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Feature Transform and Similarity Model

* Feature Transform

— Consider the following spaces:
— U denotes the universe of data objects
— [F < R" denotes an n-dimensional feature space

LMU

— A feature transformation is a mapping f : U - R” of objects from U to

the feature space .

* Similarity Model
— Asimilarity model S:UxU—- R is defined for all objects p,q€U as:

S(p,q)=sim(f(p),f(q))

where

sim:R"xR"” > R

is a similarity measure or a dissimilarity (distance) measure in F.

Knowledge Discovery in Databases ll: High-Dimensional Data
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Similarity vs. Dissimilarity

e Small but important difference

— A similarity measure (sim) assigns high values to similar objects:

— A dissimilarity measure (J) assigns low values to similar objects:

sim(p,q ) = sim(p,r)

d(p,a) < o(p,r)

object p

Knowledge Discovery in Databases Il: High-Dimensional Data
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* Dissimilarity measures follow the idea of the geometric approach

— objects are defined by their perceptual representations in a perceptual
space

— perceptual space = psychological space

— geometric distance between the perceptual representations defines the
(dis)similarity of objects

e Within the scope of Feature-based similarity:

— perceptual space = feature space [F or feature representation space R”
— geometric distance = distance function

Knowledge Discovery in Databases ll: High-Dimensional Data
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* Distance Space

— The tuple (IF,d) is called a distance space if § is a distance function, i.e. it
satisfies reflexivity, non-negativity, and symmetry.

* Metric Space

— The tuple (IF,d) is called a metric space if § is a metric function, i.e. it is a
distance function (see above) and it satisfies the triangle inequality

Knowledge Discovery in Databases ll: High-Dimensional Data
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* Discussion
— Sound mathematical interpretation
— (Metric) distance functions allow domain experts to model their notion of
dissimilarity
— Allow to tune efficiency of data mining approaches
(particularly the utilization of the triangle inequality)

— Powerful and general: independent adaptation/utilization without knowing the
inner-workings of a (metric) distance function

— Long-lasting discussion of whether the distance properties and in particular the
metric properties reflect the perceived dissimilarity correctly, see the following
contradicting example:

\ \ \

Y Y
no properties shared alike similar w.r.t. roundness similar w.r.t. luminosity

Knowledge Discovery in Databases ll: High-Dimensional Data



e Similarity function
— quantifies the similarity between two objects
— corresponds to the notion that nothing is more similar than the same
— satisfies the symmetry and maximum self-similarity properties
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* Transformation
— Let [F be a feature space and §: IF x [F - R be a distance function

— Any monotonically decreasing function f: R - R defines a similarity function
s:FxF - R as follows:

Vx,yeX:s(x,y)=f(6(x,y))

* Some prominent similarity functions (x,y € [F ):
— exponential: s(x,y)=e”-d(x,y) )

L e
— logarithmic: s(x,y)=1-log(1+d(x,y)) ™ B
-'._. ™ ~ - - =1
— linear: s(x,y)=1-6(x,y) B A DT
AN ~a cesere 5(x,y)=1-5(x,Y)
_. 06 * ==
; : \\\ Te~a -
= . . T
0.4 ._-..- \\\ = -
ad \‘\
- .'.-‘v __________________________
0.0 1.0 20 -
5(x,y)
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 Similarity (x,y € F c R9):
—  Dot-Product x-yT =3 x; -y = llxll - llyll - cos

d
xy _ Yic1 Xi'Yi

B fod a2 [vd 52

T, O=%)- i=¥D)
(E G2 S, 0702

— Cosine

— Pearson Correlation

— Kernels ...

 Distance (x,y € F — R9):
1
— Lp-norms (aka Minkowski metric) b LyOoy) = QCicisalx — yilP)P
Fractional Minkowski Dist. (p < 1), Manhattan Dist. (p = 1), Euclidean Dist. (p = 2), Chebyshev/Maximum Dist. (p = o)

— Mahalanobis (aka quadratic forms)

1 ifx #y,

— Hamming: HammingDist(x,y) = X1<j<q4 {O olse
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e Motivating Example: baby shapes game (truly motivating for

students ...)
OO
- —
Based on shape grouping Based on color grouping

What about grouping based on both shape and color?

Knowledge Discovery in Databases Il: High-Dimensional Data
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High-Dimensional Data: why bother?

LMU

* The good old days of data mining ...

Data generation and, to some extend, data storage was costly (sic!)

Domain experts carefully considered which features/variables to measure
before designing the experiment/the feature transform/...

Consequence: also data sets were well designed and potentially
contained only a small number of relevant features

Nowadays, data science is also about integrating everything

Generating and storing data is easy and cheap

People tend to measure everything they can and even more (including
even more complex feature transformations)

The Data Science mantra is often interpreted as “analyze data from as
many sources as (technically) possible”

Consequence: data sets are high-dimensional containing a large number
of features; the relevancy of each feature for the analysis goal is not clear
a priori

Knowledge Discovery in Databases ll: High-Dimensional Data 13
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* Image data

Metabolome data

Examples of High-Dimensional Data 1/2

LMU

low-level image descriptors
(color histograms, textures, shape information ...)

If each pixel a feature, a 64x64 image = 4,096 features
Regional descriptors
Between 16 and 1,000 features

feature = concentration of one metabolite

The term metabolite usually restricted to small molecules, that are
intermediates and products of metabolism.

The Human Metabolome Database contains 41,993 metabolite entries

Bavaria newborn screening (For each newborn in Bavaria, the blood
concentrations of 43 metabolites are measured in the first 48 hours after birth)

between 50 and 2,000 features

Knowledge Discovery in Databases Il: High-Dimensional Data 14



w

DATABASE
SYSTEMS
GROUP

Examples of High-Dimensional Data 2/2

Microarray data

Features correspond to genes

Thousands or tens of thousands of

genes in a single experiment
Up to 20,000 features

Dimensionality is much higher than the sample size

Text data
Features correspond to words/terms

Different documents have different words
between 5,000 and 20,000 features

Very often, esp. in social media,
— Abbreviations (e.g., Dr)
— colloquial language (e.g., luv)

— Special words (e.g, hashtags, @TwitterUser)

What's new at LMU? As usual, the most obvious change from last semester is this term's
new crop of first-year students. — Around 8000 of them have arrived in Munich to begin
their university careers. For the freshers themselves, of course, virtually everything is
new - not just the lecture theaters, the professors and their classmates. Getting to know
their new alma mater is their first priority. One of the many newcomers on campus is
David Worofka, who is about to embark on a voyage arcund the bays and inlets of
Economics. To ensure that he is well equipped to master the upcoming challenges, David
has not only registered for LMU's P2P Mentoring Program but will also take the
introductory crientation course (the so-called 0 Phase) offered by the Faculties of
Economics and Business Administration. "For first-year students in particular, the
Mentoring Program is a very good idea,” he avers. Indeed, university studies are
organized along very different lines from the more rigid schedules used in secondary
schools and in much of the world of work. "Having a mentor on hand is a great help,” he
says. David's mentor, Alex Osberghaus, is well aware of how important it is to have
someone to turn to for advice and assistance during the early phase of one’s first
semester: "In the beginning, when everything is unfamiliar, there are lots of questions to
be answered,” he says. "And mentors who already know the ropes can give their charges
valuable tips that can help them to get off to a goed start.”

Excerpt from LMU website:
http://tinyurl.com/qhq6byz

Knowledge Discovery in Databases ll: High-Dimensional Data 15
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Traditional Approach .

e Data objects (e.g. images) are l

represented as d-dimensional feature
vectors (e.g. color histograms)

e 2-dimensional example: I o

— a and b are 2-dimensional vectors ‘2

— The Euclidean distance betweenagand bis:

dist,[(1,2), (4,3)] =
JA =42+ (2-3)2=410

and it corresponds to the norm of
the difference vector c

lellz = V32 + 12

(0.0)

High Dimensional Data Mining: Distances
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e With increasing dimensionality, distances grow, too:

— Example: dist,[(1,2),(4,3)] = V10
double the feature vector length (double the original features)

dist,[(1,2,1,2), (4,3,4,3)] = /32 + 12 + 32 + 12 = /20
— Effect seems not so important, values might be only in a larger scale?
But: NOPE!

e Contrastis lost in high dimensional data:
— Distances grow more and more alike
— Distances concentrate in small range of (high) values (low variance)
— No clear distinction between clustered objects

High Dimensional Data Mining: Distances 17
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e Concentration phenomenon:
As dimensionality grows, distance values grow, too, such that the
(numerical) contrast provided by usual metrics decreases. In other
words, the distribution of norms in a given distribution of points

tends to concentrate

e Example: Euclidean norm of vectors consisting of several variables
that are independent and identically distributed :

yll, = Jyf +y5+ -+ ys

e |n high dimensional spaces this norm behaves unexpectedly ...

High Dimensional Data Mining: Distances
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Concentration of the Norms and Distances

Theorem

Let y be a d-dimensional vector [y, ...,y4] ; all components y;,1 <i < d, are
independent and identically distributed:

Then the mean and the variance of the Euclidean norm are:
1
My =Vvad —b+0(d™") and oy =b+0(d"2)

where a and b are parameters depending only on the central moments of order
1,2, 3, 4.

- The norm of random variables grows proportionally to vd, but the variance
remains more or less constant for sufficiently large d (because lim d="2=0
bzw. lim d~! = 0)

d—oo

— with growing dimensionality, the relative error made by taking p | instead of
||| becomes negligible

So what does that mean ...

High Dimensional Data Mining: Distances
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Neighborhoods become meaningless (part 1)

e Using neighborhoods is based on a key assumption:

— Objects that are similar to an object o are in its neighborhood
— Object that are dissimilar to o are not in its neighborhood

e What if all objects are in the same neighborhood?

— Consider effect on distances: kNN distances are almost equal to each other

— k nearest neighbor is a random object

High Dimensional Data Mining: Distances

LMU
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Definition:

A NN-query is unstable for a given € if

the distance from the query point to
most data points is less than (1 + €)
times the distance from the query point

to its nearest neighbor.

IMU

We will show that with
growing
dimensionality, the

probability that a query is

unstable converges to 1

]
- .
. ,. ) .-'\_
. o o o ,/’""__.-"j_‘..x-\--"."'*. = DMIN
. L ——e |
* e Dmax |\ QA /)
. . . e (1+¢)DMIN
-,
y Nearest Neighbor
.

* Query Point

v Center of Circle

High Dimensional Data Mining: Distances
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e Consider a d-dim. query point Q and N d-dim. sample points

XlIXZJ ...,XN . .
(independent and identically distributed) | = - , "

e We define: AT
DMINg = min{dist,(X;, Q)|1 < i < N} T .‘u.:\\?&;D(IJFE)DMN
DMAX,; = max{dist,(X;, Q)|1 <i < N} -

. . var(dist,(X;,Q))\ _
Theorem: |f 6%1_1)1010 ( ELdist, (X.0)) ) =0

Thenve >0  lim P[DMAX, < (1+€)DMIN,] = 1

If the precondition holds (e.g., if the variance of the distance values remains

more or less constant for a sufficiently large d) all points converge to the same
distance from the query

— the concept of the nearest neighbor is no longer meaningful

High Dimensional Data Mining: Distances
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e Pairwise distances example: sample of 10° instances drawn from a uniform [0,
1] distribution, normalized (1/ sqrt(d)).

—_—

~ - _ 1 _ T T r1rrrr1r] | T T T T T171] T T T T 11

0.9 |— ‘x Mean +- stddev —— Actual min — = Actual max - - |

A .

0.8 — v —

h-u

0.7 — A N —
= Yal_
206 — ‘e —
ks N eay
305 - Vv |
- ‘#‘\""‘-*—ﬁn
EU.‘:I- S il i ”T
o —-""""—'-—T:—‘—:_:--F oy
203 freent” _—rVnT —

ko= A Y
Y4 v
0.1 |— _r” —
—
{]______.I._-gl--ﬂ""lfllll| | NN I
1 10 100 1000
Dimensionality

Source: Tutorial on Outlier Detection in High-Dimensional Data, Zimek et al, ICDM 2012
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Further explanation of the Curse of Dimensionality:
e Consider the feature space of d relevant features for a given application
=> truly similar objects display small distances in most features
e Now add d*x additional features being independent of the initial feature space

e With increasing x the distance in the independent subspace will dominate the
distance in the complete feature space

= How many relevant features must be similar to indicate object similarity?
— How many relevant features must be dissimilar to indicate dissimilarity?

= With increasing dimensionality the likelihood that two objects are similar in
every respect gets smaller.

Knowledge Discovery in Databases ll: High-Dimensional Data 24
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e The more features, the larger the hypothesis space

1D 2D

e The lower the hypothesis space
— the easier to find the correct hypothesis
— the less examples you need

Knowledge Discovery in Databases Il: High-Dimensional Data
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e Patterns and models on high-dimensional data are often hard to interpret.
— e.g., long decision rules

e [Efficiency in high-dimensional spaces is often limited
— index structures degenerate

— distance computations are much more expensive

e Pattern might only be observable in subspaces or projected spaces

1
12
3
4
5
16
T
8
8

Perso
Perso
Perzo

2
3\ Recall the baby shapes!

EFPQBD

Genel

Genel

Genel

Genes
Geneb
Genel
Gene?
Gened

Genel

e Cliques of correlated features dominate the object description

Knowledge Discovery in Databases Il: High-Dimensional Data
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* |Inlow dimensional spaces we have some (intuitive) assumptions
on
— Behavior of volumes (sphere, cube, etc.)
— Distribution of data objects

e Basic assumptions do not hold in high dimensional spaces:
— Space becomes sparse or even empty
— Probability of one object inside a fixed range tends to become zero
— Distribution of data has a strange behavior

e E.g.a normal distribution has only few objects in its center
— Tails of distributions become more important

High Dimensional Data Mining: Empty Space Problem 27
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Consider a d-dimensional space
: .. .1
with partitions of constant size —

The number of cells N increases
exponentially in d: N = m?

Suppose x points are randomly placed in this
space

In low-dimensional spaces there are few
empty partitions and many points per
partitions

In high-dimensional spaces there are far
more partitions than points
— there are many empty partitions

High Dimensional Data Mining: Empty Space Problem

28
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e Consider a simple partitioning scheme, which splits the data in each dimension
in 2 halves

e For d dimensions we obtain 2¢ partitions
e Consider N = 10° samples in this space
e Ford < 10 such a partition makes sense

e Ford =100 there are around 103° partitions, so most partitions are empty

[WSB98] Roger Weber, Hans-Jorg Schek and Stephen Blott: A quantitative analysis and performance study for similarity-search methods in high-
dimensional spaces. In VLDB ’98: Proceedings of the 24rd International Conference on Very Large Data Bases.

High Dimensional Data Mining: Empty Space Problem 29
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e Consider a hypercube range query with = e
length s in all dimensions, placed
arbitrarily in the data space [0,1]¢ .

e Fisthe event that an arbitrary point lies
within this range query >

e The probability for Eis Pr[E] = s¢ ©...0)

— with increasing dimensionality,
even very large hyper-cube range
gueries are not likely to contain
a point. [WsB9]

Probability

il

] T e -

0 20 40 &0 g0 100

Number of dimensiohs

High Dimensional Data Mining: Empty Space Problem
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Consider the largest spherical query that fits
entirely within a d-dimensional data space

Thus for a hypercube with side length 2r, the
sphere has radius r

E is the event that an arbitrary point lies within
this spherical query

The probability for E is:

. Vsphere (T‘)
Pr[E] - chbe(r)
We have:
ad
Vsphere (r) = (\/ﬁ To)l Veupe (21) = (Zr)d
I'(1+ 7)

High Dimensional Data Mining: Empty Space Problem

LMU
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. . . . . ) 1% h (T')
e For a growing dimensionality we obtain: lim —2—— =
d—oo Veype(21)

e Consider V,.,,.(2r) = 1,thenr = 0.5 and C%im Vsphere = 0

- The volume of the sphere vanishes with increasing dimensionality
e The fraction of the volume of the cube contained in the hypersphere is:

Vrdrd Vil
fd = d = d
I (1 + 7) (2r)¢ T (1 + 7) 24
Dimensionality d 1 2 3 4 5 6 7
Fraction Volume f; 1 0.785 0.524 0.308 0.164 0.081 0.037

e Since the relative volume of the sphere becomes smaller and smaller, it
becomes improbable that any point will be found within this sphere in high
dimensional spaces

[WSB98] Roger Weber, Hans-Jorg Schek and Stephen Blott: A quantitative analysis and performance study for similarity-search methods in high-
dimensional spaces”. In VLDB *98: Proceedings of the 24rd International Conference on Very Large Data Bases.
[LVO07] John A Lee and Michel Verleysen: "Nonlinear Dimensionality Reduction”. Springer, 2007.

High Dimensional Data Mining: Empty Space Problem
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08

Fraction volume

I 10 20 30 40 50
Number of dimensions

= with increasing dimensionality the center of the hypercube becomes less
important and the volume concentrates in its corners (i.e. points tend to be on
the border of the data space ...)

— distortion of space compared to our 3D way of thinking

High Dimensional Data Mining: Empty Space Problem
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Consequence: Importance of the Tails

Intuition for low dimensional data:

* Consider standard density 2
function f 8
&
e Consider f’:
reen 10, f(x) <0.01lsupf oro 21%
fo = {f(x), else 0

—

-3¢ -20 -lo H l 2o 3o

e Rescaling f’ to a density function will make very little difference in the one
dimensional case, since very few data points occur in regions where fis very
small

High Dimensional Data Mining: Empty Space Problem 34
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For high dimensional data:
e More than half of the data has less then 1/100 of the maximum density f{0)
(for u=0)
e Example: 10-dimensional Gaussian distribution X:
fQ) _ 30 _ 320
£(0)

since the median of the yZ, distribution is 9.34,

9.34
the median ofM ise 2 =0.0094

f(0)
e Thus, most objects occur at the tails of the distribution

—2 in contrast to the low dimensional case, regions of relatively very low density
can be extremely important parts

[S86] B.W. Silverman: ”Density Estimation for Statistics and Data Analysis”. Chapman and Hall/CRC, 1986.

High Dimensional Data Mining: Empty Space Problem
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Normal distribution
(u=0, o=1)

Probability

-

a
]

2
]

o
o

0.6

0.5

0.4

0.3

----- 1-dimensional normal
distribution

=+ -2-dimensional normal
distribution

== +10-dimensional normal
distribution K

— =20-dimensional normal -~
distribution o

Importance of the Tails: Example

2.4 2.8 3.2 3.6 4.0
Radius of sphere

-
| 1-dimensional standard normal
| distribution

r
| 2-dimensional standard normal
| distribution

= J]-dimensional : 90% of the mass of the distribution lies between -1.6 and 1.6

= 10-dimensional: 99% of the mass of the distribution is at points whose distance from the
origin is greater than 1.6

- it is difficult to estimate the density, except for enormous samples

- in very high dimensions virtually the entire sample will be in the tails

High Dimensional Data Mining: Empty Space Problem
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e Consider f a multivariate normal distribution

e The aimis to estimate f at the point 0
e The relative mean square error should be fairly small:

E[f(0) — £(0)]°
£(0)?

<0.1

Dimensionality Required sample size
... "‘N‘uwwNwNMNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\‘HM‘WH‘\M«H‘\Ww‘ B
2 19
5 . e

43700
mMH\NN\1\NHNHNNNNNMNNNH\iHIHMHiHIHiHI\HHIHiH}Hi\\;HEHIHEHI\\iuuiwwwm

- inthe 1,2-dimensional space the given accuracy is obtained from very small samples,
whereas in the 10-dimensional space nearly a million observations are required

[S86] B.W. Silverman: ”Density Estimation for Statistics and Data Analysis”. Chapman and Hall/CRC, 1986.
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e Summarizing: the higher the dimensionality, the worst is the expected outcome
of the mining algorithm (i.e., dimensionality is a curse, says Kroger)

e Well, notin general.

e The Kernel trick shows the opposite: through the extension of the data space
with new attributes, the mining algorithm (e.g. a SVM classifier) gets more
accurate (i.e., dimensionality is a blessing, says Tresp in his ML course)

e Both©

e What????

Knowledge Discovery in Databases ll: High-Dimensional Data
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BUT ... (Case: Tresp vs. Kroger)

Look at what we assumed (the curse): attributes are independent (and often

even uniformly distributed)

LMU

— These attributes are likely to be irrelevant for the mining task

And the blessing: a Kernel (if it works) adds relevant attributes (even more

relevant than the original ones)

Example
For detecting 2 clusters, ...
... X is attribute
... yisirrelevant

_____ CTTTTTTTTTTR
X _?)‘:x_ , X% X XX, ;é
.‘(.‘()‘k X -q‘ih‘(
W x% %R . _‘ _'{';?1
OO g x X Ky XX
i:_"(_"ixx"(_xx_i _____ ::Z:_\.;( :
] ]

So it would probably be a good idea to eliminate irrelevant features while
keeping (or even deriving new) relevant features

Knowledge Discovery in Databases ll: High-Dimensional Data
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