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Spatial-Temporal Data

• Spatial-temporal data is a special case of time series where (one 
of) the information recorded at each time point is the location of 
an object

• A time series over spatial locations is also called “trajectory”

• Often, there is additional information on time slots (e.g. semantic 
information on the location such as “museum” or “airport” …)

• We review the some of the recent trends in mining spatial-
temporal (aka: spatio-temporal) data
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Spatial-Temporal Data

• In general, there are two major approaches to trajectory mining:
– Geometry-based methods consider only geometrical properties of 

trajectories; they focus on “location-based” similarity

– Semantic-based methods compute patterns based on the semantics of the 
data and are somewhat independent of the specific spatial locations
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Geometry-based approach
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Semantic-based approach
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Geometry-based Trajectory Mining

1. Convergence: At least m entities pass 
through the same circular region of radius 
r (regardless of time)

2. Recurrence: at least m entities visit a 
circular region at least k times
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Geometry-based Trajectory Mining
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3. Flock pattern: At least m entities are within a region of radius r and move in 
the same direction during a time interval >= s (e.g. traffic jam)

4. Leadership: At least m entities are within a circular region of radius r, they 
move in the same direction, and at least one of the entities is heading in that 
direction for at least t  time steps. (e.g. bird migration)

5. Encounter: At least m entities will be concurrently inside the same circular 
region of radius r, assuming they move with the same speed and direction. 
(e.g. traffic jam at some moment if cars keep moving in the same direction)
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Geometry-based Trajectory Mining

• Frequent patterns: frequent followed paths/frequent sequential 
patterns
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Geometry-based Trajectory Mining

• Computing frequent sequential patterns (e.g. Cao 2005):
1. Transforms each trajectory in a line with several segments

• A distance tolerance measure is defined

• All trajectory points inside this distance are

summarized in one segment

2. Similar segments are grouped

• Similarity is based on the angle and the spatial lenght of the segment

– Segments with same angle and length have their distance checked based on a given 
distance threshold 

• From the resulting groups, a medium segment is created

– From this segment a region is created

3. Frequent sequences of regions are computed considering a minSup
threshold
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Geometry-based Trajectory Mining

• Frequent mobile group patterns (Hwang 2005):
– A group pattern is a set of trajectories close to each other (with distance 

less than a given minDist)  for a minimal amount of time (minTime)

– Direction is not considered

– Use Apriori algorithm to compute frequent groups
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Geometry-based Trajectory Mining

• Co-location Patterns (Cao 2006):
– Co-location episodes in spatio-temporal data

– Trajectories are spatially close in a time window and move together
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Geometry-based Trajectory Mining

• Trajectory Clustering (Han 2007):
– Algorithm TraClus: Group sub-trajectories using a density based clustering 

algorithm

– 2 step approach

1. Partition each trajectory in line segments with a user defined length L

2. Cluster similar line segments based on spatial proximity of the time points

– Similarity of line segments: Euclidean distance between segments (sub-
trajectories); in theory: could be anything else

=> however, time is not considered in this approach
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Geometry-based Trajectory Mining

• Sequential Trajectory Pattern Mining (T-Patterns; Giannotti 2007):
– Considers both space and time

– Describes frequent behavior in terms of visited regions (ROIs)

– Three-step approach

1. Compute regions of interest (ROIs), i.e., regions with many trajectories 
(regardless of time)

2. Transform trajectory into sequence of ROIs: select trajectories intersecting at 
least two regions in a sequence and annotate the time traveled between 
regions

3. Compute T-Patterns, i.e., sequences of regions visited during the same time 
intervals
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Geometry-based Trajectory Mining

– Visualization of the idea of T-Patterns:

• Regions of interest (ROIs)

• Transform trajectory into a sequence of ROIs

• Sample pattern:
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Geometry-based Trajectory Mining

– Visualization of the approach

• Step 1: detection of ROIs

• Step 2: transformation

• Compute pattern:
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Semantic based method

• A Conceptual View on Trajectories (Spaccapietra 2008)
– Trajectory is a spatio-temporal object that has generic features 

(independent of the application) and semantic features (depend on the 
application

– Trajectory = travel in abstract space, e.g. 2D career space:

87Knowledge Discovery in Databases II: Sequence Data

institution

Time

position

(Assistant, Paris VI, 
1966-1972)

(Lecturer, Paris VI, 
1972-1983)

(Professor, Dijon, 
1983-1988)

(Professor, EPFL, 
1988-2010)

begin

end



DATABASE
SYSTEMS
GROUP

Semantic based method

• Semantic trajectories = geo data + trajectory data
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Semantic based method

• Difference between stops and moves
– STOPS

• Important parts of trajectories

• Where the moving object has stayed for a minimal amount of time

• Stops are application dependent

• Tourism application: Hotels, touristic places, airport, …

• Traffic Management Application: Traffic lights, roundabouts, big events…

– MOVES

• Are the parts that are not stops
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Semantic based method

• Stops and moves are independent of the application
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Semantic based method

• Geometric Patterns enriched by semantics (Bogorny 2008):
– Very little semantics in most trajectory mining approaches (geometry-

based approaches)

Thus:

– Patterns are purely geometrical

– Hard to interpret

Thus:

– Enrich geometric patterns with semantic information

(stimulated many approaches on how to add semantics to trajectories)
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Semantic based method

• Semantic Enrichment (Example):
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Semantic based method

• Stop and Move computation: SMoT (Alvares 2007a)

– A candidate stop C is a tuple (RC, C), where  

• RC is the geometry of the candidate stop (spatial feature type)  

• C is the minimal time duration

E.g. [Hotel - 3 hours]

– An application A is a finite set 

A = {C1 = (RC1 , C1 ), …, CN = (RCN , CN)} of candidate stops with non-

overlapping geometries RC1, … ,RCN

E.g. [Hotel - 3 hours, Museum – 1 hour]
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Semantic based method

• Stop and Move computation: SMoT (Alvares 2007a)

A stop of a trajectory T  with respect to an application A is a tuple (RCk, tj , tj+n),
such that a maximal subtrajectory of 

T {(xi, yi, ti) | (xi, yi) intersects RCk} = 
{(xj, yj, tj), (xj+1, yj+1, tj+1), ...,(xj+n, yj+n, tj+n)}

where RCk is the geometry of Ck and | tj+n – tj |  Ck

A move of T with respect to A is:
❖ a maximal contiguous subtrajectory of T :

❖ between the starting point of T and the first stop of T; OR 
❖ between two consecutive stops of T; OR
❖ between the last stop of T and the ending point of T;

❖ or the trajectory T itself, if T has no stops.
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Semantic based method

• Improvement: CB-SMoT (Palma 2008)
– Cluster based: cluster trajectories based on speed

– Low speed => important place

– Algorithm similar to SMoT but clusters trajectory points first and adds 
semantics to clusters
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Semantic based method

• Comparison: SMoT vs. CB-SMoT (Application: transportation)
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Readings on Spatial-Temporal Data

• Geometric based methods
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Readings on Spatial-Temporal Data

• Geometric based methods (cont.)

Laube, P. and Imfeld, S. (2002). Analyzing relative motion within groups of trackable moving point objects. 
In Egenhofer, M. J. and Mark, D. M., editors, GIScience, volume 2478 of Lecture Notes in Computer 
Science, pages 132–144. Springer.

Laube, P., Imfeld, S., and Weibel, R. (2005a). Discovering relative motion patterns in groups of moving point 
objects. International Journal of Geographical Information Science, 19(6):639–668.

Laube, P., van Kreveld, M., and Imfeld, S. (2005b). Finding REMO: Detecting Relative Motion Patterns in 
Geospatial Lifelines. Springer.

Lee, J.-G., Han, J., and Whang, K.-Y. (2007). Trajectory clustering: a partition-and-group framework. In 
Chan, C. Y., Ooi, B. C., and Zhou, A., editors, SIGMOD Conference, pages 593–604. ACM.

Li, Y., Han, J., and Yang, J. (2004). Clustering moving objects. In KDD ’04: Proceedings of the tenth ACM 
SIGKDD international conference on Knowledge discovery and data mining, pages 617–622, New York, 
NY, USA. ACM Press.

Nanni, M. and Pedreschi, D. (2006). Time-focused clustering of trajectories of moving objects. Journal of 
Intelligent Information Systems, 27(3):267–289.

98Knowledge Discovery in Databases II: Sequence Data



DATABASE
SYSTEMS
GROUP

Readings on Spatial-Temporal Data

• Geometric based methods (cont.)
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• Semantic based method
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