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Outline

• Motivation

• Data streams

• Data stream clustering

• Data stream classification
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Traditionally, batch learning

• Most of the DM algorithms focus on batch learning

• Batch learning: 
– The complete training/data set is available to the learning algorithm

– Data instances can be accessed multiple times

– e.g., for clustering: k-Means, DBSCAN

– e.g., for classification: decision trees, Naïve Bayes

• Assumption: 
– Instances are generated by some stationary probability distribution
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Example: k-Means batch

• k=2
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Example: ID3 batch

• Tree is constructed in a top-down recursive divide-and-conquer manner

• At start, all the training examples are at the root node.

• The best attribute is selected and used as the splitting attribute at the root

– For each possible value of the test attribute, a descendant of the root node is 

created and the instances are mapped to the appropriate descendant node.

• Repeat the splitting attribute decision for each descendant node, so 

instances are partitioned recursively.

• Different attribute selection criteria: information gain, gini index,…
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Batch learning is not sufficient anymore

• But, most interesting applications nowadays come from dynamic 
environments where data are generated over time
– e.g., customer transactions, call records, customer click data, social media 

interactions.

• Batch learning is not sufficient anymore as 
– Data is never ending. What is the training set? 

– Multiple access to the data is not possible or desirable

• And also, the data generation process is subject to changes over 
time
– The patterns extracted upon such sort of data are also evolving

– Algorithms should respond to change

o Incorporate new data instances

o Forget obsolete data instances
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Example: Social Streams (Google trends)

• Stream based on the “environment” keyword
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Example: Social streams (Twitter) 

• Stream based on the “#refugeecrisis” hashtag
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Example: Scientific experiments (CERN)

• Experiments at CERN are generating an entire petabyte (1PB=106 GB) of data 
every second as particles fired around the Large Hadron Collider (LHC) at 
velocities approaching the speed of light are smashed together

• “We don’t store all the data as that would be impractical. Instead, from the 
collisions we run, we only keep the few pieces that are of interest, the rare 
events that occur, which our filters spot and send on over the network,” he 
said.

• This still means CERN is storing 25PB of data every year – the same as 1,000 
years' worth of DVD quality video – which can then be analyzed and 
interrogated by scientists looking for clues to the structure and make-up of the 
universe.

Source: http://public.web.cern.ch/public/en/LHC/Computing-en.html
Source: http://www.v3.co.uk/v3-uk/news/2081263/cern-experiments-generating-petabyte
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Example: Network monitoring 
(The Network intrusion data stream)

▪ The dataset consists of TCP connection records of LAN network traffic managed by Lincoln Labs. 

▪ A connection is a sequence of TCP packets starting and ending at some well defined times, between which data flows to 
and from a source IP address to a target IP address under some well defined protocol.

▪ Connections are described in terms of 42 features like duration, protocol_type, service, flag, src_bytes, dst_bytes etc,.

▪ Each connection is labeled as either normal, or as an attack, with exactly one specific attack type. There are 4 main 
categories of attacks: DOS, R2L, U2R, PROBING and are further classified into attack types, like buffer-overflow, guess-
passwd, neptune etc.

▪ Most of the connections in this dataset are normal, but occasionally there could be a burst of attacks at certain times.

More on this dataset: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

time duration protocol_type service flag src_bytes dst_bytes … class

t1 0 tcp http SF 181 5450 … normal

t2 0 tcp http SF 239 486 … normal

… … … … … … … … …

t7838 0 icmp ecr_i SF 1032 0 … smurf

t7839 0 icmp ecr_i SF 1032 0 … smurf

… … … … … … … … …

t70531 0 tcp private S0 0 0 … neptune

t70532 0 tcp private S0 0 0 … neptune

… … … … … … … … …

t492310 0 tcp http SF 244 7161 … normal

t492311 0 tcp http SF 258 9517 … normal

… … … … … … … … …
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Example applications

• Banks (credit card transactions, loan applications,…)

• Telecommunication (call records, sms, www usage,…)

• Health care systems (customer records in a hospital,…)

• Retail industry (transactions in a supermarket,…)

• WWW (content, interactions, TCP/IP traffic, customer click 
data,…)

• Science (experiment results,…)

• …
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Dynamic data/ Data streams

• Data evolve over time as new data arrive (and old data become 
obsolete/irrelevant).

• We can distinguish between:
– Dynamic data arriving at a low rate (as e.g. in DWs)

o incremental methods might work for such cases , e.g., incDBSCAN[EsterEtAl98]

– Data streams: possible infinite sequence of elements arriving at a rapid rate

o new methods are required to deal with the amount and complexity of these 
data

e1 … …e2 e3 e4 ene5 e6 e7 e8 e9 e10

time

“Τα πάντα ῥεῖ καὶ οὐδὲν μένει”
(“Ta panta rhei kai ouden menei”)

“Everything flows, nothing stands still”  
Heraclitus (535-475 BC)
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Example: incDBSCAN[EsterEtAl98]

• Focus is on how to update the old clustering based on the new data (point p), 
without reclustering from scratch.

– Requires (limited) access to raw data
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Challenges & requirements for data stream 
mining

• Data Mining over stream data is more challenging than batch 
learning:
– Huge amounts of data  only a small amount can be stored in memory

– Arrival at a rapid rate  no much time for processing

– The generative distribution of the stream might change over time rather 
than being stationary adapt and report on changes

• Requirements for stream mining algorithms:
– Use limited computational resources:

o Bounded memory

o Small processing time

– No random access  to the data

o Only 1 look at the data (upon their arrival)
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From data changes to pattern changes

• Example of cluster evolution over time

• Example of decision boundary drift over time 

Fig. 1. An illustration of concept drifting in data streams. In the three consecutive time stamps T1, T2 and T3, the classification 
boundary gradually drifts from b1 to b2 and finally to b3.
(from: A framework for application-driven classification of data streams, Zhang et al, Journal Neurocomputing 2012)

Figure: Data records at three consecutive time stamps, the clustering gradually changes
(from: MONIC - Modeling and Monitoring Cluster Transitions, Spiliopoulou et al, KDD 2006)

1 2 3
Cluster is split

Cluster expands

Cluster shrinks

15Knowledge Discovery in Databases II: Data Streams



DATABASE
SYSTEMS
GROUP

Data ageing

• Usually we are not interested in the whole history of the stream 
but only in the recent history 
– also a way to deal with non-stationary data generators.

• There are different ageing/weighting mechanisms or window
models that reflect which part of the stream history is important 
for learning
– Landmark window model

– Sliding window model

– Damped window model

16Knowledge Discovery in Databases II: Data Streams



DATABASE
SYSTEMS
GROUP

Window models 1/2

• Landmark window model: 
 Include all objects from a given landmark.

 All points have a weight w=1.

• Sliding window model:
 Remember only the n more recent entries, where n is the window size. 

 All points within the window have a weight w=1,  for the rest: w=0.

e1 … …e2 e3 e4 ene5 e6 e7 e8 e9 e10

e1 … …e2 e3 e4 ene5 e6 e7 e8 e9 e10
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Window models 2/2

• Damped window model:
 Data are subject to ageing according to a fading function f(t), i.e., each 

point is assigned a weight that decreases with time t via f(t).  

 A widely used fading function in temporal applications is the exponential 
fading function: f(t)=2-λt, λ>0.

o The decay rate λ determines the importance of historical data

o The higher the value of λ, the lower the importance of old data
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Mining over data streams

• We focus on:
– Data stream clustering 

– Data stream classification
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Challenges & Requirements for data stream 
clustering

• Traditional clustering methods require access upon the whole 
dataset
– Online maintenance of clustering

• The underlying population distribution might change: drifts/ shifts 
of concepts
– One clustering model might not be adequate to capture the evolution

• The role of outliers and clusters are often exchanged in a stream
– Clear and fast identification of outliers

21Knowledge Discovery in Databases II: Data Streams



DATABASE
SYSTEMS
GROUP

A taxonomy of stream clustering approaches
(& representative methods)

Batch/Static clustering Dynamic/Stream clustering

Partitioning 
methods

• k-Means
• k-Medoids

• Leader 
• Simple single pass k-Means
• STREAM k-Means [OCaEtAl02] 
• CluStream [AggEtAl03]

Density-based 
methods

• DBSCAN
• OPTICS

• DenStream [CaoEtAl06]
• incDBSCAN *
• incOPTICS *

Grid-based 
methods

• STING • Dstream [CheTu07]

(*) These methods require access to the raw data (this access might be limited though)
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Partitioning methods

• Goal: Construct a partition of a set of objects into k clusters
– e.g. k-Means, k-Medoids

• Two types of methods:
– Adaptive methods:

o Leader (Spath 1980)

o Simple single pass k-Means (Farnstrom et al, 2000)

o STREAM k-Means [OCaEtAl02]

– Online summarization - offline clustering methods:

o CluStream [AggEtAl03]
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Leader
(Spath 1980)

• The simplest single-pass partitioning algorithm

• Whenever a new instance p arrives from the stream
– Find its closest cluster (leader), cclos

– Assign p to cclos if their distance is below the threshold dthresh

– Otherwise, create a new cluster (leader) with p

+ 1-pass and fast algorithm

+ No prior information on the number of clusters

– Unstable algorithm

– It depends on the order of the examples 

– It depends on a correct guess of dthresh
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STREAM k-Means [OCaEtAl02] 

• An extension of k-Means for streams
– The iterative process of static k-Means cannot be applied to streams

– Use a buffer that fits in memory and apply k-Means locally in the buffer

• Stream is processed in chunks X1, X2…, each fitting in memory
– For each chunk Xi

o Apply k-Means locally on Xi (retain only the k cluster centers)

o X’ i*k weighted centers obtained from chunks X1 … Xi

o Each center is treated as a point, weighted with the number of points it compresses

o Apply k-Means on X’ to obtain the k centers for the whole stream

X1 Xi

…

…
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CluStream [AggEtAl03]

• The stream clustering process is separated into:

– an online micro-cluster component, that summarizes the stream locally as 
new data arrive over time

o Micro-clusters are stored in disk at snapshots in time that follow a pyramidal 
time frame. 

– an offline macro-cluster component, that clusters these summaries into 
global clusters

o Clustering is performed upon summaries instead of raw data
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CluStream: the micro-cluster summary structure

 Assume that the data stream consists of a set of multi-dimensional 
records X1,…Xn,…, arriving at T1,…,Tn,…: Xi = (xi

1,…,xi
d)

• The micro-cluster summary for a set of d-dimensional points (X1, X2, …, 
Xn) arriving at time points T1, T2, …, Tn is defined as:

CFT = (CF2x , CF1x , CF2t, CF1t, n)

• Easy calculation of basic measures to characterize a cluster:

• Important properties of micro-clusters:
– Incrementality: CFT(C1 U p) = CFT(C1) + p

– Additivity:     CFT(C1 U C2) = CFT(C1) + CFT(C2) 

– Subtractivity:  CFT(C1 - C2) = CFT(C1) - CFT(C2), C1 C2
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CluStream: overview

• A fixed number of q micro-clusters is maintained over time

• Initialize: apply q-Means over initPoints and build a summary for each cluster 

• Online micro-cluster maintenance as a new point p arrives from the stream

– Find the closest micro-cluster clu for the new point p

o If p is within the max-boundary of clu, p is absorbed by clu

o otherwise, a new cluster is created with p

– The number of micro-clusters should not exceed q

o Delete most obsolete micro-cluster or merge the two closest ones

• Periodic storage of micro-clusters snapshots into disk

– At different levels of granularity depending upon their recency

• Offline macro-clustering 

– Input: A user defined time horizon h and number of macro-clusters k to be detected

– Locate the valid micro-clusters during h

– Apply k-Means upon these micro-clusters  k macro-clusters
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CluStream: overview

+ CluStream clusters large evolving data streams

+ Views the stream as a changing process over time, rather than clustering the 
whole stream at a time

+ Can characterize clusters over different time horizons in changing environment

+ Provides flexibility to an analyst in a real-time and changing environment

– Fixed number of micro-clusters maintained over time

– Sensitive to outliers/ noise
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DATABASE
SYSTEMS
GROUP

Density based methods

• Clusters as regions of high density surrounded by regions of low density (noise)

– Density is measured locally, in the ε-neighborhood of each point 

• e.g. DBSCAN, OPTICS

• Very appealing for streams

– No assumption on the number of clusters

– Discovering clusters of arbitrary shapes

– Ability to handle outliers and noise

• But, they miss a clustering model (or it is to complicated)

– Clusters are represented by all their points

• Solution: Describe clusters as set of summaries

– DenStream [CaoEtAl06]

30Knowledge Discovery in Databases II: Data Streams



DATABASE
SYSTEMS
GROUP

DenStream [CaoEtAl06]

• The online-offline rationale is followed:
– Online summarization as new data arrive over time

• Core, potential core and outlier micro–clusters

– Offline clustering over the summaries to derive the final clusters

• A modified version of DBSCAN over the summaries

• Data are subject to ageing according to the exponential ageing 
function (damped window model)
– f(t)=2-λt, λ>0

– λ the decay rate

– higher λ, less important the historical

data comparing to more recent data
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DenStream: summarizing the stream

• The micro-cluster summary at time t for a set of d-
dimensional points (p1, p2, …, pn) arriving at time points T1, T2, 
…, Tn is:

MC = (CF1,  CF2,  w)

• Easy computation of basic measures:

• A micro-cluster summary cp can be maintained incrementally
– If a new point p is added to cp:  cp = (CF2+p2, CF1+p, w+1)

– If no point is added to cp for time interval δt:
o cp = (2-λδt*CF2, 2-λδt*CF1, 2-λδt*w)
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DenStream: core, potential core & outlier 
summaries

• Core (or dense) micro-clusters

– (w ≥ μ) & (r ≤ ε) 

• But, in an evolving stream, the role of clusters and outliers often 
interchange: 

– Should provide opportunity for the gradual growth of new clusters

– Should promptly get rid of the outliers

• Potential core micro-clusters 

– (w ≥ β*μ) & (r ≤ ε), 0 < β ≤ 1

• Outlier micro-clusters 

– (w < β*μ) & (r ≤ ε), 0 < β ≤ 1

p-core-micro-cluster

ε

ε

ε

ε: the radius threshold 
μ: the weight threshold

o-core-micro-cluster

core-micro-cluster
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DenStream: the algorithm

• Two lists of p-micro-clusters and o-micro-clusters are maintained over time

• Initialize: apply DBSCAN over initPoints p-micro-clusters

• Online step as a new point p arrives from the stream

– Try to assign it to its closest p-micro-cluster

– If this is not possible, try to assign it to its closest o-micro-cluster

o Check if this o-micro-cluster can be upgraded 

– If both are not possible, create a new o-micro-cluster with p

• Periodic micro-cluster maintenance based on data ageing

• Offline macro-clustering 

– On demand, upon user request apply a modified version of DBSCAN over p-micro-
clusters to derive the final clusters
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DenStream
overview

+ DenStream clusters large evolving data stream

+ Discover clusters of arbitrary shapes, following the density-based paradigm

+ No assumption on the number of clusters

+ Noise/ outlier handling

– The choice of the parameters ε, β, μ

– Constant parameters over time, what about clusters with different density
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Grid based methods

• A grid structure is used to capture the density of the dataset.

– A cluster is a set of connected dense cells

– e.g. STING

• Appealing features

– No assumption on the number of clusters

– Discovering clusters of arbitrary shapes

– Ability to handle outliers

• In case of streams

– The grid cells “constitute” the summary structure

– Update the grid structure as the stream proceeds

– DStream [CheTu07]
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Dstream [CheTu07]

• The online-offline rationale is followed:
– Online mapping of the new data into the grid

– Offline computation of grid density and clustering  of dense cells 
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Dstream: Summarizing the stream into the grid

• Data ageing (damped window model):
• D(x,t) =λt-tc, tc is the arrival time for point x, t is the current timepoint

• λ in (0,1) is the decay factor

• The density of a grid cell g at time t:

• The characteristic vector of a grid cell g is defined as:

(tg, tm, D, label, status)

• The grid density can be updated incrementally
tn: the new record arrival time; tl: the last record arrival

Last density  updatelast time g was removed 
from grid_listLast update time

the class label of 
the grid

{sporadic, normal}
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Dstream: Dense, Sparse and Transitional grid 
cells

• The density of a grid is constantly changing over time. 

• Dense grid cells

• Transitional grid cells

• Sparse grid cells

N: #cells in the grid
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DStream: the algorithm

Initialization

Grid update

Clustering
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Dstream: overview

+ DStream clusters large evolving data stream

+ It can discover clusters of arbitrary shapes

+ No assumption on the number of clusters

+ Distinguishes noise and outliers

+ The grid provides a level of abstraction over the data

– The choice of the grid parameters

– Fixed grid parameters
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Summary: stream clustering

• A very important task given the availability of streams nowadays

• Stream clustering algorithm maintain a valid clustering of the 
evolving stream population over time

• Two generic approaches
– Online maintenance of a final clustering model

– Online summarization of the stream and offline clustering

o Summaries!

• Different window models

• Evaluation is not straightforward 
 Internal measures of clustering quality (e.g., centroid’s radius)

 External measures of clustering quality (e.g., class labels) 

• Specialized approaches for text streams, high-dimensional 
streams.
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