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Exercise 1: High dimensional data introduction

Exercise 1-1 Getting familiar with WEKA

Download the Data Mining Tool WEKA (version 3.8.0) and its documentation from https://sourceforge.
net/projects/weka/files/weka-3-8/3.8.0/. Install the WEKA package and execute the tool.
Play around with the WEKA Explorer and get familiar with its functionalities. Download the 5 ARFF datasets
(2d, 4d, 8d, 16d and 32d) in the zip file provided. Install the package ’optics dbscan’ via the tools tab in the
WEKA GUI Chooser. The algorithms will then be available as new clusterer methods within the Cluster section
of the Explorer. Use the OPTICS algorithm to generate OPTICS plots for the datasets. You can change the pa-
rameters for an algorithm by clicking on the field next to the button ’Choose’. For our case, use the Manhattan
Distance with MinPts=6 and ε= 10 to compute an OPTICS plot for each of the given datasets.

Consider the following questions:

• Can you detect hierarchical clusters?

• How has ε to be chosen to detect these clusters with the DBSCAN algorithm?

• How do core and reachability distances change for the different data sets?

What are the reasons for the observed effects in the OPTICS plots?

Exercise 1-2 High-dimensional Data generator (optional)

Implement a program (in any language of your choice) to generate a high-dimensional dataset with subspace
clusters. It shall generate a dataset of specified dimensionality d, where the values lie within [0,100] for all
dimensions. The data shall have k subspace clusters. For each cluster a certain dimensionality (i.e. the number
of relevant dimensions for the cluster) can be specified. The cluster dimensions are then chosen at random from
all dimensions. The objects within a subspace cluster are uniformly distributed within a specified radius around
a randomly chosen center point in the relevant cluster dimensions. The clusters shall be generated in a way so
that they don’t overlap and all cluster points lie within the d-dimensional hypersphere (no values larger than
100). Furthermore, it shall be possible to generate ’noise’ objects, which are points uniformly distributed in the
data space (range[0,100]) in all dimensions.

Write a program that creates a 2-dimensional array of data points, with the columns representing the different
dimensions and an additional column indicating the cluster the points belong to (’-1’ for noise points). Then
the program shall save the data in an ARFF-file (you can also create a CSV-file and edit the header information
manually, watch out for appropriate data types though).

The following parameters are to be passed to your program:

• number d of dimensions

• number k of clusters

1

https://sourceforge.net/projects/weka/files/weka-3-8/3.8.0/
https://sourceforge.net/projects/weka/files/weka-3-8/3.8.0/


• number of objects in the cluster (for each cluster)

• radius for the cluster in the relevant dimensions (for each cluster)

• dimensionality of the cluster (for each cluster)

• number of noise objects

• output-file

An example of the parameter specification (using Java and passing the parameters in the command line) and
the according ARFF-File output can be found below:

 
Generate the following dataset:  “4 3 40 80 70 10 7 15 3 2 4 20 subspace1.arff” and print a 
visualization of it (visualization tab in WEKA). 
 

Hand in the ARFF-file and the java-implementation of the data generator via e-mail: 
assam@informatik.rwth-aachen.de  
Subject: [DMA2] Task1.2 
Make sure you mention your names in the email too. 
 
Task 1.3) Analysis of high dimensional data       8 points 
 

a) With the data generator of Task 3.1 create a sequence of datasets with increasing 
dimensionality D. Use the following parameter settings “D 2 100 100 20 20 2 2 50 
sequenceD.arff” for generating the data and vary D from 2 to 100 (step size 1). 
 

Determine for each object the ratio “farthest-neighbor-distance”/“nearest-neighbor-distance” 
by using the Euclidean distance and calculate the average ratio for all objects (of the same 
dataset). Plot the average ratio for the sequence of datasets with increasing dimensionality. 
What conclusions can be drawn from this result with respect to the empty space problem/curse 
of dimensionality? Do you get the same results by using the Manhattan-Distance or the 
Maximum-Metric instead of the Euclidean distance?  
  

b) Use the same sequence of datasets as in the previous task. Let us assume the data space is 
partitioned into a regular grid (cf. Slide 22, Chapter 1.2) with 4 partitions per dimension. 
Generate for each data set a histogram (bar chart) that counts the number of cells covering 1 
object, 2 objects, 3 objects, …, 250 objects. 
How do the histograms change by increasing the dimensionality of the data? What are your 
observations? Plot exemplarily the histograms for the dimensions D=2,3,4,5,10,25,50,100. 
 

c) Let Ud be a d-dimensional hypersphere with the radius 1 and the volume Vold. Determine the 
radius rd of the d-dimensional hypersphere Xd that covers the doubled volume. Provide a 
closed-form expression for rd, give the limit of the function for d, and plot the values of rd 
in the range d[1...50]. 
What conclusions can be drawn from these results with respect to the empty space 
problem/curse of dimensionality? 

 

Generate a dataset with the following parameters:

• d = 4

• k = 3

• number of objects in the cluster [40, 80, 70]

• radius for the cluster in the relevant dimensions [10, 7, 15]

• dimensionality of the clusters [3, 2, 4]

• number of noise objects 20

• output-file ’subspace1.arff’

and visualize it in WEKA (use the tab ’preprocess’ to import the data and than the visualization tab in the
Explorer).
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Exercise 1-3 High dimensional data analysis

(a) With the data generator of Exercise 1-2, create a sequence of datasets with increasing dimensionality
D. If you didn’t implement your own generator you can use the java code(ArffGen.java) or the data-
set(ArffGen.zip) provided on the website.

Use the following parameter settings “D 2 100 100 20 20 2 2 50 sequenceD.arff” for generating the
data and vary D = 2, 3, 4, 5, 10, 25, 50.

For each object calculate the ratio “farthest-neighbor-distance”/“nearest-neighbor-distance” by using the
Euclidean distance and calculate the average ratio for all objects (of the same dataset). Plot the average
ratio for the sequence of datasets with increasing dimensionality. What conclusions can be drawn from
this result with respect to the empty space problem/curse of dimensionality? Do you get the same results
when using the Manhattan-Distance or the Maximum-Metric instead of the Euclidean distance?

(b) Use the same sequence of datasets as in the previous task. Let us assume the data space is partitioned
into a regular grid with 4 partitions per dimension. For each dataset, generate a histogram (bar chart) that
counts the number of cells containing 1 object, 2 objects, 3 objects, . . . , 250 objects. How do the histo-
grams change with increasing dimensionality of the data? What are your observations? Plot exemplarily
the histograms for different dimensions D above.

(c) Let Ud be a d-dimensional hypersphere with the radius 1 and the volume Vd. Calculate the radius rd of
the d-dimensional hypersphere Xd that comprises double the volume (i.e. Vnew = 2Vd. Provide a closed-
form expression for rd, give the limit of the function for d → ∞, and plot the values of rd in the range
d ∈ [1 . . . 50].

What conclusions can be drawn from these results with respect to the empty space problem/curse of
dimensionality?

Exercise 1-4 Feature Selection

What are irrelevant and redundant features mean? Which feature/features in the following data set is irrelevant
or redundant?

ID attribute X attribute Y attribute Z class
A 2 red yes 1
B 3 red yes 1
C 3 green yes 1
D 4 green yes 2
E 1 red yes 2
F 1 green yes 2
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