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So far we dealt with mostly structured, “flat” data from relational
tables that provide a snapshot of the data at a particular moment
(OK, the data can be updated inducing an update of patterns as
well ...)

But very often, the world is different: just looking at a snapshot
cannot reveal important insights into the (dynamics of) data

Rather, we need to look at a sequences of snapshots of data to
e.g. analyze:

— How patterns are changing/evolving from one snapshot to the other

— If certain patterns appear in sequential/periodical fashion

II)

— If there are “sequential” patterns

Knowledge Discovery in Databases Il: Sequence Data



e Sequence Data allow for measuring/monitoring phenomena over
time (Time Series Data) or — more generally —in a given order (of
sequential events) without a concrete notion of time

e Examples:
— Sequence Data: Sequence of purchases

— Sequential Pattern: Customers buying A are likely to by B within the next 4
transactions

— Time Series Data: Stock rates over time

— Pattern: find stocks with similar behavior (over the entire time frame orin a
sub-interval of time)



1. Introduction

2. Sequence Data

3. Time Series Data




e Asequence S of length n is a mapping of the index set I, =
{1,2,...,n} into a domain O:
S:I, - 0
e The set of all sequences of length nis 0" = 0'» = {I, - 0}
e The set of all sequences over domain 0 is 0* = {I,, » O | n € Ny}

e Sequences can be classified by their domain
— Categorical values (nominal values, alphabets, enumeration types)
— Continuous values (real numbers)




e Examples:

— Text data {a,..,Z,0,...9,..}*

— Video data images”

— Music data notes”

— Protein sequences amino_acid* = {LEU, ARG, ...} e ,.:
— Gene sequences nucleic_acid* = {C,G,A, T}* 5 SESnRRE =

ol

e Time series are of course special types of sequences



e The most important question: how to account for the sequential nature of the
data???

e We can use similarity models that do the job, e.g.:
e Hamming Distance

— Simple approach similar to the Euclidean Distance on vector data
— Naive alignment of sequences

e Edit Distance

— Transformation-based approach that measures the edit costs for transforming one sequence
into another

— Byproduct: (Optimal) alignment of sequences
e Longest Common Subsequences (LCSS)

— Utilization of a third common basis sequence
— Variant of the edit distance



Hamming Distance counts the number of positions with different elements
— It thus accounts for the fact that objects are “sequences of some symbols”

Given two sequences Q = (q4, ..., q,) and S = (sq, ..., S,,) of the same length,
the Hamming Distance between Q and S is defined as:

DHamming(QrS) - z 5(ql~, Si) with 5(x,y) = {0 ifx =Yy

1 else
i=1
Example:
Q=t hree
| x X | X | = match, x = mismatch
S =t ree.
— DHamming(Q: §)=3
Drawback:

— Very strict matching similar to the Euclidean Distance
— Similar subsequences are not considered (aligned appropriately)



e Consider the following sequences (in German):

Q = T UR S C HL 0 S S

— DHamming(Q:S)=4
S = T O R S C H U S S
Q = T UR S C HL 0 S S

— DHamming(Q: R) =10
R = A B S C H U S S

e Similarity of subsequences SCHLOSS and SCHUSS is not considered



e |dea:

— Dissimilarity between two sequences is defined as the minimal number of edit
operations (insertions, deletions, substitutions) for transforming one sequence into
another

e Example:

— Given the following two sequences Q and S, two deletions (0) and three
substitutions (:) are necessary for the transformation

— Five symbols are unmodified (|):
A o
S C

T T =

S S
S = A B Uu s s

- DEdit(Qr S) =5
e The mapping between elements is called optimal alignment and the Edit
Distance represents the alignment cost



e Given asequence Q = (qq, ..., q,) let start(Q) = (q4, ..., q,—1) denote the
prefix of Q and last(Q) = g,, the last element of Q.

e Given two sequences Q = (q4, ..., q,) and S = (s4, ..., S;,), the Edit Distance
ED of Q and S is defined as:

( n ifm=0
m ifn=20
ED(start(Q),Start(S)) if last(Q) = last(S)
ED(Q,5) = ED(Start(Q),Start(S)),
1+ min ED(Q,gtart(s)), else
L ED(start(Q),S)

e Remark: if no insertions or deletions occur, the Edit Distance is equivalent to
the Hamming Distance
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e Analysis
O(3™*™) function calls for sequences of lengths n, m

— Many calls appear repeatedly
— Thereareonly(m+1)-(n+1) =0(m-n)
different recursive calls
e Solution
— Store results of all calls: O(m - n) space
— Systematic evaluation with O(m - n) operations
— Scheme is called dynamic programming
e Acceleration (Example:m,n = 5,50, 500)
- 5.5 = 25 instead of 310 =59,049
— 50-50 = 2,500 instead of3100 x5 154 .10%
— 500 -500 = 250,000 instead of 31000~ 1,322 . 104"/
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e (Calculation scheme:
— Horizontal step: (i,j) — (i-1,))
e deletion of current character g; in Q
— Vertical step: (i,j) — (i,j-1)
e insertion of character s; in Q at position i
— Diagonal step: (i,j) — (i-1,j-1)
e substitution of current character q; in Q and s; in S
e All possible solutions, i.e. the Edit Distance on subsequences, can be stored
within a matrix, following the paradigm of dynamic programming

e A cost minimal path through this matrix from (0,0) to (n, m) yields the Edit
Distance (alignment cost and optimal alignment)

(l - 1)] _ 1) (l,] _ 1)

(=1j) «~— @)

(Note the non-determinism: there may be several cost minimal paths/optimal alighments)

e Optimal alignment is obtained by backward reconstruction of the decisions

made at every step along the optimal path (decisions can be stored during
matrix construction)
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e Computation of the Edit Distance via dynamic programming:
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e Idea: Weighting of edit operations via a ground distance
— Different costs for insertions, deletions, and substitutions

e Given two sequences Q = (q4, ..., q,) and S = (sq, ..., S;,), the Weighted Edit
Distance w.r.t. a ground distance § between Q and S is defined as:

EDs(Q,S) =+

min {
\

0 ifn=m=20
:l 16(qi,<>) ifm=20
fn 5(0,s;) ifn=0
EDg(sta;;(lQ),start(S)) if last(Q) = last(S)
EDg (start(Q), start(S)) + 6(last(Q), last(S)),
EDg (Q, start(S)) + 6(0, last(S)), else

EDg(start(Q),S) + 6(last(Q),9)



The optimal alignment of two sequences is not necessarily unique:

BANA
I
BAND

AN A
I
A N D

N A B AN
AR | O 0
B

Edit Distance is a metric

Weighted Edit Distance is a metric if the ground distance is a metric

Computation time complexity of a single Edit Distance computation is in
O(n - m) for sequences of lengths n, m

Common variant: First deletion of a symbol more expensive than repeated
deletion (important in bioinformatics)




e Idea: Similarity between two sequences Q and S is defined as the length of a
third sequence Z which contains elements of Q and S in the same order

— The longer the sequence Z, the higher the similarity of Q and S and vice versa

e Example (DNA sequence):
Q: ACCGGTCGAGTGCGCGAAGCCGGCCGAA
S: GTCGTTCGGAATGCCGTTGCTCTGTAA
One possible solution:
Z: GTCGTCGGAAGCCGGCCGAA




A sequence Z = (z4, ..., Zy) is a subsequence of sequence Q = (q4, ..-q,) if
there exists a strictly increasing sequence i, i, ..., i of indices of Q
such that Vj = 1,2, ..., k it holds that qi; = 7

Example:
- LetQ =(4,B,C,B,D, A, B) be asequence
— The sequence Z = (B, C, D, B) is a subsequence of Q
— The corresponding index sequence is 2,3,5,7




e Asequence Z = (2, ..., Z;) is a common subsequence of two sequences Q =
(q1,---q,) and S = (54, ..., S;,) if Z is a subsequence of both Q and S

e Example:
- LetQ =(4,B,C,B,D,A,B) be asequence
— LetS =(B,D,C,A, B, A) be another sequence
— The sequence Z = (B, C, A) is a common subsequence of Q and S
— However, Z is not the longest common subsequence:
e 7' =(B,C,B,A)
e 7'"=(B,D,A,B)

e Given two sequences Q = (g4, ...qn) and S = (s, ..., S;), the longest common
subsequence problem is to find a maximum-length common subsequence Z =
(z4,...,zx)of Qand S



e Given two sequences Q = (qq, ...q5) and S = (sq, ..., S;,), the longest common
subsequence (similarity measure) is defined as:

( 0
LCSS(Start(Q),Start(S)) + 1
LESS(Q.8) = 3 LCSS(Start(Q),S)

| " Less (o, start(s))

e Properties:
— Computation similar to that of the Edit Distance
— Exponential computation time complexity

— Computation time complexity via dynamic
programming lies in O(n - m)

ifn=0vm=0
if Last(Q) = Last(S)

else

i 0 1 2

12— 10 o > o o
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e LCSS provides the length of the longest common subsequence
— Highly dependent on the length of the analyzed sequences
— Not a distance function
e Distance function based on LCSS between two sequences Q = (g4, ... q,) and
S =1(Sq, ., Sp):

LCSS(Q,S)
min(n, m)

Dicss(Q,8) =1 —

e Generalization of LCSS [S08]:
— Multiple alignment between several sequences

— Complexity: 0(2%n¥) for k sequences and
n = length of longest sequence

Knowledge Discovery in Databases Il: Sequence Data 24



e Distance-based data mining
— Use one of the similarity measures from above (or variants, or ...)
— Clustering, outlier detection, classification of sequence data
— Does not mine sequential patterns but only patterns of similar sequences

e Sequential pattern mining (see previous lecture)

— Count the frequency of subsequences in the sequence objects and report the
frequent ones (sequential patterns)

— Relation to (generalization of) frequent item set mining, thus:

— Algorithms very similar to frequent item set mining




1. Introduction

2. Sequence Data

3. Time Series Data
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e Time series are a special type of sequences
— Typically, values that are recorded over time
— Index set [, represents specific points in time

Time Series

e Examples for univariate time series:

e Examples for multivariate time series:

stock prices

audio data
temperature curves
ECG

amount of precipitation

trajectories (spatial positions)
video data (e.g., color histograms)
combinations of sensor readings

Knowledge Discovery in Databases Il: Sequence Data
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e Data Cleaning to remove artefacts, distortion, noise, ...
— Offset Translation (aka “Shifting”)

e Time series are similar but have l l l

different offsets
e Example: move each time series by its mean M

T © 1

0 50 100 150 200 250 300

15

q=9-M(Q)

v

05 0 =0 - M(0) 0 50 100 150 200 250 300

0 50 100 150 200 250 300




e Data Cleaning (cont.)
— (Amplitude) Scaling
e Time series have similar trends but have different amplitudes

e Example: move each time series by its mean M and normalize the amplitude by its
standard deviation S (this is also called “normalization” = shifting + scaling)

q=(a-M(a))/S(a)

i

0 = (0 - M(0)) / S(0)

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
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e Data Cleaning (cont.)
— (Linear) Trend Elimination
e Similar time series with different trends
e Determine regression line and move each time series by its regression line
e Gets complex when an object features more than one trend

12

101

Offset Translation + Amplitude Scaling

Offset Translation + Amplitude Scaling 2l o
G IOW& + Trend Elimination
5 T T T T

] A ;

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200 -3

0 2‘0 4’0 6’0 86 160 1‘20 14‘10 1230 1‘80 200
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e Data Cleaning (cont.)
— Noise Reduction
e Similar time series with large noise portion

e Smoothing: normalization over a range of values (sliding window), e.g. replace i-th value
v; with mean value of 2k adjacent values [v,, ..., V;, ... Vi]

8 8
ol
al
of
ol
-2r

-4 4

0 20 40 60 80 100 120 140 "0 20 40 60 80 100 120 140
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e Data Cleaning: Summary

— The above mentioned cleaning procedures are common samples (i.e. there are
many more types of distortions that might be of interest to be removed)

— Which cleaning step should be taken? => That heavily depends on the application

— Example: r‘.w

3 8 S T~ T
e N
9 —_— W \ 5 —
6 e 6 M
; — m —
° M 3l N\ e/
7M e SN
: S o
o e
Raw time series from three classes Hierarchical (Single-Link) clustering of raw
Hierarchical (Single-Link) (see color coding) data using euclidean distance after doing

clustering of raw data using

X ; noise reduction, trend elimination, scaling
euclidean distance

using std. dev. and shifting using mean
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e Some example similarity queries for time series databases [AFS93]:
— ldentify companies with similar pattern of growth

— Determine products with similar selling patterns
— Discover stocks with similar movement in stock prices
— Find if a musical score is similar to one of the copyrighted scores

e Different types of similarity notions:

— Whole matching:
e Time series are usually assumed to all have the same length
e Similarity = matching entire time series
— Subsequence matching:
e Time series may have different lengths
e Similarity = find the subsequence that has the best match
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Similarity Notions for Time Series

lllustration with a query template g
— Whole matching of g to a database of time series

,\ query g
(template)
1 WW% 6 WWWW

3W8M -

Knowledge Discovery in Databases Il: Sequence Data

Og Is the best match;

Similarity is measured over the

entire time domain




e |llustration with a query template g

— Subsequence matching of g to a database of time series
,\ query q
(template)

Some oeDB

??

o e J

Subsequence W|th the best matching
determines the similarity of o and g

— Variant: the length of the (best matching) subsequence is fixed a priori to n
— Use asliding window of width n (contents of each window can e.g. be materialized)

N
sliding widow of width n




e Popular similarity measures (among others):
— Minkowski Distances

— Uniform Time Warping

— Dynamic Time Warping

— Longest Common Subsequences for Time Series
— Edit Distance on Real Sequence

— Edit Distance with Real Penalty

— Shape-based Distance




e Idea: Representation of a time series X = (x4, ..., x,;) as a n-dimensional
Euclidean vector

e Given two time series X = (x4, ..., x,) and Y = (yy, ..., ) of the same length,
the Minkowski Distance can be utilized as follows:

1
p

n
Ly (X,Y) = (lei - yiv’)
i=1
e Properties:

- p = 1: dissimilarities are not emphasized
- p = 2:to be preferred [AFS93]
- p = oo: distance is attributed to the most dissimilar entries of the time series

All these variants of the Minkowski Distances are
— sensitive w.r.t. variations on the time axis
— are limited to time series having the same baseline, scale, and length



e Problems of the Euclidean Distance

— Two time series can be very similar even though they have different baselines or
amplitude scales

e Solution: Normalization of time series as explained above (see: preprocessing),
e.g.
— Shifting by the average value (offset translation)
— Scaling by the standard deviation (amplitude scaling)

g

4 5 8 8 3 3 8 B 3

Stock price of IBM, LXK, MMM Normalized stock prices



e \What we have learned so far is termed Z-Score Normalization of a time series
X = (xq, 0., xp):
— shifting by the mean and scaling by the standard deviation

o X—avg(X)
T std(X)

with avg(X) =%- =1 X

and std(X) = \/%Z?ﬂ(xi — avg(X))?

e Alternative: Min-max normalization of a time series X = (x4, ..., X,):

s X-Max(X) _ . .
- X= M (0 —Min (D) (newMax — newMin) + newMin

e Properties:
— Z-Score normalization is more robust w.r.t. noise in the data
— Min-max normalization can be dominated by outliers.



e Example of different normalizations [M10]

z-score normalized

20— /

1.5 —
1.0 . .
min-max normalized
0.5 \

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

Original data

-3.0 =

e In most cases, normalization is necessary and should be done before analysis!



e Until now: shifting and scaling is performed on the amplitude axis

e For comparing time series with different lengths, we need scaling of a time
series X = (x4, ..., X,;) along the time axis as follows:
- w-upsampling:
e resolution is increased

o Up,(xq1, ., xp) = (24, vur) Zpe) With z; = x[_i] andi =1..nw

e every x; is repeated w times
- w-downsampling:
e resolution is decreased

e Downg(xq,...,x,) = (zl, ...,zlﬁj) with z; = x;, andi =1 ... EJ
w

e only multiples of w are used, i.e.i - w

4
X = (%1, 0, X10) Down,(X)

W o\(/o\o/o

> " >




e |dea: Scale both time series along the time axis to the same length and utilize
the Euclidean Distance

e Given two time series X = (x4, ..., x,,) and Y = (y4, ..., Vi), the Uniform Time
Warping Distance between X and Y is defined as:

L2 (Upm (X), Up, (X))
m-n
, 2
Y (Xi fmy — Yiim)
m-n

D%]TW(X: Y) —

e Instead of upsampling X and Y with m and n, respectively, one could also use
their lowest common multiple LCM(m, n)
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Dynamic Time Warping

Idea: Allow local (=dynamic) stretching of two time series in order to minimize the
distance between them

Allows comparison of time series of different lengths
Possible applications:
— Comparison of hummed songs, handwritten documents, biometric data

Comparison of the Euclidean Distance, which epitomizes a point-to-point
distance, and Dynamic Time Warping

Euclidean Distance Dynamic Time Warping

Knowledge Discovery in Databases Il: Sequence Data 43



e Given atime series X = (xq, ..., X;,), let e
- Start(X) = (x4, ..., X,,_1) define the prefix of X
- Last(X) = x,, define the last element

- @ = () define an empty time series

e Given two time series X = (x4, ...,x,) and Y = (v, ..., ¥,,) and a ground
distance §, the Dynamic Time Warping Distance between X and Y is
recursively defined as:

DTW;,(®,0) = 0
DTW;s,(X,8) = DTWs,(@,Y) = ooforX,Y # @

1

DTWs ,(Start(X), Start(¥)) )\ "\
DTW;s,(X,Y) = | 8(Last(X),Last(Y))” +| min{  DTW;, (X, Start(Y))

DTW;s ,(Start(X),Y)



e Variation of parameter p € R* yields the following instances

- p=1
DTW, 4 (Start(X), Start(Y))
DTWs 1 (X,Y) = 5(Last(X),Last(Y)) + min{ DTW6,1(X; Start(Y)) }
DTW;s  (Start(X),Y)

- p = 2 (Euclidean variant):

DTW; ,(Start(X), Start(Y)) ’
DTW;,(X,¥) = |8(Last(X),Last(¥))” +| min{  DTWs,(X, Start(V))
. DTW; , (Start(X),Y)

- p — oo:
DTWs, o, (Start(X), Start(Y))
DTW; o, (X,Y) = max {6(Last(X), Last(Y)), min{ DTWs o, (X, Start(Y)) }}
DTW; o (Start(X),Y)

e Termination cases are the same as on the previous slide



e Time series are typically real-valued, thus may often choose the
ground distance ¢ as the absolute difference:

6(xp, yi) = |x; — il = Ly(xy y3)
e One of the most prominent variant of Dynamic Time Warping

Distance is the squared Euclidean variant with Manhattan ground
distance:

DTW?(X,Y) = DTW{ ,(X,Y)
DTW?(Start(X), Start(Y))
|Last(X) — Last(Y)|* + min DTW2(X, Start(Y))
DTW?(Start(X),Y)



e Dynamic Time Warping aligns two time series to each other

e This element-wise alignment between two time series X = (xq, ...,x,) and Y =
(y1, ---, ¥m) €an be expressed by a warping path P of indices:

P = plr --')pL — (p])_(' pll./)' L (pl):(’ p[l,/)

where p{* € [1,n] and p] € [1,m] denote the indices within the times series X

and Y 3
e Properties of a warping path P: b

a) Boundary condition: p; = (1,1) and p; = (n,m) CKX({& /

b) Monotonicity: pf —pX,=>0andpf —p! ;=0 .

c) Continuousness: pf —pX,<1landp! —-p/_ <1 ¢ 11

d) The length |P| is bounded by: 1

max(n,m) < |P|<n+m-1 jé

. 2




e Let P denote the set of all paths satisfying constraints a) to d)

e The size of P is exponential

* Letthe costofapathP =p,,..,p, = (p7,p1), .., (0f, L) between two time
series X = (x4, ..., xn,) and Y = (y4, ..., y»,) be defined as:
L

2
cost(P,X,Y) = z ‘xpx — ypy‘
i=1

e DTW?2(X,Y) can be defined by the path with the minimal cost:

DTWZ2(X,Y) = min cost(P,X,Y)
PeEP

e Fortime series with the same length n, the warping path P = (1,1), ..., (n,n)
yields the Euclidean Distance
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Naive Computation of Dynamic Time
Warping

* Recursive computation of DTWjs ,, between two time series
X =0q,x)andY = (yq, ..., Vn):

DTWs (1, e %), V1, s V)

/v\

DTWS,p((xll ""xn—l)l (3’1: 'J’m)) DTW&,p((xl' ey xn—l)' (3’1; ---;Ym—l))

«

DTW(g’p((xl, v Xn), (71, ...,ym_l))

DTWs (1, e, X2 (V1) o) Yim—2))
l \

DTWé',p((xlr o Xn—2), V1, ---;}’m—l))

DTWep((x1, s Xn-2), 01, - ¥m-1)) | {DTWep((x1, e, Xn-1), 011, s Ym—2))

v

DTW&p((xl, vy Xn—2), 1, ...,ym)) DTW(g,p((xl, vy Xn—1), V1, ...,ym_l))

e Computation time complexity lies in O(3tree hetght) = g(3n+m)

Knowledge Discovery in Databases Il: Sequence Data




w

-nee | DYyNamic Time Warping: Path in a Matrix

SYSTEMS I_Mu Y LA
GROUP TS

e Any path P between two times series X = (x4, ..., x,,) and Y = (y4, ..., ¥»,,) can
be expressed as a path in a n X m matrix:

o 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

e This matrix is utilized for computing the DTW by Dynamic Programming

Knowledge Discovery in Databases Il: Sequence Data
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e DTW does not satisfy the identity of indiscernibles:
— TimeseriesX: |1 2 2 2

— TimeseriesY: |1 1 1 2

= DTW(X,Y) =0

e DTW does not satisfy the triangle inequality:

— TimeseriesX: [0 0 0 01
_ _ 4t % )1+2+2+3=8

— TimeseriesY: |1 2 2 /;3 2+3+3+3=11
. . om—— 1+0+0+0+0+0=1

— Time series Z: |2 3‘/3 3 |

DTW(X,Z) < DTW(X,Y) + DTW(Y,Z)
11 < 8 -~ 1 4
e Reason: replication of elements

Knowledge Discovery in Databases Il: Sequence Data 51
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e Comparison on time series that measure the daily network traffic

of a company, e.g.: W M

Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So

e Minkowski

A .
] Distanz

o DTW I 1 Distanz

Moo M ML UL WL MM ML,

Cluster 3: 3 Cluster 2: 4 Cluster 1: 5
working days working days working days
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e Up to now: Time series over real numbers

— Ground distance 6 between two elements
chosen as absolute difference:
6(xi, yi) = |x; — il
e Application of DTW to trajectories

— Trajectories are time series over multidimensional objects, e.g.:

x;,y; of time series X, Y can be

X = ((x1:3’1)» (X2, ¥2), vy (Xp, yn))

— Necessary: measurement of temporally
ordered points in space

— Different ground distances (L4, L,, L)
for comparison of (x;,y;) and (xj,yj)

» Adaptation of DTW to multidimensional
time series is straightforward

800 o

soo— AN
R il

€
@
=
5

E 300 .
>

Ny
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Dynamic Time Warping is sensitive to outliers and noise
Solution: extending LCSS to time series
A measure tolerant to gaps in the two compared time series

Example 1:
Two 2D trajectories that contain
many outliers at start and end

Longest Common Subsequence

Example 2:

* Noisy setting

where DTW gives
many dubious
matchings




e Instead of directly working with the entire time series, we can also extract
features from them

e Many feature extraction techniques exist that basically follow two different
purposes:

— Many of them aim at representing time series in a compact way (e.g. as a “shorter’
approximation of the original time series) with minimum loss of modelling error

U

=> this is mostly done for performance considerations
=> approach is closely related to dimensionality reduction/feature selection
Examples covered here: DFT, DTW, SVD, APCA, PAA, PLA

— Other model specific properties of the time series relevant to a given application
Example covered here: threshold-based modelling



LMU

Iew

Overv

Compact Representations

DATABASE
SYSTEMS
GROUP

L

//\ /\_

-—

el

0 20 40 60 80 100 120 0 20 40 60 80 100120 0 20 40 60 80 100 120 0 20 40 60 80 100120 0 20 40 60 80 100120

0 20 40 60 80 100120

e T N

DWT SVD APCA PAA PLA

DFT
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e Discrete Fourier Transformation (DFT)

— ldea:

e Describe a pereodical function as a weighted sum of periodical base functions with
varying frequency

e Base functions here: sin und cos
— Example:

I\ / \ .

3 sin(x) A

+1sin3x) B TN /v\,\/v\ A+B

+5+

A+B+C+D



— Basic foundation: Fouriers Theorem

Any periodic function can be represented by a sum of sin- and cos-functions of different
frequency

e DFT does not ,change” the function but simply finds a different equivalent representation
(and DFT can be reversed)

e Formally:

— Letx=[x],t=0, .. n—1be atime series of length n
— DFT transforms x into X = [X{] of n complex numbers with frequencies f=0, ..., n — 1 such that

1 — j2ft

_..><
I
§
[
& L
@
Il

2 ft 2 ft
IZ % C08(= =)~ |- IZ Xsin(= )
R;a;:il Ima;r;rteil

where j2 = —1.
» Realteil is the portion of cosine in frequency f
» Imaginarteil is the portion of sinus in frequency f



e DFT can be interpreted as a transformation of the bais vectors (like e.g. PCA):

DFT

— The new axis represent the frequencies

e But how does that help?
— So far, we transformed an n-dimensional time series into an n-dimensional vector ...

e Well first of all, it holds that the euclidean distance is preserved after DFT, i.e. || x—y | |?
=1 X=Y][]?



This follows from Parseval‘s theorem (and the linearity of DFT) which states that the
. 2 n-1 2\ - .
energy of a sequence (= sum of squared amplitudes E(x) 5x|*=> " |x|') is preserved, i.e.:

ST =

2
xf\

Now comes the important trick: in practice, the low frequencies (first components) have
the highest impact, i.e. contain the most information

Focusing on the first ¢ coeficients is a good choice if we want to reduce the
»,dimensionality” of a sequence

Since || x—=y ||2=|| X=Y ||? holds, using only c components instead of n yields a lower
bounding approximation of the Euclidean Distance

This approximation will be better when using DFT componenents instead of original time
stamps




e Discrete Wavelet Transformation (DWT)
— lIdea:

e Represent a time series as a linear combination
of base functions (Wavelet-functions)

e Typically, Haar-Wavelets are used

— Properties:

e The more stationary the time series is, the better
is the approximation with fewer components

e Distance on DWT components also lower bounds
Euclidean and DTW distance on original tijme
series

e Time series are restricted to be of length 2/ (for
any i)

_/—’_,_\_,_,;\VVT

80 100 120

140

Haar O
Haar 1
Haar 2
Haar 3
Haar 4
Haar 5
Haar 6

Haar 7



w

e | COMpact Representations: DWT

SYSTEMS LMU . \ sk
GROUP & |

e Example:

— Stepwise transformation of time series x = {8,4,1,3} into Haar Wavelet
representation H = [4,2,2,-1]

hl:4= h2:2:

h4 = '1 =
>‘(‘: {8,4,1,3} , mean(8,4,1,3) L mean(8,4) - h,

| (1-3)/2

R N W PH ol oy N

v
v
v
v
v
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e Singular Value Decomposition (SVD)
— lIdea:

e Instead of sinus/cosine use Eigen Waves

— Properties:

e Minimizes the quadratic approximation error (like
PCA and SVD on high dimensional data)

e The semantics of the components of SVD depends
on the actual data while DFT (sin/cos) and DWT
(const) are not data dependent

e In text mining and Information Retrieval, SVD as a
feature extraction technique is also know as , Latent
Semantic Indexing”

X

X'

SvD

20 40 60 80 100 120 140

3

o

eigenwave 0

eigenwave 1

eigenwave 2

eigenwave 3

eigenwave 4

eigenwave 5

eigenwave 6

191\

eigenwave 7




* Piecewise Aggregate Approximation (PAA)
— ldea: X

e Transform time series into a sequence of box- 5
functions
e Each box has the same length and approximates the

interval by the mean.

L —

el >

— Properties X2
P M Z

e Lower bounding property — X3

e Time series may have arbitrary length — X4

X5

X6

X7
l_l J—




e Extension: Adaptive Piecewise Constant
Approximation (APCA)

— Motivation

e Time series may have time intervals with a small
amount details (small amplitude) and intervals with a
large amount of details (large amplitude)

e PAA cannot account for varying amounts of detail
— Idea

e Use boxes of variable length

e Each segment now requires 2 paramters

X

™ x

_

0 20 40 60 80 100120140

<cvycry>

<CVy,Cry>

ML
—

<CV3,Crs>

<CVy,Cry>




Piecewise Linear Approximation (PLA)

Idea

e Transform time series into a sequence of line segments

Prot

s = (length, height,,.,,, height,, 4)

Two consectutive segments need not to be connected
erties

Good approximation dependents on #segments

Each component (segment) is a rich approximation but
requires more parameters

Lower bounds Euclidean and DTW

100

20 140




e An example of a specific feature transformation to model a special notion of

similarity of time series is ,,threshold-based similarity”
[Assfalg, Kriegel, Kroger, Kunath, Pryakhin, Renz. Proc. 10th Int. Conf. on Extending Database Technology (EDBT), 2006]

e Basic ldea:
— In some applications, only significant , events” that are defined by certain
amplitudes (or amplitude values) are interesting
— So far, the feature extraction extracts features modeling certain properties of
time intervals but not of amplitude intervals

~— eventat
specific time
point

Aggreagtion over time



e Sample Applications

— Environmental Science: analyzing critical ozone concentrations?
e Find cluster of regions (time series) that exceed the allowed threshold in similar time

intervals

0125 {
0100
L__
2 0075
0,050

0,025

Dangerous Ozone Concentration

Normal

0,000

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

— Medical diagnosis: potential for cardiac infarction?
e Find clusters of heart rates by focusing on the relevant amplitude intervals

LA

Not relevant for cardic infarction

Relevant for the detection of risk factors for
cardic infarction



w

DATABASE TthShOld-baSEd Similarity

SYSTEMS
GROUP

— Similarity Model

e Time series X = ((x,t;): i = 1..N) is transformed into a sequence of intervals S_y={s;: j =
1..M}, such that: VteT :(3s; €S, :s;l<t<s;u) < x(t)>r.

A

timeseries X

T / .........................................

S S, S3

v

S.x
Sq.l S.u

e Similarity of time series = similarity of sequences of intervals

S.o —_— -
Srljz i 1_ ¢
S.5 S _—
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° imi i i ? la My Uy I Hg Ug
Similarity between sequences of intervals:

| | | | | | tlme
e First: distance on intervals? =l e ]
_ _ b e ldl L
— Euclidean distance on I- and u-values: D B
37Ul e R
2 2 dilopn | et |
O (51,5,) =/ (1 —1,)7 + (U, —U,) ds=ps by | 4t
do=Ug-by | 4—————>
dy=lg-Uy 1 | le—m
where s,=(lI;,u;) und s,=(l,,u,) Gape-uy | ety |
dg = Ug - Ug: i i I“_‘_dg : : .':

e Use sum of minimum distance between two sequences of intervals S, und S,

drs(Sx.Sy) = [ -2 min di (s, 0+ -2 min di (. S)J
ISX I seSy teSy | Y | teSy seSy
' — ' ~




e Round-up:

— Feature extraction method serve the purpose of

e Finding a compact representation of the original time series (mostly for
performance reasons)
— Compact representations can be used for approximate similarity computations

— Some have bounding properties (e.g. lower bounding the exact distance/similarity) that can be
used for indexing/pruning

or

e Modeling a specialized notion of similarity of a time series for a given
application




e Geometric based method
e Semantic based method




