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1. Introduction

2. Sequence Data

3. Time Series Data



e So far we dealt with mostly structured, “flat” data from relational
tables that provide a snapshot of the data at a particular moment
(OK, the data can be updated inducing an update of patterns as
well ...)

e But very often, the world is different: just looking at a snapshot
cannot reveal important insights into the data

e Rather, we need to look at a sequences of snapshots of data to
e.g. analyze:

— How patterns are changing/evolving from one snapshot to the other
— If certain patterns appear in sequential/periodical fashion
— If there are “sequential” patterns



e Sequence Data allow for measuring/monitoring phenomena over
time (Time Series Data) or — more generally —in a given order (of
sequential events) without a concrete notion of time

e Examples:

Sequence Data: Sequence of purchases

Sequential Pattern: Customers buying A are likely to by B within the next 4
transactions

Time Series Data: Stock rates over time

Pattern: find stocks with similar behavior (over the entire time frame orin a
sub-interval of time)



1. Introduction

2. Sequence Data

3. Time Series Data



e Asequence S of length n is a mapping of the index set I, =
{1,2, ...,n} into a domain O:
S:I, - 0
e The set of all sequences of lengthnis 0™ = 0'» = {I,, - 0}
e The set of all sequences over domain 0 is 0* = {I,, > 0 | n € Ny}

e Sequences can be classified by their domain
— Categorical values (nominal values, alphabets, enumeration types)
— Continuous values (real numbers)



e Examples:

— Text data {a,..,Z,0,..9,..}*
— Video data images”
— Music data notes”
ARTRILERY
— Protein sequences amino_acid® = {LEU, ARG, ...} & T
— Gene sequences nucleic_acid* = {C,G,A, T} g_;:d; SEEEE
H ' _';5

e Time series are of course special types of sequences



e The most important question: how to account for the sequential nature of the
data???

e \We can use similarity models that do the job, e.g.:
e Hamming Distance

— Simple approach similar to the Euclidean Distance on vector data
— Naive alignment of sequences

e Edit Distance

— Transformation-based approach that measures the edit costs for transforming one sequence
into another

— Byproduct: (Optimal) alighment of sequences
e Longest Common Subsequences (LCS)

— Utilization of a third common basis sequence
— Variant of the edit distance



e Hamming Distance counts the number of positions with different elements
— It thus accounts for the fact that objects are “sequences of some symbols”

e Given two sequences Q = (q4, ..., q,) and S = (s4, ..., S,) of the same length,
the Hamming Distance between @ and S is defined as:

n
- 0 ifx=
DHamming(Q; S) = Z 6(q;,s;) with 6(x,y) = { ifx=y
i=1

1 else
e Example:
=t hree
| X X | x | = match, x = mismatch
S =t ree.
— DHamming(Qr §)=3
Drawback:

— Very strict matching similar to the Euclidean Distance
— Similar subsequences are not considered (aligned appropriately)



e Consider the following sequences (in German):

Q = T UR S CHL O S S

— DHamming(Q»S)=4
S = T O R S C H U S S
Q = T UR S C HL 0O S S

— DHamming(Q; R) =10
R = A B §S C H U S S

e Similarity of subsequences SCHLOSS and SCHUSS is not considered



¢ |dea:

— Dissimilarity between two sequences is defined as the minimal number of edit
operations (insertions, deletions, substitutions) for transforming one sequence into
another

e Example:

— Given the following two sequences Q and S, two deletions (¢) and three
substitutions (:) are necessary for the transformation

— Five symbols are unmodified (|):
O x| o
S C

T T =

S S
S = A B Uu s s

- DEdit(QrS) =5
e The mapping between elements is called optimal alignment and the Edit
Distance represents the alignment cost



e Given asequence Q = (qq, ..., qy) let start(Q) = (q4, ..., q,—1) denote the
prefix of Q and last(Q) = q,, the last element of Q.

e Given two sequences Q = (q4, ..., qy) and S = (s4, ..., S;p), the Edit Distance
ED of Q and S is defined as:

( n ifm=0
m ifn=20
ED(Start(Q),start(S)) if last(Q) = last(S)
ED(Q,$) = 4 ED(start(Q), start(S)),
1+ min ED(Q, Start(S)), else
\ ED(start(Q),S)

e Remark: if no insertions or deletions occur, the Edit Distance is equivalent to
the Hamming Distance
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e Analysis

- O(3™™) function calls for sequences of lengths n,m
— Many calls appear repeatedly

— Thereareonly(m+1)-(n+1) =0(m-n)
different recursive calls

e Solution
— Store results of all calls: O(m - n) space
— Systematic evaluation with O(m - n) operations
— Scheme is called dynamic programming
e Acceleration (Example: m,n = 5,50,500)
- 5.5 = 25 instead of 319 =59,049
— 50-50 = 2,500 instead of 3190 ~5 154.10%
— 500 - 500 = 250,000 instead of 31990 ~ 1,322 . 1047/
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e Calculation scheme:

— Horizontal step: (i,j) — (i-1,))
e deletion of current character g; in Q
— Vertical step: (i,j) — (i,j-1)
e insertion of character s; in Q at position {
— Diagonal step: (i,j) - (i-1,j-1)
e substitution of current character gq; in Q and s; in S
e All possible solutions, i.e. the Edit Distance on subsequences, can be stored
within a matrix, following the paradigm of dynamic programming

e A cost minimal path through this matrix from (0,0) to (n, m) yields the Edit
Distance (alignment cost and optimal alignment)

(-1j-1 (GLj—1

(Note the determinism: there may be several cost minimal paths/optimal alignments)

e Optimal alignment is obtained by backward reconstruction of the decisions

made at every step along the optimal path (decisions can be stored during
matrix construction)



w

Edit Distance: Example of Dynamic ALl
ssews | Programming LMU

GROUP

e Computation of the Edit Distance via dynamic programming:
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e Idea: Weighting of edit operations via a ground distance

— Different costs for insertions, deletions, and substitutions

e Given two sequences Q = (q4, ..., qn) and S = (sq, ..., S;), the Weighted Edit
Distance w.r.t. a ground distance § between Q and S is defined as:

EDs(Q,S) = 4

min {
\

0 ifn=m=0
?_16(qi,<>) ifm=0
" 60,5 iFn=0
EDS(sta;;(lQ), start(S)) if last(Q) = last(S)
EDg (start(Q), start(S)) + 6(last(Q), last(S)),
EDs(Q, start(s)) + 6(0, last(S)), else

EDg(start(Q),S) + 6 (last(Q),9)



The optimal alignment of two sequences is not necessarily unique:

AN A
I
AN D

BANANA
s 00
BAND

B AN
| O 0
B

Edit Distance is a metric
Weighted Edit Distance is a metric if the ground distance is a metric

Computation time complexity of a single Edit Distance computation is in
O(n - m) for sequences of lengths n, m

Common variant: First deletion of a symbol more expensive than repeated
deletion (important in bioinformatics)



Idea: Similarity between two sequences Q and S is defined as the length of a
third sequence Z which contains elements of Q and S in the same order

— The longer the sequence Z, the higher the similarity of Q and S and vice versa

Example (DNA sequence):
Q: ACCGGTCGAGTGCGCGAAGCCGGCCGAA
S: GTCGTTCGGAATGCCGTTGCTCTGTAA
One possible solution:
Z: GTCGTCGGAAGCCGGCCGAA



A sequence Z = (z4, ..., Zy) is a subsequence of sequence Q = (qq, ... q5) if
there exists a strictly increasing sequence i4, i5, ..., i of indices of Q
such that Vj = 1,2, ..., k it holds that qi; = 7

Example:
— LetQ =(4,B,C,B,D,A,B) be asequence
— The sequence Z = (B, C, D, B) is a subsequence of Q
— The corresponding index sequence is 2,3,5,7



e Asequence Z = (z4, ..., Z}) is a common subsequence of two sequences Q =
(q1,..-qn) and S = (sq, ..., S;,) if Z is a subsequence of both Q and S
e Example:
— LetQ =(A4,B,C,B,D,A,B) be asequence
— LetS =(B,D,C,A,B,A) be another sequence
— The sequence Z = (B, C,A) is a common subsequence of Q and S

— However, Z is not the longest common subsequence:
e 7' =(B,C,B,A)
e 7" =(B,D,A,B)

e Given two sequences Q = (q4,...qn) and S = (54, ..., S;,), the longest common
subsequence problem is to find a maximum-length common subsequence Z =
(z4, ...,zx)of Qand S



e Given two sequences Q = (qq, ...qn) and S = (s4, ..., S;p), the longest common
subsequence (similarity measure) is defined as:

( 0 ifn=0vm=0
LCSS(Start(Q),Start(S)) + 1 if Last(Q) = Last(S)
LESS(Q.S) = S LCSS(Start(Q), S) l
- " Less (o, start(s)) erse
i 0 1 2

e Properties:
— Computation similar to that of the Edit Distance ,

— Exponential computation time complexity 2

— Computation time complexity via dynamic 3
programming lies in O(n - m) 4

10— 10— to =t [po




w

e | OlMilarity based on LCSS & Generalization

SYSTEMS
GROUP

e LCSS provides the length of the longest common subsequence
— Highly dependent on the length of the analyzed sequences
— Not a distance function
e Distance function based on LCSS between two sequences Q = (g4, ... q,) and
S = (51, Sp):

LCSS(Q,S)
min(n,m)

Dicss(Q,8) =1 —

e Generalization of LCSS [S08]:
— Multiple alignment between several sequences

— Complexity: 0(2%n¥) for k sequences and
n = length of longest sequence
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e Distance-based data mining
— Use one of the similarity measures from above (or variants, or ...)

— Clustering, outlier detection, classification of sequence data
— Does not mine sequential patterns but only patterns of similar sequences

e Sequential pattern mining (see previous lecture)

— Count the frequency of subsequences in the sequence objects and report the
frequent ones (sequential patterns)

— Relation to (generalization of) frequent item set mining, thus:
— Algorithms very similar to frequent item set mining



1. Introduction

2. Sequence Data

3. Time Series Data



w
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e Time series are a special type of sequences
— Typically, values that are recorded over time
— Index set [, represents specific points in time

Time Series

e Examples for univariate time series:

e Examples for multivariate time series:

stock prices

audio data
temperature curves
ECG

amount of precipitation

trajectories (spatial positions)
video data (e.g., color histograms)

combinations of sensor readings

Knowledge Discovery in Databases Il: Sequence Data
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e Data Cleaning to remove artefacts, distortion, noise, ...

— Offset Translation (aka “Shifting”) |
e Time series are similar but have 1 1 1
different offsets — .
e Example: move each time series by its mean M

T T

0 50 100 150 200 250 300

.

25

2 q

9 q=q-M(q)

1 >

0.5 \\LNO 0 =0 - M(0) 0 50 100 150 200 250 300

00 50 100 150 200 250 300




e Data Cleaning (cont.)
— (Amplitude) Scaling
e Time series have similar trends but have different amplitudes

e Example: move each time series by its mean M and normalize the amplitude by its
standard deviation S (this is also called “normalization” = shifting + scaling)

q=(q-M(q))/S(a)

v

0 = (0 - M(0))/ S(o)

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 360 400 500 600 700 800 900 1000



w

amese | TIME Series

SYSTEMS
GROUP

e Data Cleaning (cont.)

— (Linear) Trend Elimination
e Similar time series with different trends
e Determine regression line and move each time series by its regression line
e Gets complex when an object features more than one trend

12

10
8
6

4

Offset Translation + Amplitude Scaling

Offset Translation + Amplitude Scaling 2 o
5 o IOWM y 5 + Trend Elimination
4 2

3 4

0 20 40 60 80 100 120 140 160 180 200 3

0 20 40 60 80 100 120 140 160 180 200 -3
0 20 40 60 80 100 120 140 160 180 200
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Data Cleaning (cont.)

— Noise Reduction
e Similar time series with large noise portion

e Smoothing: normalization over a range of values (sliding window), e.g. replace i-th value
v; with mean value of 2k adjacent values [v;,, ..., V;, ... V]

ol
ol
2

“o 20 40 60 80 100 120 140 “ 20 40 60 80 100 120 140



w

amese | TIME Series

SYSTEMS I_MU VALY =
GROUP i Bl

e Data Cleaning: Summary

— The above mentioned cleaning procedures are common samples (i.e. there are
many more types of distortions that might be of interest to be removed)

— Which cleaning step should be taken? => That heavily depends on the application

— Example: rl.w,

J
|
i
z%

3
2 . 1 S —
gm - / o i \ — :
6 . 5 -—
; — m —
5 — s ST\ ——
7.%%%% i o SN
4 v " N\
B
Raw time series from three classes Hierarchical (Single-Link) clustering of raw
Hierarchical (Single-Link) (see color coding) data using euclidean distance after doing

clustering of raw data using

) . noise reduction, trend elimination, scaling
euclidean distance

using std. dev. and shifting using mean
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e Some example similarity queries for time series databases [AFS93]:

— Identify companies with similar pattern of growth

— Determine products with similar selling patterns

— Discover stocks with similar movement in stock prices

— Find if a musical score is similar to one of the copyrighted scores

e Different types of similarity notions:

— Whole matching:
e Time series are usually assumed to all have the same length
e Similarity = matching entire time series
— Subsequence matching:
e Time series may have different lengths
e Similarity = find the subsequence that has the best match



e |llustration with a query template g

— Whole matching of g to a database of time series

,\ query g
(template)
1 «WWWM 6 “W WM

N
WMW WWV\W ' %f Nl TN W\ )
w T T
WWW WL 8 MW;\P MWJ 0 is the best match

Similarity is measured over the

4 MWWW 9 W entire time domain
5MW\WW e P¥td

DB




e |llustration with a query template g

— Subsequence matching of g to a database of time series

query q
(template) .
1
1
1 1
hww [k M ‘\ww W l . | ﬁML n‘M [l o
‘ \’ ‘ MV‘\A{\'\‘\‘\ w/\‘\\ "\ﬂ‘ ‘/k\"\‘ “ o Y \M/ (\\4} ’\‘w\\v‘w n |‘ | \\\m/\ I
“‘ﬂ/\‘/w ‘ ‘ ‘ W hinf\ M‘ A
YUl ’v‘m L “/m\‘ ‘WL i H ‘/\/\J \ ‘l‘ v ‘r Sy I}u’\ ] |/ /”‘ Wy g

|
il h‘ |

- m"w%‘f‘v’v\\ \‘”\ ‘v"u l\w“w“W
/) ‘l“
N

A
) i ' o LV M n ‘\
Some 0eDB v N J i )
e

Subsequence with the best matching
determines the similarity of o and q

Variant: the length of the (best matching) subsequence is fixed a priori to n
Use a sliding window of width n (contents of each window can e.g. be materialized)

v

LAl /
A AR | ”H
‘\‘/LW V\W‘L Vi H p Y | I ‘\/ o M )“‘1‘ [\,w(\r‘,\‘\

Wl I I A Y .

i ARG M m‘ BRALEL TN N LY i (\}\ e
"“”\r‘(\w‘h‘v‘\“‘(‘ L ‘, ) | ! W'! ‘M, ‘o\ W““ /\J \u‘\//v\ ﬂ‘” ’\H Vg J Ny A [‘ /"‘ U | Iy v‘U“f |
vy i A ) A e “VW [ \
. AN WV il M I il WA |

v

C 7 | . ol
Y
sliding widow of width n




e Popular similarity measures (among others):
— Minkowski Distances

— Uniform Time Warping

— Dynamic Time Warping

— Longest Common Subsequences for Time Series
— Edit Distance on Real Sequence

— Edit Distance with Real Penalty

— Shape-based Distance



e Idea: Representation of a time series X = (x4, ..., X,,) as a n-dimensional
Euclidean vector

e Given two time series X = (x4, ..., x,) and Y = (y4, ..., y,) of the same length,
the Minkowski Distance can be utilized as follows:

1

- p
Ly (X, ¥) = (lei - ym’)

i=1

e Properties:

- p = 1: dissimilarities are not emphasized

- p = 2:to be preferred [AFS93]

- p = oo: distance is attributed to the most dissimilar entries of the time series
All these variants of the Minkowski Distances are

— sensitive w.r.t. variations on the time axis

— are limited to time series having the same baseline, scale, and length



e Problems of the Euclidean Distance

— Two time series can be very similar even though they have different baselines or
amplitude scales

e Solution: Normalization of time series as explained above (see: preprocessing),
e.g.
— Shifting by the average value (offset translation)
— Scaling by the standard deviation (amplitude scaling)

€ & 8 8 3 s 8 & 3
i PSR

Stock price of IBM, LXK, MMM Normalized stock prices



e \What we have learned so far is termed Z-Score Normalization of a time series
X = (xl, ...,xn):
— shifting by the mean and scaling by the standard deviation

o X—avg(X)
T std(X)

with avg(X) = % X

and std(X) = \/%Z?:l(xi — avg(X))*

e Alternative: Min-max normalization of a time series X = (x4, ..., X,,):

- R = X Max(X) (newMax — newMin) + newMin
Max(X)—Min(X)

e Properties:

— Z-Score normalization is more robust w.r.t. noise in the data
— Min-max normalization can be dominated by outliers.



e Example of different normalizations [M10]

z-score normalized

20— /

1.5 =
1.0 = . .
min-max normalized
0.5 \

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

Original data
-3.0 =

* In most cases, normalization is necessary and should be done before analysis!



e Until now: shifting and scaling is performed on the amplitude axis

e For comparing time series with different lengths, we need scaling of a time
series X = (x4, ..., X;;) along the time axis as follows:
- w-upsampling:
e resolution is increased

e Up,(xq1, ., xp) = (24, wor) Zpe) With z; = XH andi=1..nw

e every x; is repeated w times
- w-downsampling:
e resolution is decreased

e Downgy(xq,...,x,) = (zl, ...,ZH) with z; = x;, andi =1 ... BJ

e only multiples of w are used, i.e.i - w

A

X = (x4, ., X10) 1 Down,(X)

[ »
» »




e Idea: Scale both time series along the time axis to the same length and utilize
the Euclidean Distance

e Given two time series X = (xq, ..., x,) and Y = (y4, ..., ¥4n), the Uniform Time
Warping Distance between X and Y is defined as:

L2(Upm(X), Upp (X))
m-n
. 2
Zﬁ?(x[i/m] — Y[i/rq)
m-n

DzUTW (X, Y)

e Instead of upsampling X and Y with m and n, respectively, one could also use
their lowest common multiple LCM(m, n)



w
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= |dea: Allow local (=dynamic) stretching of two time series in order to minimize the
distance between them

e Allows comparison of time series of different lengths
e Possible applications:
— Comparison of hummed songs, handwritten documents, biometric data

e Comparison of the Euclidean Distance, which epitomizes a point-to-point
distance, and Dynamic Time Warping

Euclidean Distance Dynamic Time Warping
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e Given atime series X = (xq, ..., X;,), let ¢ Time eres
- Start(X) = (x4, ..., x,—1) define the prefix of X
- Last(X) = x,, define the last element

- @ = () define an empty time series

e Given two time series X = (x4, ..., x,) and Y = (y4, ..., ¥4,) and a ground
distance §, the Dynamic Time Warping Distance between X and Y is
recursively defined as:

DTWs,(@,0) = 0
DTWs,,(X,8) = DTW;s,(@,Y) = forX,Y # @

1

DTWs , (Start(X), Start(¥)))\"\?
DTW;s,(X,Y) = | &(Last(X),Last(¥))” +| min{  DTW;,, (X, Start(Y))

DTW;s , (Start(X),Y)



e Variation of parameter p € R* yields the following instances
- p=1

DTWs { (Start(X), Start(Y))
DTW; 1 (X,Y) = §(Last(X), Last(Y)) + min DTW;s 4 (X, Start(Y))
DTW; 1 (Start(X),Y)

- p = 2 (Euclidean variant):

DTW; ,(Start(X), Start(Y)) i
DTW;,(X,¥) = [8(Last(X),Last(¥))" + | min{  DTWs,(X, Start(V))
N DTW; ,(Start(X),Y)

- p — oo
DTW; o, (Start(X), Start(Y))
DTWs o (X,Y) = max {S(Last(X),Last(Y)), min{ DTWs o, (X, Start(Y)) }}
DTW; o, (Start(X),Y)

e Termination cases are the same as on the previous slide



e Time series are typically real-valued, thus may often choose the
ground distance 6 as the absolute difference:

6(xi,yi) = lxg — yil = Li(xi, yi)
e One of the most prominent variant of Dynamic Time Warping

Distance is the squared Euclidean variant with Manhattan ground
distance:

DTW2(X,Y)

DTW ,(X,Y)
DTW?(Start(X), Start(Y))
|Last(X) — Last(Y)]* + min DTW?(X, Start(Y))
DTW?2(Start(X),Y)



Dynamic Time Warping aligns two time series to each other

This element-wise alignment between two time series X = (x4, ...,x,) and Y =
(y1, ---, Vi) can be expressed by a warping path P of indices:

P = pl: ---»pL — (p])_(' pill()' R (pl):(’ PZ)

where p* € [1,n] and p] € [1, m] denote the indices within the times series X
andY N

Properties of a warping path P: b
a) Boundary condition: p; = (1,1) and p;, = (n,m) 1111 /
b) Monotonicity: pf —pf,=0andpf —pl ;>0 g
c) Continuousness: pf —pf,<1landp! —p/_{<1 1

d) The length |P] is bounded by: 1 011
max(n,m) < |P|<n+m-—-1 jixé




e Let P denote the set of all paths satisfying constraints a) to d)

e The size of P is exponential

e Letthe costofapathP =py,..,p, = (pf,pY), ..., (&, pl) between two time
series X = (x4, ...,xp) and Y = (yy4, ..., yy,) be defined as:
L

2
cost(P,X,Y) = z |pr — ypy|
i=1

e DTW?2(X,Y) can be defined by the path with the minimal cost:

2 _ .
DTW=(X,Y) = min cost(P,X,Y)

e For time series with the same length n, the warping path P = (1,1), ..., (n,n)
yields the Euclidean Distance
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Naive Computation of Dynamic Time

Warping

X =0, x)andY = (¥4, ..., Vin):

DTWé‘,p((xlt '"rxn)' (yll ;ym))

Recursive computation of DTWs ,, between two time series

DTWs,p(Cx1, e Xn-1), (1, -, ¥m))

DTW;p(Cey, s Xn-1), 01, ) Ym-1))

DTWis 5 (X, s %), (1, ) Y1)

DTWe,p((x1, -, Xn—2), (1, e, Ym—2))

v \

DTWS,p((xll ) xn—Z): (}’1, ey ym—l)) DTWS,p((xll
DTWS,p((xlr s Xn-2), 1, ---,)’m—1))

ey xn—l): (}’1, ey ym—Z))

v

DTWs,p (01, ) Xn-2), (1, ) )

DTWe,((x1, s Xn—1), Q1 e Ym-1))

e Computation time complexity lies in O(3tree hetght) = g(3n+m)
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Dynamic Time Warping: Path in a Matrix

i"|-. ‘J' A '
e T Ly
s -3

Lrosi=li L
L7 L™
5 !
T

A |

(57800

=l |

1=
DATABASE glacio | |
SYSTEMS I_M u AL
GROUP LITELE

e Any path P between two times series X = (x4, ..., x,) and Y = (y4, ..., ¥»,) can

be expressed as a path in a n X m matrix:

o 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

e This matrix is utilized for computing the DTW by Dynamic Programming
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Dynamic Time Warping is not a Metric

e DTW does not satisfy the identity of indiscernibles:

— Time series X:
— Time series Y:

1 2

2 2

= DTW((X,Y)=0

1 1

1 2

e DTW does not satisfy the triangle inequality:

— TimeseriesX: [0 0 0 0]
_ _ ) ) ) ) 1+2+2+3=8
— Time series Y: 1 2 2 31 2+3+3+3=11
— Time series Z: 3“?3‘/3‘/ ; 4 [rOrOroronom
DTW(X,Z) < DTWX,Y) + DTW(,Z)
11 < 8 -+ 1

e Reason: replication of elements
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e Up tonow: Time series over real numbers

— Ground distance § between two elements x;, y; of time series X, Y can be
chosen as absolute difference:

§(xi,yi) = lx; — yil
e Application of DTW to trajectories
— Trajectories are time series over multidimensional objects, e.g.:

X = ((x1; yl)r (Xz, yZ): L (xnl yn))
— Necessary: measurement of temporally
ordered points in space
— Different ground distances (L4, L,, L)
for comparison of (x;,y;) and (xj,yj)
» Adaptation of DTW to multidimensional
time series is straightforward




e Dynamic Time Warping is sensitive to outliers and noise

e Solution: extending LCSS to time series

e A measure tolerant to gaps in the two compared time series

Example 1:

Longest Common Subsequence

* Two 2D trajectories that contain
many outliers at start and end

Example 2:

* Noisy setting
where DTW gives
many dubious
matchings



