w

e | ONOrt Recap

GROUP

e We had several appearances of the curse of dimensionality:
— Concentration of distances
=> meaningless similarity/distance/neighborhood concept
=> instability of neighborhoods
— Growing hypothesis space
=> interpretation of models
=> efficiency
— Empty Space Phenomenon
=> impact on volume queries (rang queries, hypercube queries, ...)
=> importance of tails of distributions

=> impact on sample sizes
e Some are due to irrelevant attributes
=> get rid of irrelevant attributes, keep the redundant one
e Some are instead of relevant attributes
=> among the relevant attributes, get rid of redundant attributes
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1.

Outline

Introduction to Feature Spaces

. Challenges of high dimensionality

LMU

. Feature Selection

5. Clustering in High-Dimensional Data

Feature Reduction and Metric Learning
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e | FEAture selection

GROUP

e A task toremove irrelevant and/or redundant features

— Irrelevant features:
e Not useful for a given task
e Probably decrease accuracy

— Redundant features:

e Redundant feature in the presence of another relevant feature with which it is strongly
correlated

e |t does not drop the accuracy but may drop efficiency, explainability, ...

e Deleting irrelevant and redundant features can improve the quality as well as
the efficiency of the methods and the found patterns.

e New feature space: Delete all useless features from the original feature space.

e Feature selection # Dimensionality reduction
e Feature selection # Feature extraction
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sswws | (unsupervised learning case) IMU
e [rrelevance e Redundancy

Irrelevant and redundant features

Features x and y are redundant,
because x provides (appr.) the same
information as feature y with regard
to discriminating the two clusters

Feature y is irrelevant, because if we
omit x, we have only one cluster,
which is uninteresting.

Source: Feature Selection for Unsupervised Learning, Dy and Brodley, Journal of Machine Learning Research 5 (2004)
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Irrelevant and redundant features

DATABASE

GROUP

wews | (supervised learning case) IMU

e |rrelevance

Feature y separates well the two classes.

3 | & : a 4 & : Feature x is irrelevant.
| P . L . e . L Its addition “destroys” the class separation.
* Redundancy e |ndividually irrelevant,
together relevant
. o O

o f E ;' o ©
& Dy O 'O
EE o8 E ____________ ! (9669
g {pg & % 8oo!
@ - 0 00
o Q |

000 @0 do@ 8 :_IP g o©° O%i

Features x and y are redundant.

Source: http://www.kdnuggets.com/2014/03/machine-learning-7-pictures.html
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Problem definition

* Input: Vector space F =d;X..x d, with dimensions D ={d,..,d}.

LMU

e Output: a minimal subspace M over dimensions D' D which is optimal for a
giving data mining task.

— Minimality increases the efficiency, reduces the effects of the curse of
dimensionality and increases interpretability.

Challenges:

e Optimality depends on the given task
e There are 29 possible solution spaces (exponential search space)

e This search space is similar to the frequent item set mining problem, but:
— There is often no monotonicity in the quality of subspace (which could be used for efficient

searching)

— Features might only be useful in combination with certain other features

= For many popular criteria, feature selection is an exponential problem

= Most algorithms employ search heuristics

Knowledge Discovery in Databases ll: High-Dimensional Data
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amensz | 2 MAiN components

SYSTEMS
GROUP

1. Feature subset generation

— Single dimensions
— Combinations of dimensions (subpaces)

2. Feature subset evaluation
— Importance scores like information gain, x?
— Performance of a learning algorithm

Knowledge Discovery in Databases Il: High-Dimensional Data
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Feature selection methods 1/4

e Filter methods

Explores the general characteristics of the data, independent of the learning

algorithm.

e Wrapper methods
— The learning algorithm is used for the evaluation of the subspace

e Embedded methods

— The feature selection is part of the learning algorithm

Knowledge Discovery in Databases Il: High-Dimensional Data
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Feature selection methods 2/4

Filter methods

— Basic idea: assign an importance” score to each feature to filter out the

useless ones

— Examples: information gain, y?-statistic, TF-IDF for text
— Disconnected from the learning algorithm.
— Pros:

O Fast and generic (or better say: “generalizing”)

O Simple to apply
— Cons:

O Doesn’t take into account interactions between features

O Individually irrelevant features, might be relevant together
O Too generic?

Knowledge Discovery in Databases ll: High-Dimensional Data
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«mus: | FEature selection methods 3/4

GROUP

e Wrapper methods

— A learning algorithm is employed and its performance is used to determine
the quality of selected features.
— Pros:
O the ability to take into account feature dependencies
O interaction between feature subset search and model selection
— Cons:
O higher risk of overfitting than filter techniques

O very computationally intensive, especially if building the classifier has a high
computational cost.
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Feature selection methods 4/4

LMU

Embedded methods
— Such methods integrate the feature selection in model building

— Example: decision tree induction algorithm: at each decision node, a

feature has to be selected.

— Pros:

O less computationally intensive than wrapper methods.

— Cons:
O specific to a learning method
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st | O€arch strategies in the feature space

GROUP

e Forward selection
— Start with an empty feature space and add relevant features

e Backward selection

— Start with all features and remove irrelevant features

e Branch-and-bound
— Find the optimal subspace under the monotonicity assumption

e Randomized
— Randomized search for a k dimensional subspace

Knowledge Discovery in Databases ll: High-Dimensional Data
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e | S€lected methods in this course

SYSTEMS
GROUP

IMU

[1. Forward Selection and Feature Ranking

— Information Gain, y2-Statistik, Mutual Information

2. Backward Elimination and Random Subspace Selection
—  Nearest-Neighbor criterion, Model-based search

— Branch and Bound Search

3. k-dimensional subspace projections
—  Genetic Algorithms for Subspace Search
—  Feature Clustering for Unsupervized Problems

Knowledge Discovery in Databases Il: High-Dimensional Data
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amenst | 1. FOrward Selection and Feature Ranking

GROUP

Input: A supervised learning task
— Target variable C

— Training set of labeled feature vectors <d,, d,, ..., d,>

Approach

e Compute the quality q(d; C) for each dimension d; €{d, ,..,d,} to predict the
correlationto C

e Sortthe dimensions d,,...d, w.r.t. g(d; C)
e Select the k-best dimensions

Assumption:

Features are only correlated via their connection to C

=> it is sufficient to evaluate the connection between each single feature d and
the target variable C
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e | Otatistical quality measures for features

GROUP

How suitable is feature d for predicting the value of class attribute C?

Statistical measures :

e Rely on distributions over feature values and target values.
—  For discrete values: determine probabilities for all value pairs.
—  For real valued features:

e Discretize the value space (reduction to the case above)
e Use probability density functions (e.g. uniform, Gaussian,..)

e How strong is the correlation between both value distributions?

e How good does splitting the values in the feature space separate values in the
target dimension?
e Example quality measures:
— Information Gain
—  Chi-square y?-statistics
—  Mutual Information
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Information Gain 1/2

k
Entropy(S) =

i=1

(p; : relative frequency of class c; in S)

— p; log,(p;)

LMU

ldea: Evaluate class discrimination in each dimension (Used in ID3 algorithm)
It uses entropy, a measure of pureness of the data

o 1 ,f .\\
/ \
/ \
5
2 / \
i\
/
f

]
05 1.0
P,

 The information gain Gain(S,A) of an attribute A relative to a training set S

measures the gain reduction in S due to splitting on A:

e For nominal attributes: use attribute values

Gain(S, A) = Entropy(S) — Z

veValues(A)

Entropy(S,)

e For real valued attributes: Determine a splitting position in the value set.
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Entropy (reminder)

Let S be a collection of positive and negative examples for a binary
classification problem, C={+, -}. o -

p,: the percentage of positive examplesin S / \
p.: the percentage of negative examples in S 1 \

Entropy(S)

Entropy measures the impurity of S:

Entropy(S) =—p, log,(p,)— p_log,(p.)

Examples : ®

- Let S: [9+,5'] Entropy(S) — _ilogz (2) —ilogz (i) =0.940
14 4 14 14 in the general case

—  LletS: [7+,7-] Entropy(S):—llogz(%)—%logz(%):l (k-c/assificatiog problem)

14
—  LetS: [14+,0-] entropy(S) = oa. - L 1og. (%) 0 Entropy(S) = iZ:l:— p. log,(p,)
14 °7147 14 7140

Entropy = 0, when all members belong to the same class
Entropy = 1, when there is an equal number of positive and negative examples
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e Which attribute, “Humidity” or “Wind” is better?

5: [9+.5-]
E=0.940
Humidity
High Normal
[3+4-] [6+.1-]
E=0.985 E=0.592

Gain (5, Humidity )

?;iil -(7/14).985 - (7/14).592

e Larger values better!

S: [9+.5-]
E=0.940
Wind
Weak Strong
[6+,2-] [3+.3-]
E=03811 E=1.00
Gain (S, Wind )

=.940 - (8/14).811 - (6/14)1.0
=.048
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Chi-square 2 statistics 1/2

LMU

Idea: Measures the independency of a variable from the class variable.

Contingency table

— Divide data based on a split value s or based on discrete values

Example: Liking science fiction movies implies playing chess?

Class attribute

Predictor attribute

Play chess | Not play chess | Sum (row)
Like science fiction 250 200 450
Not like science fiction 50 1000 1050
Sum(col.) 300 1200 1500

Chi-square x? test

) c r (Oij
=22

i-1 =1 G

2
_eij)

o;:observed frequency
e;: expected frequency

Knowledge Discovery in Databases ll: High-Dimensional Data
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mense | Chi-square X2 statistics 2/2

SYSTEMS
GROUP

LMU

e Example
Class attribute
g Play chess | Not play chess | Sum (row)
% Like science fiction 250 (90) 200 (360) 450
8 Not like science fiction 50 (210) 1000 (840) 1050
o
(O]
* | sum(col.) 300 1200 1500

e x? (chi-square) calculation (numbers in parenthesis are expected counts
calculated based on the data distribution in the two categories)

X

e Larger values better!

,_(250-90)° (50-210)* (200-360)* (1000-840)’

90 210 360 840

Knowledge Discovery in Databases ll: High-Dimensional Data
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amase | IMIUtual Information (Ml)

GROUP

e In general, Ml between two variables x, y measures how much knowing one of these
variables reduces uncertainty about the other

e In our case, it measures how much information a feature contributes to making the
correct classification decision.

e Discrete case:

p(X, y) p(x,y): the joint probability distribution function

| (X ,Y) = p(X, y) log p(x), p(y): the marginal probability distributions
yze\; XZ; P(X) pCy)

Relation to entropy

e Continuous case: I(X;Y) = H(X) - H(X|Y)
P ( X, Y ) : ig?’} Iigjf H(X,Y)
| (X ,Y ) = j j p(X, y) log ’ dxdy — H(X,Y) - H(X]Y) — H(Y)X)
Y X P(X)p(y)
HpE) MY

In case of statistical independence:

= p(xy)= p(x)p(y) > log(1)=0
— knowing x does not reveal anything about y HOLY)
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Forward Selection and Feature Ranking -

oo | Overview LMU
Advantages:
e Efficiency: it compares{d, d,, ..., d } features to the class attribute C instead of
subspaces

e Training suffices with rather small sample sets

Disadvantages:
e Independency assumption: Classes and features must display a direct
correlation.

e In case of correlated features: Always selects the features having the strongest
direct correlation to the class variable, even if the features are strongly
correlated with each other.

(features might even have an identical meaning)
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e | S€lected methods in this course

SYSTEMS
GROUP

1. Forward Selection and Feature Ranking

— Information Gain, y2-Statistik, Mutual Information

IMU

2. Backward Elimination and Random Subspace Selection
—  Nearest-Neighbor criterion, Model-based search
—  Branch and Bound Search

3. k-dimensional projections
—  Genetic Algorithms for Subspace Search
—  Feature Clustering for Unsupervized Problems

Knowledge Discovery in Databases Il: High-Dimensional Data
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2. Backward Elimination

LMU

Idea: Start with the complete feature space and delete redundant features

Approach: Greedy Backward Elimination

Generate the subspaces R of the feature space F
Evaluate subspaces R with the quality measure g(R)

3. Select the best subspace R* w.r.t. g(R)

4. If R* has the wanted dimensionality, terminate
else start backward elimination on R*.

Applications:

e Useful in supervised and unsupervised setting

— inunsupervised cases, g(R) measures structural characteristics

e Greedy search if there is no monotonicity on g(R)
=> for monotonous g(R) employ branch and bound search

Knowledge Discovery in Databases ll: High-Dimensional Data
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Distance-based subspace quality

LMU

Idea: Subspace quality can be evaluated by the distance between the within-
class nearest neighbor and the between-classes nearest neighbor
Quality criterion:

For each o € D, compute the closest object having the same class NN (o)
(within-class nearest neighbor) and the closest object belonging to another
class NN,_(o) (between-classes nearest neighbor) where C = class(o).

|

NN (o
Quality of subspace U: qU) = m (;) NNKSC(E)))

Remark: g(U) is not monotonous.

— By deleting a dimension, the quality can increase or decrease.

Knowledge Discovery in Databases ll: High-Dimensional Data
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«mense | IVIOdel-based approach
LMU

SYSTEMS
GROUP

e Idea: Directly employ the data mining algorithm to evaluate the subspace.
e Example: Evaluate each subspace by training a Naive Bayes classifier

Practical aspects:
e Success of the data mining algorithm must be measurable
(e.g. class accuracy)
e Runtime for training and applying the classifier should be low
e The classifier parameterization should not be of great importance
e Test set should have a moderate number of instances
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e | BaCkward Elimination - overview

GROUP

Advantages:

e Considers complete subspaces (multiple dependencies are used)
e (Canrecognize and eliminate redundant features

Disadvantages:

e Tests w.r.t. subspace quality usually requires much more effort

e All solutions employ heuristic greedy search which do not necessarily find the
optimal feature space.
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e | Backward elimination: Branch and Bound Search

GROUP

e Given: A classification task over the feature space F.
e Aim: Select the k best dimensions to learn the classifier.

e Backward elimination approach “Branch and Bound”, by Narendra and
Fukunaga, 1977 is guaranteed to find the optimal feature subset under the
monotonicity assumption

e The monotonicity assumption states that for two subsets X, Y and a feature
selection criterion function J, if:

XcY=]X) <]J)
e Eg X={d,d,}, Y={d,,d,d;}

e Branch and Bound starts from the full set and removes features using a depth-
first strategy

— Nodes whose objective function are lower than the current best are not explored
since the monotonicity assumption ensures that their children will not contain a
better solution.

Slide adapted from: http://courses.cs.tamu.edu/rgutier/cs790_w02/I17.pdf
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Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.

@ seclected feature ©  removed feature

(All)=0.0 A B C D

m //Start from the full set
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amese | EXample: Branch and Bound Search 2/8

GROUP 5

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.

@ sclected feature O removed feature

(All)=0.0 A B C D

IC (BCD)=0.0 C(ABD)=0.021 IC(ABC)=0.03

IC(ACD)=0.015
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Example: Branch and Bound Search 3/8

(MU

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.

@ sclected feature O removed feature

IC (BCD)=0.0

IC(CD)=0415

(All)=0.0 A B C D

IC(ACD)=0.015

IC (BD)=0.1

[ oI 1

IC (BC)=0.1

[0] I Jo]

Knowledge Discovery in Databases Il: High-Dimensional Data
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smense | EXample: Branch and Bound Search 4/8

GROUP 5

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.

@  selected feature © removed feature

(All)=0.0 A B C D

IC (BCD)=0.0 C(ABD)=0.021 IC(ABC)=0.03

IC(ACD)=0.015

IC (BD)=0.1

[ oI 1

IC (BC)=0.1

[0] I Jo]

IC(CD)=0415

IC(C)=0.03

aktBound = 0.02
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amese | EX@ample: Branch and Bound Search 5/8

GROUP 5

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.

‘ selected feature O removed feature

(All)=0.0 A B C D

IC (BCD)=0.0 C(ABD)=0.021 IC(ABC)=0.03

IC(ACD)=0.015

IC (BD)=0.1

[ JOI 1

IC (BC)=0.1

[0] I Jo]

IC(CD)=0415

IC(C)=0.03

aktBound = 0.02
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amese | EX@ample: Branch and Bound Search 6/8

GROUP ;

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.
@ sclected feature © removed feature

(All)=0.0 A B C D

IC (BCD)=0.0 C(ABD)=0.021 IC(ABC)=0.03

IC(CD)=0415 IC (BD)=0.1

[ JOI 1

IC (BC)=0.1 IC (AD)=0.1

0000 @00e]

IC(AC)=0.03

@I 10l

IC(C)=0.03

aktBound = 0.02
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amese | EX@ample: Branch and Bound Search 7/8

GROUP ;

Example: Original dimensionality 4, <A,B,C,D>. Target dimensionality d = 1.
@ selected feature © removed feature

(All)=0.0 A B C D

IC (BCD)=0.0 IC(ABC)=0.03

IC(CD)=0415 IC (BD)=0.1

[ JOI 1

IC (BC)=0.1 IC (AD)=0.1

0000 @00e]

IC(AC)=0.03

@I 10l

IC(C)=0.03

aktBound = 0.02
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wense | BAackward elimination: Branch and Bound Search

SYSTEMS
GROUP

Given: A classification task over the feature space F.
Aim: Select the k best dimensions to learn the classifier.

Backward-Elimination based in Branch and Bound:

FUNCTION BranchAndBound(Featurespace F, int k)
queue. INTt(ASCENDING) ;
queue.add(F, quality(F))
curBound:= INFINITY;

LMU

WHILE queue.NotEmpty() and aktBound > queue.top() DO

curSubSpace:= queue.top();
FOR ALL Subspaces U of curSubSpace DO

IF U.dimensionality() = k THEN
IF quality(U)< curBound THEN

curBound := quality(U);

BestSubSpace := U;
ELSE

queue.add(U, quality(U));

RETURN BestSubSpace

Knowledge Discovery in Databases ll: High-Dimensional Data
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wmesz | SUDSpace Inconsistency (IC)

GROUP

e Idea: Having identical vectorsu,v (v,=u; 1<i <d)in subspace U but the class
labels are different (C(u)=C(v) )

=» the subspace displays an inconsistent labeling
e Measuring the inconsistency of a subspace U
— Xy(A): Amount of all identical vectors A in U
— X°,(A): Amount of all identical vectors in U having class label C

e IC,(A): inconsistency w.r.t. Ain U

IC, (A) = Xy (A)—max XS (A)

> IC, (A)
Inconsistency of U: IC (U ) = £=B5
| DB |

Monotonicity: U, cU,=ICMU,)=ICU,)
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e | Branch and Bound search - overview

GROUP

Advantage:

e Monotonicity allows efficient search for optimal solutions

e Well-suited for binary or discrete data
(identical vectors are very likely with decreasing dimensionality)

Disadvantages:

e Useless without groups of identical features (real-valued vectors)
e Worse-case runtime complexity remains exponential in d

Knowledge Discovery in Databases ll: High-Dimensional Data
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e | S€lected methods in this course

SYSTEMS
GROUP

1. Forward Selection and Feature Ranking

— Information Gain, y2-Statistik, Mutual Information

2. Backward Elimination and Random Subspace Selection
—  Nearest-Neighbor criterion, Model-based search

— Branch and Bound Search

IMU

3. k-dimensional projections
—  Genetic Algorithms for Subspace Search
—  Feature Clustering for Unsupervised Problems

Knowledge Discovery in Databases Il: High-Dimensional Data
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s | K-dimensional projections

GROUP

e |dea: Select n random subspaces having the target dimensionality k out of the

(‘:j possible subspaces and evaluate each of them.

e Application:
— Needs quality measures for complete subspaces
— Trade-off between quality and effort depends on k.
e Disadvantages:
— No directed search for combining well-suited and non-redundant features.

— Computational effort and result strongly depend on the used quality measure and
the sample size.

e Randomization approaches
— Genetic algorithms
— k-medoids feature clustering
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s | G€NEtic Algorithms

GROUP

Idea: Randomized search through genetic algorithms

Genetic Algorithms:

Encoding of the individual states in the search space: bit-strings
Population of solutions := set of k-dimensional subspaces
Fitness function: quality measure for a subspace

Operators on the population:

— Mutation: dimension d., in subspace U is replaced by dimension d; with a likelihood of x%
— Crossover: combine two subspaces U,, U,
O Unite the features sets of U, and U,.
0 Delete random dimensions until dimensionality is k
Selection for next population: All subspaces having at least a quality of y% of
the best fitness in the current generation are copied to the next generation.

Free tickets: Additionally each subspace is copied into the next generation with
a probability of u%.

Knowledge Discovery in Databases ll: High-Dimensional Data
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amense | G€Netic Algorithm: Schema

SYSTEMS
GROUP

Generate initial population
WHILE Max_Fitness > Old_Fitness DO
Mutate current population
WHILE nextGeneration < PopulationSize DO
Generate new candidate from pairs of old subspaces
IF K has a free ticket or K is fit enough THEN
copy K to the next generation
RETURN fittest subspace

Knowledge Discovery in Databases ll: High-Dimensional Data
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s | G€NEtic Algorithms

GROUP

Remarks:

e Here: only basic algorithmic scheme (multiple variants)

e Efficient convergence by “Simulated Annealing”
(Likelihood of free tickets decreases with the iterations)

Advantages:

e (Can escape from local extreme values during the search

e Often good approximations for optimal solutions

Disadvantages:

e Runtime is not bounded can become rather inefficient

e Configuration depends on many parameters which have to be tuned to achieve
good quality results in efficient time
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amemse | FEature-clustering

SYSTEMS
GROUP

Given: A feature space F and an unsupervised data mining task.

LMU

Target: Reduce F to a subspace of k (original) dimensions while reducing
redundancy.

Idea: Cluster the features in the space of objects and select one representative

feature for each of the clusters.

(This is equivalent to clustering in a transposed data matrix)
Typical example: item-based collaborative filtering

4
!

- e == ==

1 (Titanic) 2 (Braveheart) ! 3 (Matrix) 4 (Inception\?: 5 (Hobbit) 6 (300)
Susan 5 2 5 5 4 1
Bill 3 3 2 (. 1 1
Jenny 5 A T 4
Tim 2 2 4 5 3 3
Thomas 2 1 L3 4 1 4
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amemse | FEature-clustering

GROUP

e Feature similarity, e.g., 2

. . . . _1.3 Ei-li x B‘l

— Cosine similarity similarity = eos(?) = ":1""3" = f=t _
3 ) 2 - E
yE e & e

— Pearson correlation: =~ _ Yz =)y —7)
ry = T el — —
‘l,‘-"l Z:’:l {-I'i — ‘{'}Evf Z;’:I{yi - U}z

e Algorithmic scheme:
— Cluster features with a k-medoid clustering method based on correlation
— Select the medoids to span the target data space

e Remark:

— For group/cluster of dependent features there is one representative
feature

— Other clustering algorithms could be used as well.

— For large dimensionalities, approximate clustering methods are used due
to their linear runtime (c.f., BIRCH upcoming lectures)

Knowledge Discovery in Databases ll: High-Dimensional Data
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amense | FEAture-Clustering based on correlation

GROUP

Advantages:

e Depending on the clustering algorithm quite efficient
e Unsupervised method

Disadvantages:
e Results are usually not deterministic (partitioning clustering)

e Representatives are usually unstable for different clustering methods and
parameters.

e Based on pairwise correlation and dependencies
=> multiple dependencies are not considered
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e | FEAture selection: overview

GROUP

* Forward-Selection: Examines each dimension D* €{D, ,..,D4}. and selects the k-
best to span the target space.

—  Greedy Selection based on Information Gain, 2 Statistics or Mutual Information

e  Backward-Elimination: Start with the complete feature space and successively
remove the worst dimensions.

—  Greedy Elimination with model-based and nearest-neighbor based approaches
—  Branch and Bound Search based on inconsistency

e k-dimensional Projections: Directly search in the set of k-dimensional
subspaces for the best suited

—  Genetic algorithms (quality measures as with backward elimination)
—  Feature clustering based on correlation
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e | FEAture selection: discussion

GROUP

e Many algorithms based on different heuristics

e There are two reason to delete features:
— Redundancy: Features can be expressed by other features.
— Missing correlation to the target variable
e Often even approximate results are capable of increasing efficiency and quality
in a data mining tasks

e Caution: Selected features need not have a causal connection to the target
variable, but both observation might depend on the same mechanisms in the
data space (hidden variables).

e Different indicators to consider in the comparison of before and after selection
performance

— Model performance, time, dimensionality, ...
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