

Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme

Knowledge Discovery in Databases II

Summer Term 2017

Lecture 3: Sequence Data

Lectures : Prof. Dr. Peer Kröger, Yifeng Lu Tutorials: Yifeng Lu

Script © 2015, 2017 Eirini Ntoutsi, Matthias Schubert, Arthur Zimek, Peer Kröger, Yifeng Lu

http://www.dbs.ifi.lmu.de/cms/Knowledge_Discovery_in_Databases_II_(KDD_II)

1. Introduction

- 2. Sequence Data
- 3. Time Series Data

Sequence Data

- So far we dealt with mostly structured, "flat" data from relational tables that provide a snapshot of the data at a particular moment (OK, the data can be updated inducing an update of patterns as well ...)
- But very often, the world is different: just looking at a snapshot cannot reveal important insights into the (dynamics of) data
- Rather, we need to look at a sequences of snapshots of data to e.g. analyze:
 - How patterns are changing/evolving from one snapshot to the other
 - If certain patterns appear in sequential/periodical fashion
 - If there are "sequential" patterns

- ...

Sequence Data

- Sequence Data allow for measuring/monitoring phenomena over time (Time Series Data) or – more generally – in a given order (of sequential events) without a concrete notion of time
- Examples:
 - Sequence Data: Sequence of purchases
 - Sequential Pattern: Customers buying A are likely to by B within the next 4 transactions
 - Time Series Data: Stock rates over time
 - Pattern: find stocks with similar behavior (over the entire time frame or in a sub-interval of time)

1. Introduction

- 2. Sequence Data
- 3. Time Series Data

A sequence S of length n is a mapping of the index set I_n = {1,2, ..., n} into a domain O:

$$S: I_n \to O$$

- The set of all sequences of length n is $O^n = O^{I_n} = \{I_n \to O\}$
- The set of all sequences over domain O is $O^* = \{I_n \to O \mid n \in \mathbb{N}_0\}$
- Sequences can be classified by their domain
 - Categorical values (nominal values, alphabets, enumeration types)
 - Continuous values (real numbers)

• • •

Examples:
- Text data{a,...,Z,0,...9,...}*- Video dataimages*- Music datanotes*- Protein sequencesamino_acid* = {LEU, ARG,...}*- Gene sequencesnucleic_acid* = {C, G, A, T}*

• Time series are of course special types of sequences

- The most important question: how to account for the sequential nature of the data???
- We can use similarity models that do the job, e.g.:
- Hamming Distance
 - Simple approach similar to the Euclidean Distance on vector data
 - Naïve alignment of sequences
- Edit Distance
 - Transformation-based approach that measures the edit costs for transforming one sequence into another
 - Byproduct: (Optimal) alignment of sequences
- Longest Common Subsequences (LCSS)
 - Utilization of a third common basis sequence
 - Variant of the edit distance

Hamming Distance

- Hamming Distance counts the number of positions with different elements
 - It thus accounts for the fact that objects are "sequences of some symbols"
- Given two sequences $Q = (q_1, ..., q_n)$ and $S = (s_1, ..., s_n)$ of the same length, the Hamming Distance between Q and S is defined as:

$$D_{Hamming}(Q,S) = \sum_{i=1}^{n} \delta(q_i, s_i) \text{ with } \delta(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{else} \end{cases}$$

• Example:

Q	=	t	h	r	е	е	
			Х	Х		Х	
S	=	t	r	е	е	•	



Drawback:

- Very strict matching similar to the Euclidean Distance
- Similar subsequences are not considered (aligned appropriately)

• Consider the following sequences (in German):

$$Q = T \quad \ddot{U} \quad R \quad S \quad C \quad H \quad L \quad O \quad S \quad S$$

$$\implies D_{Hamming}(Q,S) = 4$$

$$S = T \quad O \quad R \quad S \quad C \quad H \quad U \quad S \quad S \quad .$$

$$Q = T \quad \ddot{U} \quad R \quad S \quad C \quad H \quad L \quad O \quad S \quad S$$

$$R = A \quad B \quad S \quad C \quad H \quad U \quad S \quad S \quad . \quad .$$

$$D_{Hamming}(Q, R) = 10$$

• Similarity of subsequences *SCHLOSS* and *SCHUSS* is not considered

Edit Distance [L66]

- Idea:
 - Dissimilarity between two sequences is defined as the *minimal* number of edit operations (insertions, deletions, substitutions) for transforming one sequence into another
- Example:
 - Given the following two sequences Q and S, two deletions (◊) and three substitutions (:) are necessary for the transformation
 - Five symbols are unmodified (|):

Q	=	Т	Ü	R	S	С	Η	L	0	S	S
		\diamond	:	:				\Diamond	:		
S	=		A	В	S	С	Η		U	S	S

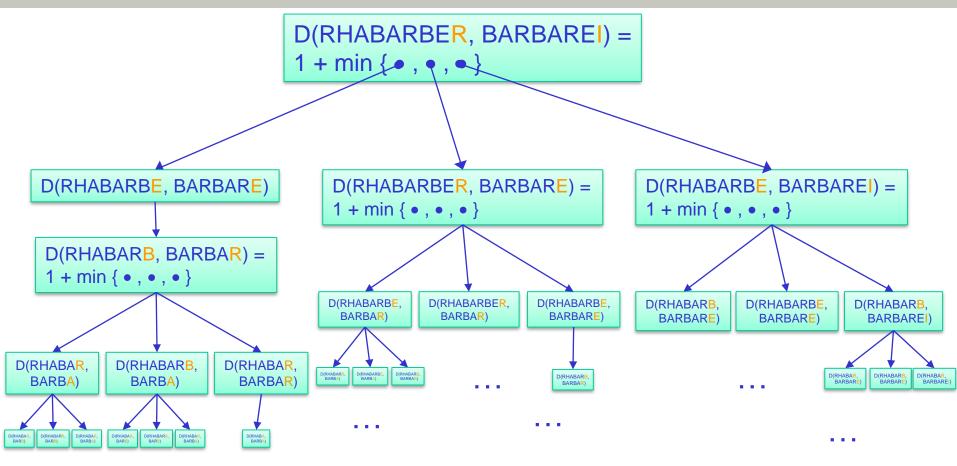
- $D_{Edit}(Q,S) = 5$
- The mapping between elements is called **optimal alignment** and the Edit Distance represents the **alignment cost**

- Given a sequence $Q = (q_1, ..., q_n)$ let $start(Q) = (q_1, ..., q_{n-1})$ denote the prefix of Q and $last(Q) = q_n$ the last element of Q.
- Given two sequences $Q = (q_1, ..., q_n)$ and $S = (s_1, ..., s_m)$, the **Edit Distance ED** of Q and S is defined as:

$$ED(Q,S) = \begin{cases} n & \text{if } m = 0\\ m & \text{if } n = 0\\ ED(start(Q), start(S)) & \text{if } last(Q) = last(S)\\ 1 + min \begin{cases} ED(start(Q), start(S)),\\ ED(q, start(S)),\\ ED(start(Q), S) \end{cases} & else \end{cases}$$

• Remark: if no insertions or deletions occur, the Edit Distance is equivalent to the Hamming Distance

Naïve Computation of the Edit Distance



....

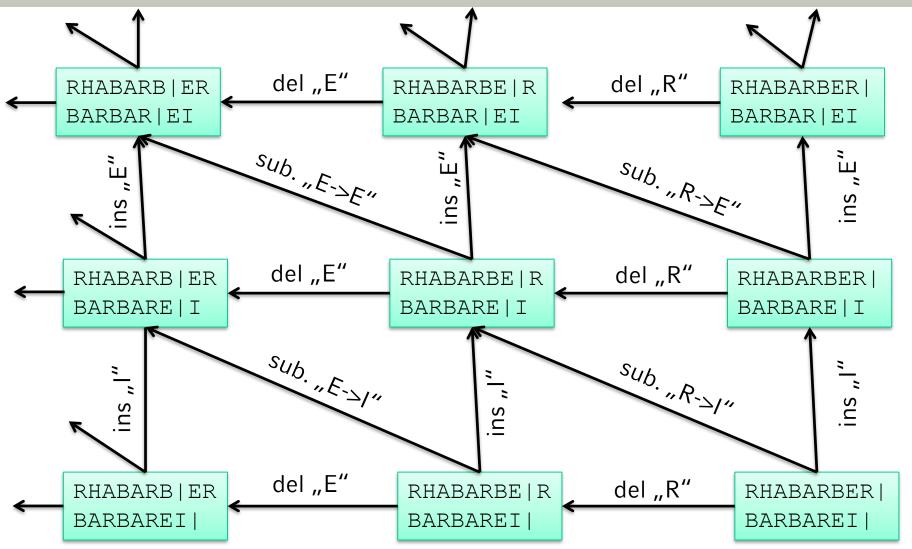
For sequences of lengths n, m, this tree has $\mathcal{O}(3^{n+m})$ nodes

Acceleration of Computation

• Analysis

- $\mathcal{O}(3^{n+m})$ function calls for sequences of lengths n, m
- Many calls appear repeatedly
- There are only $(m + 1) \cdot (n + 1) = O(m \cdot n)$ different recursive calls
- Solution
 - Store results of all calls: $\mathcal{O}(m \cdot n)$ space
 - Systematic evaluation with $\mathcal{O}(m \cdot n)$ operations
 - Scheme is called dynamic programming
- Acceleration (Example: m, n = 5, 50, 500)
 - 5 · 5 = 25 instead of 3¹⁰ = 59,049
 - 50 \cdot 50 = 2,500 instead of $3^{100} \approx 5,154 \cdot 10^{47}$
 - $-~500\cdot 500$ = 250,000 $\,$ instead of $3^{1000}\approx 1,322\cdot 10^{477}$

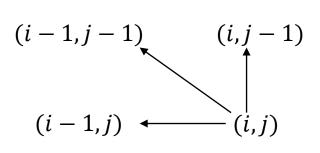
Dynamic Programming Scheme



Dynamic Programming

LMU

- Calculation scheme:
 - Horizontal step: $(i,j) \rightarrow (i-1,j)$
 - deletion of current character q_i in Q
 - Vertical step: $(i, j) \rightarrow (i, j-1)$
 - insertion of character s_i in Q at position i
 - **Diagonal step**: $(i, j) \rightarrow (i-1, j-1)$
 - substitution of current character q_i in Q and s_i in S



- All possible solutions, i.e. the Edit Distance on subsequences, can be stored within a matrix, following the paradigm of dynamic programming
- A cost minimal path through this matrix from (0,0) to (n, m) yields the Edit Distance (alignment cost and optimal alignment)

(Note the **non**-determinism: there may be several cost minimal paths/optimal alignments)

 Optimal alignment is obtained by backward reconstruction of the decisions made at every step along the optimal path (decisions can be stored during matrix construction)

Edit Distance: Example of Dynamic Programming

• Computation of the Edit Distance via dynamic programming:

	i	0	1	2	3	4	5	6	7	8	9	10			R S	5 C	Η		0	S S
j			Т	Ü	R	S	С	Η	L	0	S	S	: A				 H	\diamond	: U	S S
0		0	1	2	3	4	5	6	7	8	9	10		1			п		0	55
1	A	1	1-	-2	3	4	5	6	7	8	9	10	1							
2	В	2	2	2	3	4	5	6	7	8	9	10	1							
3	S	3	3	3	3	3	4	5	6	7	8	9	1							
4	C	4	4	4	4	4	3	4	5	6	7	8	1							
5	Н	5	5	5	5	5	4	3-	-4	5	6	7	1							
6	U	6	6	6	6	6	5	4	4	5	6	7	1							
7	S	7	7	7	7	6	6	5	5	5	5	6								
8	S	8	8	8	8	7	7	6	6	6	5	5								

Weighted Edit Distance

- Idea: Weighting of edit operations via a ground distance
 - Different costs for insertions, deletions, and substitutions
- Given two sequences $Q = (q_1, ..., q_n)$ and $S = (s_1, ..., s_m)$, the **Weighted Edit Distance w.r.t. a ground distance** δ between Q and S is defined as:

$$ED_{\delta}(Q,S) = \begin{cases} 0 & \text{if } n = m = 0\\ \sum_{i=1}^{n} \delta(q_{i}, \Diamond) & \text{if } m = 0\\ \sum_{i=1}^{m} \delta(\Diamond, s_{i}) & \text{if } n = 0\\ ED_{\delta}(\text{start}(Q), \text{start}(S)) & \text{if } \text{last}(Q) = \text{last}(S)\\ \text{min} \begin{cases} ED_{\delta}(\text{start}(Q), \text{start}(S)) + \delta(\text{last}(Q), \text{last}(S)), \\ ED_{\delta}(\text{start}(Q), S) + \delta(\text{last}(Q), \Diamond) & \text{else}\\ ED_{\delta}(\text{start}(Q), S) + \delta(\text{last}(Q), \Diamond) & \text{last}(Q) \end{cases}$$

- The optimal alignment of two sequences is not necessarily unique:
 - B
 A
 N
 A
 N
 A
 N
 A

 I
 I
 I
 C
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
- Edit Distance is a metric
- Weighted Edit Distance is a metric if the ground distance is a metric
- Computation time complexity of a single Edit Distance computation is in $\mathcal{O}(n \cdot m)$ for sequences of lengths n, m
- Common variant: First deletion of a symbol more expensive than repeated deletion (important in bioinformatics)

Longest Common Subsequence (LCSS) [CLR+09]

- Idea: Similarity between two sequences Q and S is defined as the length of a third sequence Z which contains elements of Q and S in the same order
 - The longer the sequence Z, the higher the similarity of Q and S and vice versa
- **Example** (DNA sequence):
 - Q: ACCGGTCGAGTGCGCGAAGCCGGCCGAA
 - S: GTCGTTCGGAATGCCGTTGCTCTGTAA
 - One possible solution:
 - Z: GTCGTCGGAAGCCGGCCGAA

Definition: Subsequence

- A sequence Z = (z₁,..., z_k) is a subsequence of sequence Q = (q₁,...q_n) if there exists a strictly increasing sequence i₁, i₂, ..., i_k of indices of Q such that ∀j = 1,2, ..., k it holds that q_{i_j} = z_j
- Example:
 - Let Q = (A, B, C, B, D, A, B) be a sequence
 - The sequence Z = (B, C, D, B) is a subsequence of Q
 - The corresponding index sequence is 2,3,5,7

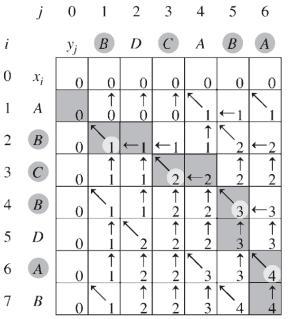
- A sequence $Z = (z_1, ..., z_k)$ is a **common subsequence** of two sequences $Q = (q_1, ..., q_n)$ and $S = (s_1, ..., s_m)$ if Z is a subsequence of both Q and S
- Example:
 - Let Q = (A, B, C, B, D, A, B) be a sequence
 - Let S = (B, D, C, A, B, A) be another sequence
 - The sequence Z = (B, C, A) is a common subsequence of Q and S
 - However, Z is not the longest common subsequence:
 - Z' = (B, C, B, A)
 - $Z^{\prime\prime} = (B, D, A, B)$
- Given two sequences Q = (q₁, ..., q_n) and S = (s₁, ..., s_m), the longest common subsequence problem is to find a maximum-length common subsequence Z = (z₁, ..., z_k) of Q and S

Given two sequences Q = (q₁, ... q_n) and S = (s₁, ..., s_m), the longest common subsequence (similarity measure) is defined as:

$$LCSS(Q,S) = \begin{cases} 0\\ LCSS(Start(Q),Start(S)) + 1\\ max \begin{cases} LCSS(Start(Q),S)\\ LCSS(Q,Start(S)) \end{cases} \end{cases}$$

if $n = 0 \lor m = 0$ if Last(Q) = Last(S)else 2 3 0 1 4 C(B)Di A y_i 0 x_i 0 0 0 0 0

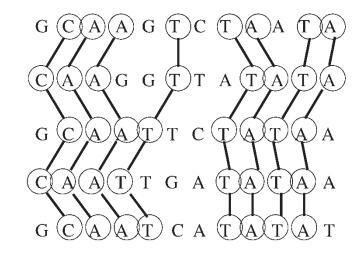
- **Properties**:
 - Computation similar to that of the Edit Distance
 - Exponential computation time complexity
 - Computation time complexity via dynamic programming lies in $\mathcal{O}(n \cdot m)$



- LCSS provides the length of the longest common subsequence
 - Highly dependent on the length of the analyzed sequences
 - Not a distance function
- Distance function based on LCSS between two sequences $Q = (q_1, ..., q_n)$ and $S = (s_1, ..., s_m)$:

$$D_{LCSS}(Q,S) = 1 - \frac{LCSS(Q,S)}{\min(n,m)}$$

- Generalization of LCSS [S08]:
 - Multiple alignment between several sequences
 - Complexity: O(2^kn^k) for k sequences and
 n = length of longest sequence



Mining Sequence Data

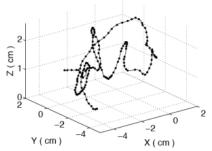
- Distance-based data mining
 - Use one of the similarity measures from above (or variants, or ...)
 - Clustering, outlier detection, classification of sequence data
 - Does not mine sequential patterns but only patterns of similar sequences
- Sequential pattern mining (see previous lecture)
 - Count the frequency of subsequences in the sequence objects and report the frequent ones (sequential patterns)
 - Relation to (generalization of) frequent item set mining, thus:
 - Algorithms very similar to frequent item set mining

1. Introduction

- 2. Sequence Data
- 3. Time Series Data

Time Series

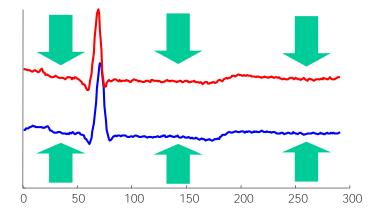
- Time series are a special type of sequences
 - Typically, values that are recorded over time
 - Index set I_n represents specific points in time
- Examples for **univariate time series**:
 - stock prices
 - audio data
 - temperature curves
 - ECG
 - amount of precipitation
- Examples for **multivariate time series**:
 - trajectories (spatial positions)
 - video data (e.g., color histograms)
 - combinations of sensor readings

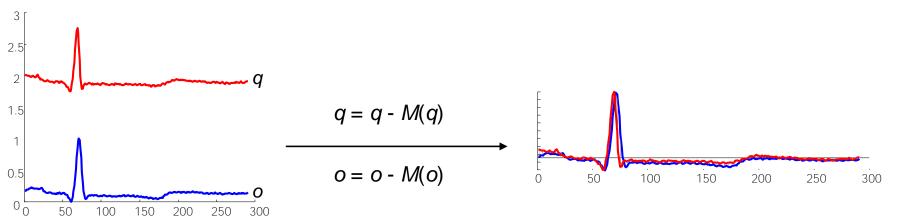


- Data Cleaning to remove artefacts, distortion, noise, ...
 - Offset Translation (aka "Shifting")
 - Time series are similar but have

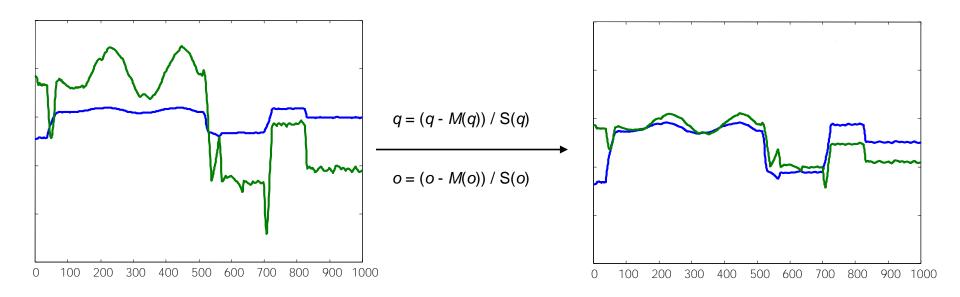
different offsets

• Example: move each time series by its mean M

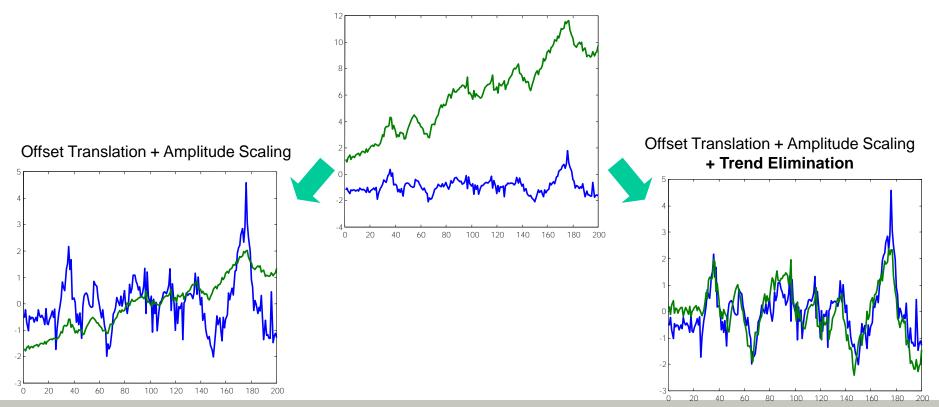




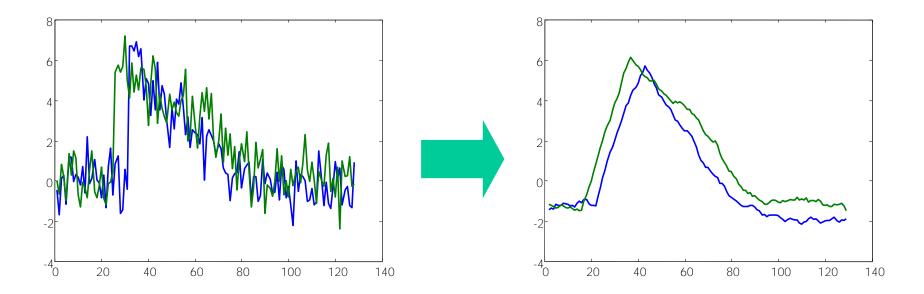
- Data Cleaning (cont.)
 - (Amplitude) Scaling
 - Time series have similar trends but have different amplitudes
 - Example: move each time series by its mean *M* and normalize the amplitude by its standard deviation *S* (this is also called "normalization" = shifting + scaling)



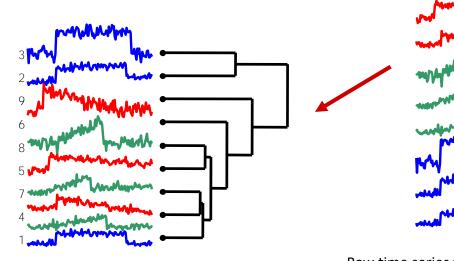
- Data Cleaning (cont.)
 - (Linear) Trend Elimination
 - Similar time series with different trends
 - Determine regression line and move each time series by its regression line
 - Gets complex when an object features more than one trend



- Data Cleaning (cont.)
 - Noise Reduction
 - Similar time series with large noise portion
 - Smoothing: normalization over a range of values (sliding window), e.g. replace *i*-th value v_i with mean value of 2k adjacent values [v_{i-k}, ..., v_i, ..., v_i, ..., v_{i+k}]



- Data Cleaning: Summary
 - The above mentioned cleaning procedures are common samples (i.e. there are many more types of distortions that might be of interest to be removed)
 - Which cleaning step should be taken? => That heavily depends on the application
 - Example:



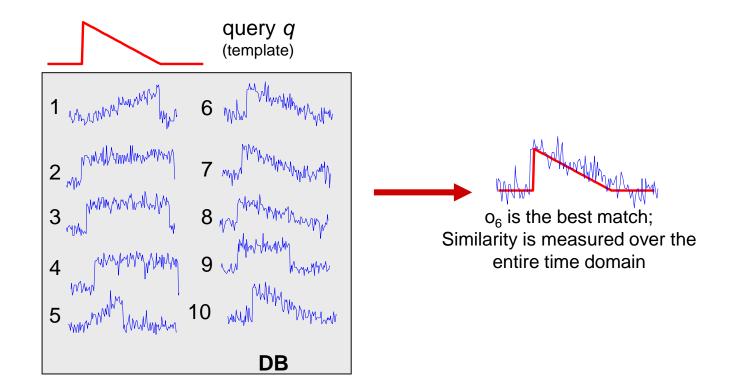
Hierarchical (Single-Link) clustering of raw data using euclidean distance Raw time series from three classes (see color coding)

Hierarchical (Single-Link) clustering of raw data using euclidean distance after doing noise reduction, trend elimination, scaling using std. dev. and shifting using mean

- Some example similarity queries for time series databases [AFS93]:
 - Identify companies with similar pattern of growth
 - Determine products with similar selling patterns
 - Discover stocks with similar movement in stock prices
 - Find if a musical score is similar to one of the copyrighted scores
- Different types of similarity notions:
 - Whole matching:
 - Time series are usually assumed to all have the same length
 - Similarity = matching entire time series
 - Subsequence matching:
 - Time series may have different lengths
 - Similarity = find the subsequence that has the best match

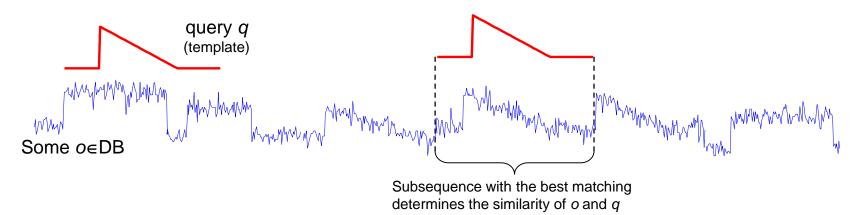
Similarity Notions for Time Series

- Illustration with a query template q
 - Whole matching of q to a database of time series



Similarity Notions for Time Series

- Illustration with a query template q
 - **Subsequence matching** of *q* to a database of time series



- Variant: the length of the (best matching) subsequence is fixed *a priori* to *n*
- Use a sliding window of width n (contents of each window can e.g. be materialized)

- Popular similarity measures (among others):
 - Minkowski Distances
 - Uniform Time Warping
 - Dynamic Time Warping
 - Longest Common Subsequences for Time Series
 - Edit Distance on Real Sequence
 - Edit Distance with Real Penalty
 - Shape-based Distance

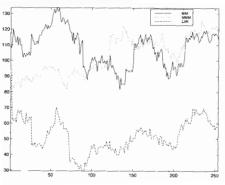
- Idea: Representation of a time series $X = (x_1, ..., x_n)$ as a n-dimensional Euclidean vector
- Given two time series $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_n)$ of the same length, the Minkowski Distance can be utilized as follows:

$$\mathcal{L}_p(X,Y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}$$

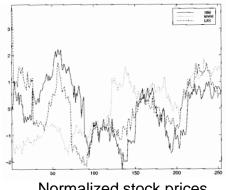
- Properties:
 - p = 1: dissimilarities are not emphasized
 - p = 2: to be preferred [AFS93]
 - $p = \infty$: distance is attributed to the most dissimilar entries of the time series
- All these variants of the Minkowski Distances are
 - sensitive w.r.t. variations on the time axis
 - are limited to time series having the same baseline, scale, and length

Normalization of Time Series of Fixed Length [SZ04] (1)

- Problems of the Euclidean Distance
 - Two time series can be very similar even though they have different baselines or amplitude scales
- Solution: Normalization of time series as explained above (see: preprocessing), e.g.
 - Shifting by the average value (offset translation)
 - Scaling by the standard deviation (amplitude scaling)



Stock price of IBM, LXK, MMM



Normalized stock prices

Normalization of Time Series of Fixed Length [M10] (2)

- What we have learned so far is termed **Z-Score Normalization** of a time series $X = (x_1, ..., x_n)$:
 - shifting by the mean and scaling by the standard deviation

-
$$\hat{X} = \frac{X - avg(X)}{std(X)}$$

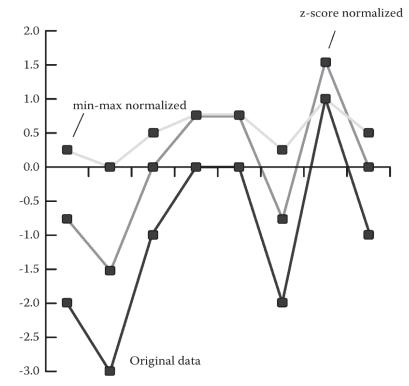
with $avg(X) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$
and $std(X) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - avg(X))^2}$

• Alternative: **Min-max normalization** of a time series $X = (x_1, ..., x_n)$:

-
$$\hat{X} = \frac{X - Max(X)}{Max(X) - Min(X)} (newMax - newMin) + newMin$$

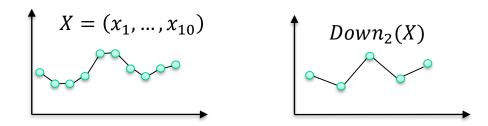
- Properties:
 - Z-Score normalization is more robust w.r.t. noise in the data
 - Min-max normalization can be dominated by outliers.

• Example of different normalizations [M10]



• In most cases, normalization is necessary and should be done before analysis!

- Until now: shifting and scaling is performed on the amplitude axis
- For comparing time series with different lengths, we need scaling of a time series $X = (x_1, ..., x_n)$ along the time axis as follows:
 - ω-upsampling:
 - resolution is increased
 - $Up_{\omega}(x_1, \dots, x_n) = (z_1, \dots, z_{n\omega})$ with $z_i = x_{\lfloor \frac{i}{\omega} \rfloor}$ and $i = 1 \dots n\omega$
 - every x_i is repeated ω times
 - ω-downsampling:
 - resolution is decreased
 - $Down_{\omega}(x_1, \dots, x_n) = (z_1, \dots, z_{\lfloor \frac{n}{\omega} \rfloor})$ with $z_i = x_{i\omega}$ and $i = 1 \dots \lfloor \frac{n}{\omega} \rfloor$
 - only multiples of ω are used, i.e. $i\cdot\omega$



Uniform Time Warping (UTW)

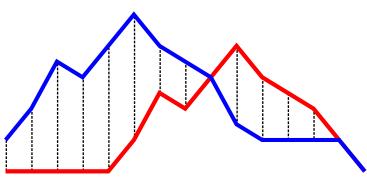
- Idea: Scale both time series along the time axis to the same length and utilize the Euclidean Distance
- Given two time series $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_m)$, the **Uniform Time Warping Distance** between X and Y is defined as:

$$D_{UTW}^{2}(X,Y) = \frac{L_{2}^{2}(Up_{m}(X), Up_{n}(X))}{m \cdot n}$$
$$= \frac{\sum_{i=1}^{m \cdot n} (x_{[i/m]} - y_{[i/n]})^{2}}{m \cdot n}$$

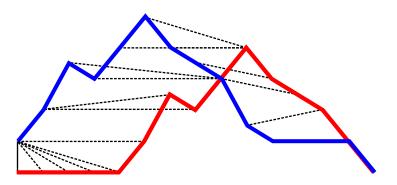
• Instead of upsampling X and Y with m and n, respectively, one could also use their lowest common multiple LCM(m, n)

Dynamic Time Warping

- Idea: Allow local (=dynamic) stretching of two time series in order to minimize the distance between them
- Allows comparison of time series of different lengths
- Possible applications:
 - Comparison of hummed songs, handwritten documents, biometric data
- Comparison of the Euclidean Distance, which epitomizes a point-to-point distance, and Dynamic Time Warping



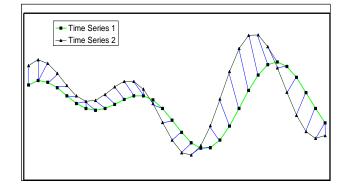
Euclidean Distance



Dynamic Time Warping

Dynamic Time Warping: Formal Definition

- Given a time series $X = (x_1, \dots, x_n)$, let
 - $Start(X) = (x_1, ..., x_{n-1})$ define the prefix of X
 - $Last(X) = x_n$ define the last element
 - $\emptyset = ()$ define an empty time series



Given two time series X = (x₁, ..., x_n) and Y = (y₁, ..., y_m) and a ground distance δ, the **Dynamic Time Warping Distance** between X and Y is recursively defined as:

$$\begin{aligned} \mathrm{DTW}_{\delta,p}(\emptyset,\emptyset) &= 0\\ \mathrm{DTW}_{\delta,p}(X,\emptyset) &= \mathrm{DTW}_{\delta,p}(\emptyset,Y) = \infty \text{ for } X, Y \neq \emptyset \\ \\ \mathrm{DTW}_{\delta,p}(X,Y) &= \left(\delta \big(Last(X), Last(Y) \big)^p + \left(\min \left\{ \begin{array}{c} \mathrm{DTW}_{\delta,p} \big(Start(X), Start(Y) \big) \\ \mathrm{DTW}_{\delta,p} \big(X, Start(Y) \big) \\ \mathrm{DTW}_{\delta,p} \big(Start(X), Y \big) \end{array} \right\} \right)^p \right)^{\frac{1}{p}} \end{aligned}$$

Dynamic Time Warping: Variation of Parameter *p*

- Variation of parameter $p \in \mathbb{R}^+$ yields the following instances
 - p = 1: $DTW_{\delta,1}(X,Y) = \delta(Last(X),Last(Y)) + \min \begin{cases} DTW_{\delta,1}(Start(X),Start(Y)) \\ DTW_{\delta,1}(X,Start(Y)) \\ DTW_{\delta,1}(Start(X),Y) \end{cases}$

$$- p = 2 \text{ (Euclidean variant):}$$

$$DTW_{\delta,2}(X,Y) = \sqrt{\delta(Last(X),Last(Y))^{2} + \left(\min \begin{cases} DTW_{\delta,2}(Start(X),Start(Y)) \\ DTW_{\delta,2}(X,Start(Y)) \\ DTW_{\delta,2}(Start(X),Y) \end{cases}} \right)}^{2}$$

$$- p \to \infty:$$

$$\left(DTW_{\delta,\infty}(Start(X),Start(Y))\right)$$

$$DTW_{\delta,\infty}(X,Y) = \max\left\{\delta(Last(X),Last(Y)),\min\left\{\begin{array}{l}DTW_{\delta,\infty}(Start(X),Start(Y))\\DTW_{\delta,\infty}(X,Start(Y))\\DTW_{\delta,\infty}(Start(X),Y)\end{array}\right\}\right\}$$

• Termination cases are the same as on the previous slide

• Time series are typically real-valued, thus may often choose the ground distance δ as the absolute difference:

$$\delta(x_i, y_i) = |x_i - y_i| = L_1(x_i, y_i)$$

 One of the most prominent variant of Dynamic Time Warping Distance is the squared Euclidean variant with Manhattan ground distance:

$$DTW^{2}(X,Y) = DTW^{2}_{L_{1},2}(X,Y)$$

$$= |Last(X) - Last(Y)|^{2} + \min \begin{cases} DTW^{2}(Start(X),Start(Y)) \\ DTW^{2}(X,Start(Y)) \\ DTW^{2}(Start(X),Y) \end{cases}$$

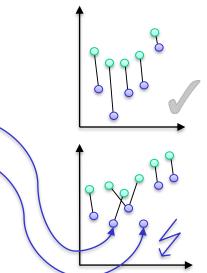
- Dynamic Time Warping aligns two time series to each other
- This element-wise alignment between two time series $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_m)$ can be expressed by a **warping path** P of indices:

$$P = p_1, \dots, p_L = (p_1^X, p_1^Y), \dots, (p_L^X, p_L^Y)$$

where $p_i^X \in [1, n]$ and $p_i^Y \in [1, m]$ denote the indices within the times series X and Y

- Properties of a warping path *P*:
 - a) Boundary condition: $p_1 = (1,1)$ and $p_L = (n,m)$
 - b) Monotonicity: $p_t^X p_{t-1}^X \ge 0$ and $p_t^Y p_{t-1}^Y \ge 0$
 - c) Continuousness: $p_t^X p_{t-1}^X \le 1$ and $p_t^Y p_{t-1}^Y \le 1$
 - d) The length |P| is bounded by:

 $\max(n,m) \le |P| \le n+m-1$



Dynamic Time Warping: Warping Path cont'd

- Let \mathcal{P} denote the set of all paths satisfying constraints a) to d)
- The size of \mathcal{P} is exponential
- Let the **cost of a path** $P = p_1, ..., p_L = (p_1^X, p_1^Y), ..., (p_L^X, p_L^Y)$ between two time series $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_m)$ be defined as: $cost(P, X, Y) = \sum_{k=1}^{L} |x_{kk} - y_{kk}|^2$

$$\sum_{i=1}^{j} |p_i| | p_i|$$

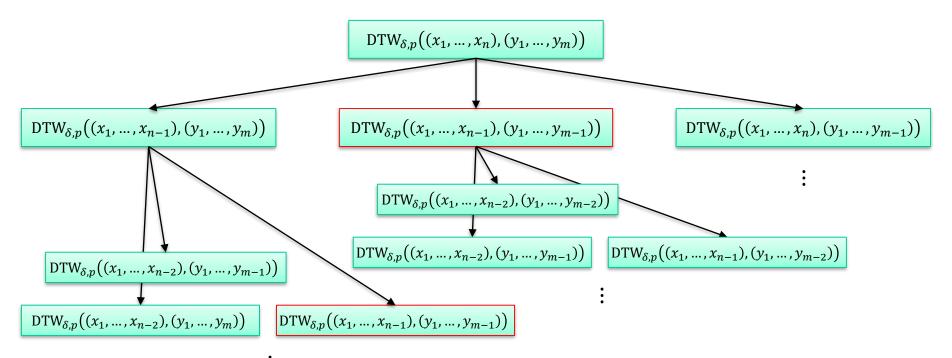
• $DTW^2(X, Y)$ can be defined by the path with the minimal cost:

$$DTW^{2}(X,Y) = \min_{P \in \mathcal{P}} cost(P,X,Y)$$

• For time series with the same length n, the warping path P = (1,1), ..., (n,n) yields the Euclidean Distance

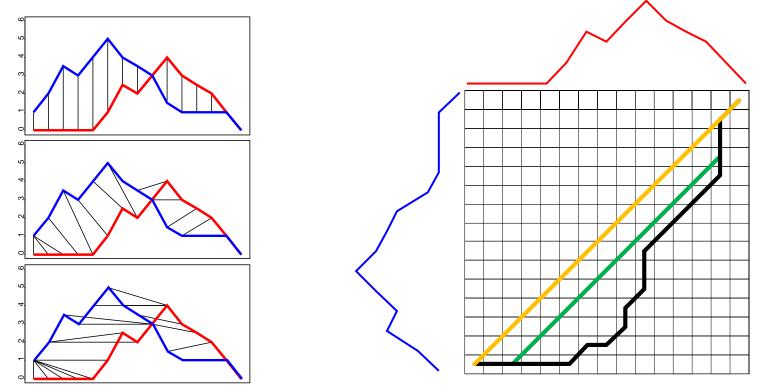
Naïve Computation of Dynamic Time Warping

• Recursive computation of $DTW_{\delta,p}$ between two time series $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_m)$:



• Computation time complexity lies in $\mathcal{O}(3^{tree \ height}) = \mathcal{O}(3^{n+m})$

 Any path P between two times series X = (x₁, ..., x_n) and Y = (y₁, ..., y_m) can be expressed as a path in a n × m matrix:



• This matrix is utilized for computing the DTW by Dynamic Programming

- DTW does not satisfy the identity of indiscernibles:
 - Time series *X*:

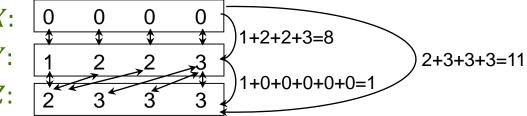
– Time series Y:

 1
 2
 2

 1
 1
 1

 $\Rightarrow DTW(X,Y) = 0$

- DTW does not satisfy the triangle inequality:
 - Time series *X*:
 - Time series *Y*:
 - Time series Z:



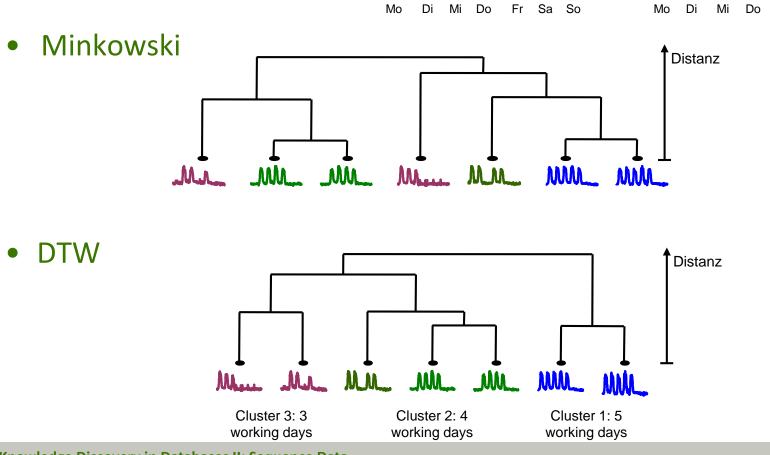
 $\begin{array}{rcl} DTW(X,Z) &\leq & DTW(X,Y) &+ & DTW(Y,Z) \\ 11 &\leq & 8 &+ & 1 \end{array}$

• Reason: replication of elements

Minkowski vs DTW

Fr Sa So

Comparison on time series that measure the daily network traffic of a company, e.g.:



DTW for Trajectories / Multivariate Time Series [VHG+03]

- Up to now: Time series over real numbers
 - Ground distance δ between two elements x_i, y_i of time series X, Y can be chosen as absolute difference:

$$\delta(x_i, y_i) = |x_i - y_i|$$

- Application of DTW to trajectories
 - Trajectories are time series over multidimensional objects, e.g.:

$$(y_1), (x_2, y_2), \dots, (x_n, y_n)$$

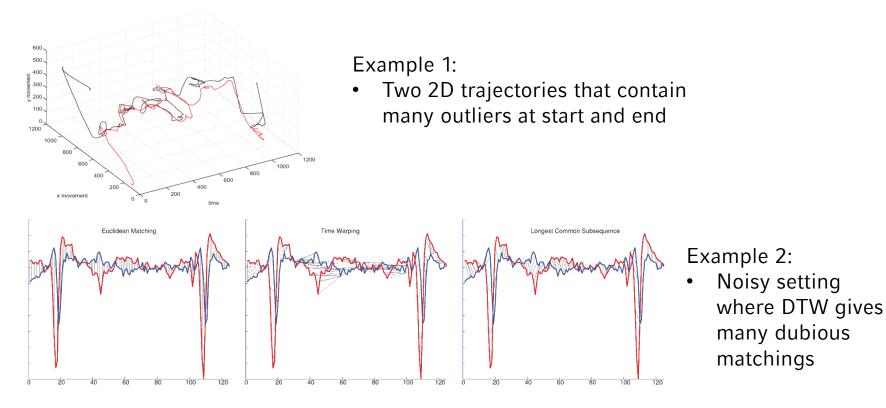
ent of temporally
modes (L_1, L_2, L_∞)
 (y_i) and (x_j, y_j)
multidimensional
orward

$$X = ((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n))$$

- Necessary: measureme ordered points in space
- Different ground distan for comparison of (x_i, y)
- Adaptation of DTW to r time series is straightfo

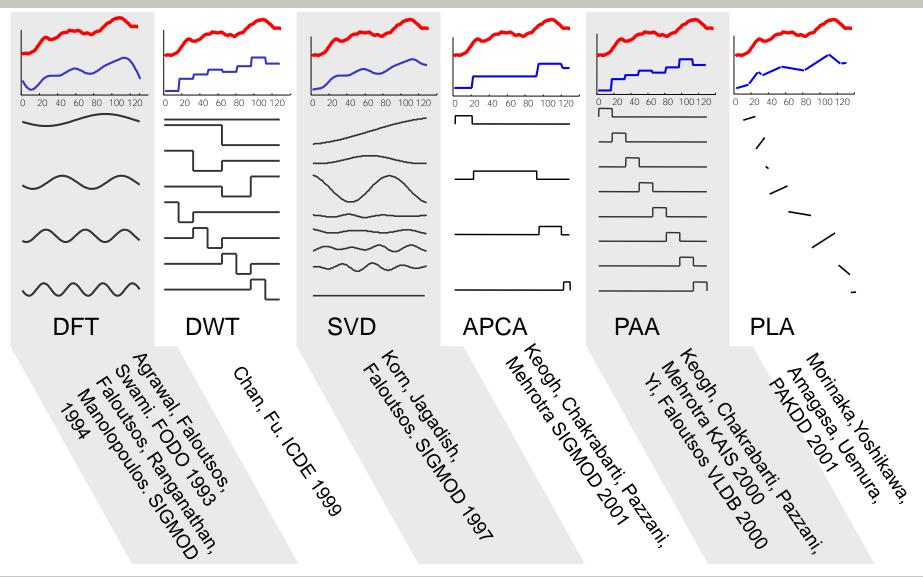
Longest Common Subsequence for Time Series [VKG02, VHG+03]

- Dynamic Time Warping is sensitive to outliers and noise
- Solution: extending LCSS to time series
- A measure tolerant to gaps in the two compared time series

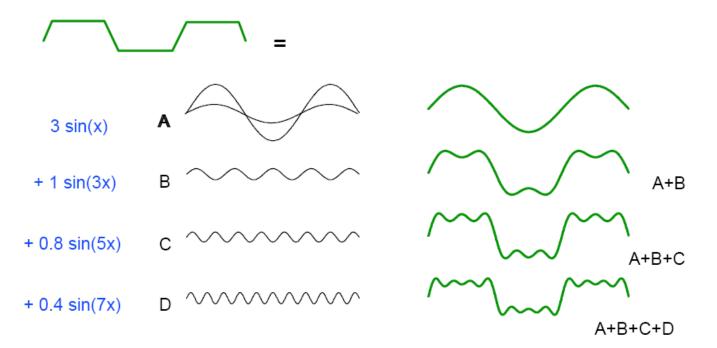


- Instead of directly working with the entire time series, we can also extract features from them
- Many feature extraction techniques exist that basically follow two different purposes:
 - Many of them aim at representing time series in a compact way (e.g. as a "shorter" approximation of the original time series) with minimum loss of modelling error
 - => this is mostly done for performance considerations
 - => approach is closely related to dimensionality reduction/feature selection Examples covered here: DFT, DTW, SVD, APCA, PAA, PLA
 - Other model specific properties of the time series relevant to a given application
 Example covered here: threshold-based modelling

Compact Representations: Overview



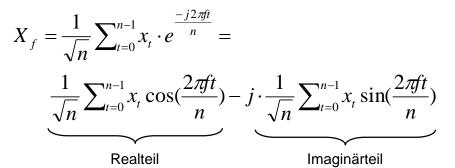
- Discrete Fourier Transformation (DFT)
 - Idea:
 - Describe a pereodical function as a weighted sum of periodical base functions with varying frequency
 - Base functions here: sin und cos
 - Example:



Basic foundation: Fouriers Theorem

Any periodic function can be represented by a sum of sin- and cos-functions of different frequency

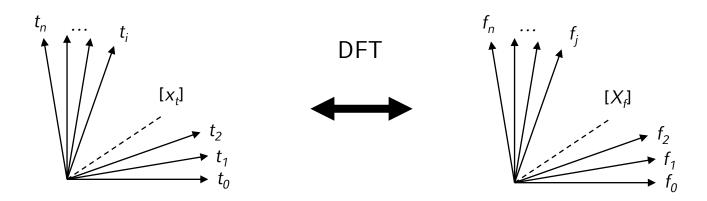
- DFT does not "change" the function but simply finds a different equivalent representation (and DFT can be reversed)
- Formally:
 - Let $x = [x_t]$, t = 0, ..., n 1 be a time series of length n
 - DFT transforms x into $X = [X_f]$ of n complex numbers with frequencies f = 0, ..., n 1 such that



where $j^2 = -1$.

- » Realteil is the portion of cosine in frequency f
- » Imaginärteil is the portion of sinus in frequency f

• DFT can be interpreted as a transformation of the bais vectors (like e.g. PCA):



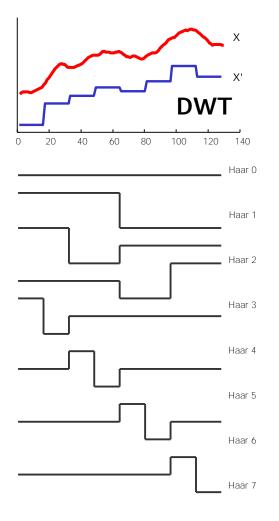
- The new axis represent the frequencies
- But how does that help?
 - So far, we transformed an *n*-dimensional time series into an *n*-dimensional vector ...
- Well first of all, it holds that the euclidean distance is preserved after DFT, i.e. || x y ||²
 = || X Y ||²

• This follows from Parseval's theorem (and the linearity of DFT) which states that the energy of a sequence (= sum of squared amplitudes $E(x) = ||x||^2 = \sum_{t=0}^{n-1} |x_t|^2$) is preserved, i.e.:

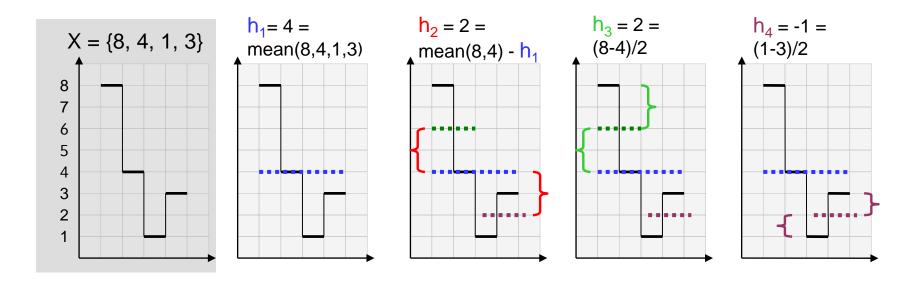
$$\sum_{t=0}^{n-1} |x_t|^2 = \sum_{t=0}^{n-1} |X_f|^2$$

- Now comes the important trick: in practice, the low frequencies (first components) have the highest impact, i.e. contain the most information
- Focusing on the first c coeficients is a good choice if we want to reduce the "dimensionality" of a sequence
- Since || x y ||² = || X Y ||² holds, using only c components instead of n yields a lower bounding approximation of the Euclidean Distance
- This approximation will be better when using DFT componenents instead of original time stamps

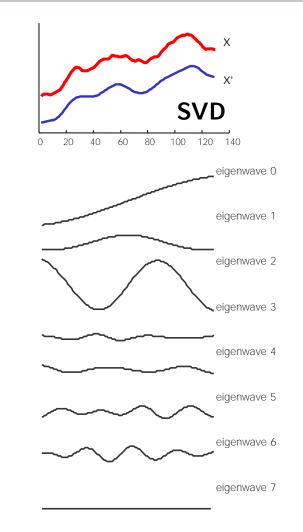
- Discrete Wavelet Transformation (DWT)
 - Idea:
 - Represent a time series as a linear combination of base functions (Wavelet-functions)
 - Typically, Haar-Wavelets are used
 - Properties:
 - The more stationary the time series is, the better is the approximation with fewer components
 - Distance on DWT components also lower bounds Euclidean and DTW distance on original tijme series
 - Time series are restricted to be of length 2ⁱ (for any i)



- Example:
 - Stepwise transformation of time series x = {8,4,1,3} into Haar Wavelet representation H = [4,2,2,-1]

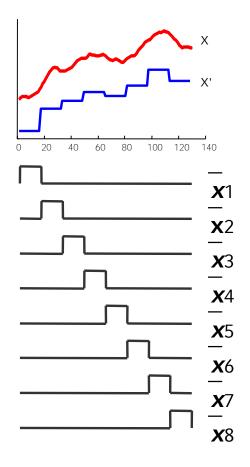


- Singular Value Decomposition (SVD)
 - Idea:
 - Instead of sinus/cosine use Eigen Waves
 - Properties:
 - Minimizes the quadratic approximation error (like PCA and SVD on high dimensional data)
 - The semantics of the components of SVD depends on the actual data while DFT (sin/cos) and DWT (const) are not data dependent
 - In text mining and Information Retrieval, SVD as a feature extraction technique is also know as "Latent Semantic Indexing"



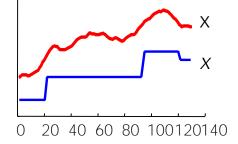
Compact Representations: PAA

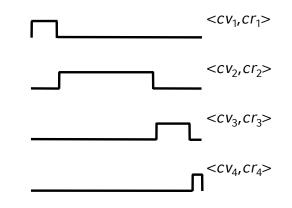
- Piecewise Aggregate Approximation (PAA)
 - Idea:
 - Transform time series into a sequence of boxfunctions
 - Each box has the same length and approximates the interval by the mean.
 - Properties
 - Lower bounding property
 - Time series may have arbitrary length



Compact Representations: APCA

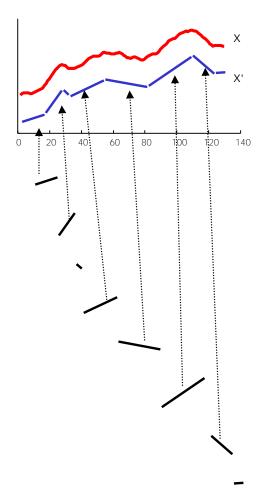
- Extension: Adaptive Piecewise Constant Approximation (APCA)
 - Motivation
 - Time series may have time intervals with a small amount details (small amplitude) and intervals with a large amount of details (large amplitude)
 - PAA cannot account for varying amounts of detail
 - Idea
 - Use boxes of variable length
 - Each segment now requires 2 paramters





Compact Representations: PLA

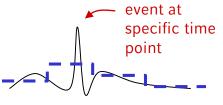
- Piecewise Linear Approximation (PLA)
 - Idea
 - Transform time series into a sequence of line segments
 s = (length, height_{start}, height_{end})
 - Two consectutive segments need not to be connected
 - Proterties
 - Good approximation dependents on #segments
 - Each component (segment) is a rich approximation but requires more parameters
 - Lower bounds Euclidean and DTW



• An example of a specific feature transformation to model a special notion of similarity of time series is "threshold-based similarity"

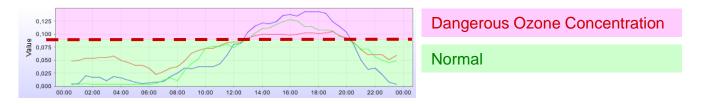
[Assfalg, Kriegel, Kröger, Kunath, Pryakhin, Renz. Proc. 10th Int. Conf. on Extending Database Technology (EDBT), 2006]

- Basic Idea:
 - In some applications, only significant "events" that are defined by certain amplitudes (or amplitude values) are interesting
 - So far, the feature extraction extracts features modeling certain properties of time intervals but not of amplitude intervals

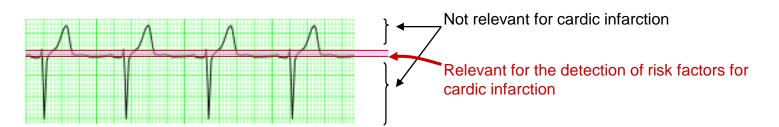


Aggreagtion over time

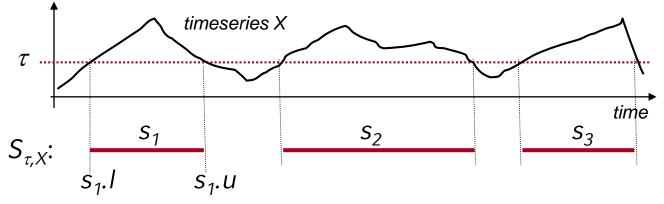
- Sample Applications
 - Environmental Science: analyzing critical ozone concentrations?
 - Find cluster of regions (time series) that exceed the allowed threshold in similar time intervals



- Medical diagnosis: potential for cardiac infarction?
 - Find clusters of heart rates by focusing on the relevant amplitude intervals



- Similarity Model
 - Time series $X = \langle (x_i, t_i): i = 1..N \rangle$ is transformed into a sequence of intervals $S_{\tau, X} = \{s_j: j = 1..M\}$, such that: $\forall t \in T : (\exists s_j \in S_{\tau, X} : s_j.l < t < s_j.u) \Leftrightarrow x(t) > \tau$.

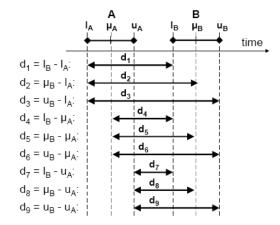


• Similarity of time series = similarity of sequences of intervals

- Similarity between sequences of intervals?
- First: distance on intervals?
 - Euclidean distance on I- and u-values:

$$d_{\rm int}(s_1, s_2) = \sqrt{(l_1 - l_2)^2 + (u_1 - u_2)^2}$$

where $s_1 = (I_1, u_1)$ und $s_2 = (I_2, u_2)$



• Use sum of minimum distance between two sequences of intervals S_X und S_Y

$$d_{TS}(S_X, S_Y) = \frac{1}{2} \cdot \left(\underbrace{\frac{1}{|S_X|} \cdot \sum_{s \in S_X} \min_{t \in S_Y} d_{int}(s, t)}_{S_X} + \underbrace{\frac{1}{|S_Y|} \cdot \sum_{t \in S_Y} \min_{s \in S_X} d_{int}(t, s)}_{S_X} - \underbrace{S_Y} \right)$$

Feature Extraction from Time Series

- Round-up:
 - Feature extraction method serve the purpose of
 - Finding a compact representation of the original time series (mostly for performance reasons)
 - Compact representations can be used for approximate similarity computations
 - Some have bounding properties (e.g. lower bounding the exact distance/similarity) that can be used for indexing/pruning

or

Modeling a specialized notion of similarity of a time series for a given application

Spatial-Temporal Data

- Geometric based method
- Semantic based method