Exercise 3-1 Principal Component Analysis

Consider the following example on principal axis transformation.

Given:

\[X = \{ (-3, -2), (-2, -1), (-1, 0), (0, 1), (1, 2), (2, 3), \\
 (-2, -2), (-1, -1), (0, 0), (1, 1), (2, 2), \\
 (-2, -3), (-1, -2), (0, -1), (1, 0), (2, 1), (3, 2) \} \]

(a) Calculate the covariance matrix \(M \).
(b) Calculate eigenvalues and eigenvectors of \(M \).
(c) Determine the smallest eigenvalue and remove its corresponding eigenvector. The remaining eigenvector is the basis of a new sub-space.
(d) Transform all vectors in \(X \) in this new sub-space by expressing all vectors in \(X \) in this new basis.

Exercise 3-2 Principal Component Analysis

Conduct a principal axis transformation on the following data set:

- \(A(1, 0, 3) \), \(B(0, 0, 3) \), \(C(1, 0, 1) \), \(D(0, 0, 1) \)

What problem comes up? How can it be solved?

Exercise 3-3 Singular Value Decomposition

Another approach to feature reduction is Singular Value Decomposition. Given a Matrix \(M \) and its SVD decomposition:

\[M = T \ast S \ast D' \]

with

\[M = \begin{bmatrix} 1 & 2 \\ 6 & 3 \\ 0 & 2 \end{bmatrix} \quad T = \begin{bmatrix} -0.2707 & 0.5458 \\ -0.9509 & -0.2797 \\ -0.1497 & 0.7899 \end{bmatrix} \]
\[S = \begin{bmatrix} 7.0257 & 0 \\ 0 & 2.1539 \end{bmatrix} \quad D = \begin{bmatrix} -0.8507 & -0.5257 \\ -0.5257 & 0.8507 \end{bmatrix} \]

Reduce to one dimension using the approach described in the lecture script.