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Downward-closure property: example

¢ Simple cluster criterion (density of grid cells):
— Ifacell C of side length s contains more than m points, it represents a cluster
* Monotonicity:

— if C contains more than m points in subspace S then C also contains more than m points
in any subspace Tc S

— Example: monotonicity (left) and reverse implication (right)

Cell C contains more than m=5 points in subspace ,AB" Cell C contains less than m=5 points in subspace ,A”"
== Also in subspaces ,A"c ,AB"” and ,B"c ,AB” == Also in subspace ,AB”




If Cis a density connected set in subspace S then C is a density connected set in any

subspace T S.
- But,if Cisaclusterins, it need not to be a cluster in T < S — maximality might be violated

- All clusters in a higher-dimensional subspace will be subsets of the clusters detected in this
first clustering.
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(a) p and g are density-connerted via o (b) p and g are not density-connected
p and g not density connected in {B}.

Thus, they are not density connected in{A,B},
although they are density connected in {A}.

p and g density connected in {A,B}.
Thus, they are also density connected in {A} and {B}
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— Algorithm

¢ All subspaces that contain any density-connected set are computed
using the bottom-up approach (similar to CLIQUE/APRIORI)

¢ Density-connected clusters are computed using a specialized DBSCAN
run in the resulting subspace to generate the subspace clusters

— Discussion
¢ |Input: € and MinPts specifying the density threshold
e Qutput: all clusters in all subspaces, clusters may overlap

¢ Uses a fixed density threshold for all subspaces

Advanced but costly cluster model
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* |nstance-based top-down approach: we learn the subspace for each instance

e Extends DBSCAN to high dimensional spaces by incorporating the notion of
dimension preferences in the distance function

* For each point p, it defines its subspace preference vector:

W | | 1 if VAR >0
W, = (w1, w2, ...wg) W o— ‘
| L if VAR, <0

1

A;
* Var, is the variance along dimension}in N_(p):

Z.q E.‘\"‘s 'P’ (det ( TTA i (])) ’ ”TA i ( q ) ) )2
Nz (p)]

Va R4, (.‘\’ (p)) =

f
c

6, k (k>>1) are input parameters | A,
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¢ Preference weighted distance function:

Important dimensions weighted

d Wi
diStp(PaQ) = Z%K ('”A; (P) —TA; (‘1))2z more heavily!
[ — )

diStpref (Pa Q) - ma‘x{diStP(ps Q)a diStq (Qa p)}
¢ Preference weighted e-neighborhood:

NP (p) = {z € D|distyres(p,x) < e}

simple : preference weighted
e-neighborhood 6 9 % }.s e-neighborhood
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e Preference weighted core points:

p

Core™ (p) & PDIM(ANL(p)) < AA [N p) | = 1

den \

p is core point Subspace preference Preference weighted

dimensionality neigborhood

e Direct density reachability, reachability and

connectivity are defined based on preference

weighted core points

e A subspace preference cluster is a maximal

density connected set of points associated

with a certain subspace preference vector.
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4C = Computing Correlation Connected Clusters
Idea: Integrate PCA into density-based clustering.

Approach:

* Check the core point property of a point p in the complete feature space
e Perform PCA on the local neighborhood S of p to find subspace
correlations

PCA factorizes M, into|M, =V E V'
V: eigenvectors
E: eigenvalues

* A parameter § discerns large from small
eigenvalues.

* CorDim(S)=#eigenvalues>6

* Inthe eigenvalue matrix of p, large eigenvalues
are replaced by 1, small eigenvalues by a value k
>>1 - adapted eigenvalue matrix E’,
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e effect on distance measure:

,\ y

distance P
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where ) is the normalization of the eigenvalues onto [0, 1]

A 1 1f Q(E’z)>5
“TV Kk if Qe)<é

e distance of p and g w.r.t. p: \/(p _Q)' Vp E;, 'VpT '(p_Q)T

e distance of pand g w.r.t. g: \/(q —p)° Vq E('] ' VqT '(q _p)T
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e symmetry of distance measure by choosing the maximum:

e pand g are correlation-neighbors if

\

\/(p—q)-Vp 'E;? 'VpT °(p_q)T9
maxs < £

a-p)V, E, V] (qg-p)
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algorithm 4C(D, ¢, pu, A, 6)

// assumption: each object in D is marked as unclassified

for each unclassified O € D do

STEP 1. test COREZY (O) predicate:

compute N:(O);
if [Nz(O)| > p then

compute M; «
if CORDIM(N:(O)) < A then

compute Mo and N&MO (0); =
test |NEMO (0)| = w;

STEP 2.1. if CoregY; (O) expand a new cluster:

generate new clusterlD;

insert all X € N21© (O) into queue ®;
while ® # 0 do
Q) = first object in ®;
compute R = {X € D|DIRREACHG,, (Q, X)};
for each X € R do
if X is unclassified or noise then
assign current clusterID to X
if X is unclassified then
insert X into ®;
remove  from ©;

STEP 2.2. if not COREZY (O) O is noise:

mark O as noise;

end.

Covariance matrix My = VpEpVE

Correlation similarity matrix Mgy = VpEpVE
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e Basic idea of CASH (= Clustering in Arbitrary Subspaces based on
the Hough transform)

— Transform each object into a so-called parameter space representing all
possible subspaces accommodating this object (i.e. all hyper-planes
through this object)

— This parameter space is a continuum of all these subspaces

— The subspaces are represented by a considerably small number of
parameters

— This transform is a generalization of the Hough Transform (which is
designed to detect linear structures in 2D images) for arbitrary dimensions
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For each d-dimensional point p there is an infinite number of (d-1)-

dimensional hyper-planes through p

Each of these hyper-planes s is defined by (p,a,..., a,;), where o, ..., o4 ; is

the normal vector n, of the hyper-plane s

The function f (ay,..., 0ty ;) = 9
distance o, of the hyper-plane s to the origin

The parameter space plots the graph of this function

= <p,n> maps p and a,...,, a4, onto the

y
R TN
” Py - h o
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(2,5)

data space RS Parameter space a
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