pmatrix}
 K(x_1, x_1) & \cdots & K(x_1, x_n) \\
 \vdots & \ddots & \vdots \\
 K(x_n, x_1) & \cdots & K(x_n, x_n)
 \end{pmatrix}
 \]

- The eigenvalue decomposition of \(K : K = VSV^T \)
 where \(V \) is a \(n \)-dimensional basis from eigenvectors of \(K \)

- To map \(D \) w.r.t. \(V \) the principal components in the target space the vectors \(x_i \) in
\(D \) must be transformed using the kernel \(K(x, y) \) as follows:

\[
y' = \begin{pmatrix}
 \langle \Phi(y), \sum_{i=1}^n v_{i,1} \Phi(x_i) \rangle \\
 \vdots \\
 \langle \Phi(y), \sum_{i=1}^n v_{i,k} \Phi(x_i) \rangle
 \end{pmatrix} = \begin{pmatrix}
 \sum_{i=1}^n v_{i,1} \langle \Phi(y), \Phi(x_i) \rangle \\
 \vdots \\
 \sum_{i=1}^n v_{i,k} \langle \Phi(y), \Phi(x_i) \rangle
 \end{pmatrix} = \begin{pmatrix}
 \sum_{i=1}^n v_{i,1} K(y,x_i) \\
 \vdots \\
 \sum_{i=1}^n v_{i,k} K(y,x_i)
 \end{pmatrix}
\]
Matrix factorization as an Optimization Task

SVD and PCA are standard problems in Algebra.

- Matrix decomposition can be formulated as an optimization task.
- This allows a computation via numerical optimization algorithms.
- In this formulation the diagonal matrix is often distributed to both basis matrixes

\[
D = ASB^T = \left(A \begin{pmatrix} \sqrt{\lambda_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{\lambda_k} \end{pmatrix} \right) \left(\begin{pmatrix} \sqrt{\lambda_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{\lambda_k} \end{pmatrix} B^T \right) = UV^T
\]

- As an optimization problem: \(L(U, V) = \|D - UV^T\|_f^2 \)

(squared Frobenius Norm of a matrix) \(\|M\|_f^2 = \sum_{i=1}^{n} \sum_{j=1}^{m} |m_{i,j}|^2 \)

subject to: \(\forall i \neq j : \langle v_i, v_j \rangle = 0 \land \langle u_i, u_j \rangle = 0 \)
Fischer Faces

Idea: Use examples to increase the discriminative power of the target space.

Target:
- Minimize the similarity between objects from different classes.
 (between class scatter matrix: Σ_b)
 Σ_b: Covariance matrix of the class centroids
- Maximize similarity between objects belonging to the same class
 (within class scatter matrix Σ_w)
 Σ_w: Average covariance matrix of all classes.

Solution:
- Determine basis x_i in a way that
 $$ S = \frac{x_i^T \cdot \Sigma_b \cdot x_i}{x_i^T \cdot \Sigma_w \cdot x_i} $$
 is maximized subject to $i \neq j : \langle x_i, x_j \rangle = 0$
Fischer Faces

Remark: The vector having the largest eigenvalue corresponds to the normal vector of the separating hyper plane in linear discriminant analysis or Fisher‘s discriminant analysis. (cf. KDD I)

Discussion: Fischer Faces are limited due to the assumption of mono-modal classes: each class is assumed to follow a multivariate

Conclusion: Multi-modal or non-Gaussian distributions are not modeled well
RCA & LMNN

Relevant Component Analysis (RCA):
- Remove linear dependent features (e.g. with SVD).
- Given: chunks of data which are known to consist of similar objects.
 \[\Rightarrow \text{replace } \Sigma_w \text{ with an within-chunk matrix:} \]
- The covariance of all data objects is dominated by dissimilarity
 \[\Rightarrow \text{replace } \Sigma_b \text{ with the covariance matrix of } D \]

Large Margin Nearest Neighbor (LMNN):
- Objects in a class might vary rather strongly.
- Idea: Define an optimization problem only considering the distances of the most similar objects from the same and other classes.
If you want to know the details ...

Define: $y_{ij} = 1$ if x_i and x_j are from the same class else $y_{ij} = 0$

- **Target:** $L : \mathbb{R}^d \rightarrow \mathbb{R}^d$ linear transformation of the vector space: $D(x, y) = \|L(x) - L(y)\|^2$
- Target neighbors: T_x k-nearest neighbors from the same class $\eta_{ij} = 1 : x_j$ is a target neighbor of x_i else $\eta_{ij} = 0$
- Training by minimizing the following error function:

$$E(L) = \sum_{i=1}^{n} \sum_{j=1}^{n} \eta_{i,j} \|L(x_i) - L(x_j)\|^2 + c \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \eta_{i,j} (1 - y_{i,l}) \left[1 + \|L(x_i) - L(x_j)\|^2 - \|L(x_i) - L(x_l)\|^2 \right]$$

where $[z]_+ = \max(z, 0)$

- Problem is a **semi-definite program**

 \Rightarrow Standard optimization problem where the optimization parameters must form a semi-definite matrix. Here the matrix is the basis transformation $L(x)$.

Knowledge Discovery in Databases II: High-Dimensional Data 41
Summary

• Linear basis transformation yield a rich framework to optimize feature spaces
• Unsupervised methods delete low variant dimensions (PCA und SVD)
• Kernel PCA allows to compute PCA in non-linear kernel spaces
• Supervised methods try to minimize the within class distances while maximizing between class distances
• Fischer Faces extend linear discriminant analysis based on the assumption that all classes follow Gaussian distributions
• Relevant Component Analysis (RCA) generalize this notion and only minimize the distances between chunks of similar objects
• Large Margin Nearest Neighbor (LMNN) minimizes the distances to the nearest target neighbors and punish small distances to non-target neighbors in other classes

